
Content Markup:
Principles and Consequences

Andreas Strotmann
Universität zu Köln, ZAIK/RRZK

OpenMath Workshop -- Bremen 2003

Introduction

Presentation of results from my dissertation
“Content Markup Language
Design Principles”
– Ladislav J. Kohout, major professor
– Mika Seppälä, R. van Engelen, K. Gallivan, H.

Levitz, committee members
– official date May 2003, FSU CS

• www.cs.fsu.edu/research/reports
• etds.lib.fsu.edu/

Introduction (ctd.)

Focus on ideas with results that may
influence development of OpenMath 2.0
including those that have influenced
development of MathML 2.0, 2nd ed.

To be continued this afternoon with
concrete proposals for OpenMath 2.0

Research Topic

Understanding Content Markup Language Design
– well… “towards a better understanding of…”
– because existing language designs have been flawed
– … due to lack of a deeper understanding

Approach Based on an Observation
– Content markup languages are knowledge

communication languages for heterogeneous systems
– there is only one known high-quality solution to the

knowledge communication problem: human language

Research Ansatz

=> The Linguistics Approach
– Linguists (and others) have been studying

“engineering solutions” of human language for
a long time, with impressive results

– Proposal: transfer “engineering solutions” to
content markup language designs

But: How do we “prove” this works???
– Formal proof clearly impossible…
– The proof of the pudding is in the eating

Research Method

Application of select tools from linguistics
to content markup language design
– Language architecture: layers & components
– Compositionality Principle
– Categorial Semantics

Successful transfer of these non-trivial
“corollaries” supports main “conjecture”
– + Outlook to as yet untried tools adds weight

Table of Contents

Overview
Introduction
Historical Timelines
Related Topics
Applications and Implementations
The Linguistics Approach
The Compositionality Principle
Categorial Semantics
Conclusions

Linguistics Parallel: Motivation

Human language universals
– developed under intense evolutionary pressure
– => provide a “good” engineering solution

• => use “principles”, but ignore “parameters”

– Human language solves similar problem to content
markup

• communication of meaning between similar but different
intelligent agents

• => study design principles of language in order to design good
content markup languages

Linguistics Ansatz:
Language Layers

Linguistics background
– Language components:

• Morpho-syntax,
• Syntax,
• Structural (“categorial”) semantics,
• Lexical semantics,
• Pragmatics,
• Semiotics

Application:
Language Layers for OpenMath

• published in “OpenMath Objectives” (‘95/98)

Linguistics Ansatz:
Syntax Layer

Linguistic background (& proposals)
– “X-bar” : “typed” tree structure

((head arguments…) modifiers…)
• cf. OpenMath ((head arguments…) attributions…)
• head determines “type”
• modifiers ~ named arguments with defaults

– “Government and Binding”
• syntax for scopes (cf. OM Binder, MML <bvar>)
• syntax for co/cross-references (cf. MML id=, ref=)

Linguistics Ansatz:
Syntax- Semantics Interface

Linguistics Background
– Compositionality Principle (aka Frege-Prinzip)

• “Meaning of compound expression is function of syntactic
composition rule and meanings of parts”

• Research principle underlying Formal Semantics
• Many applications in CS

– Categorial Semantics
• Categories of lexical items with identical behavior
• Meaning category from category of parts & syntax
• Categorial type logics/ type systems

Linguistics Ansatz:
Pragmatics

Linguistic Background
– syntactic categories correspond roughly to language

layers
– NPs - who, what… : static semantics
– VPs - doings: dynamic semantics (?)
– IPs - judgments: pragmatics?

• Words can systematically shift levels
• categories can all be nested inside each other

Content markup currently ~ Noun Phrase
– KQML, OMdoc ~> VP (actions, actors)

• mutual inclusion property still missing

Compositionality

Compositionality
– in CS usually understood to constrain semantics

given syntax
– in philosophy of language, “systematicity” only

possible given compositional world view
– in linguistics, compositional semantics and

syntax constrain each other
– here: allowable syntactic structure constrained

by intended semantic structure

Compositionality
and Language Design

“Meaning of compound is function of
meaning of parts and syntactic construct”
– often: “exists homomorphism from syntactic

algebra to semantic algebra”
– hence: distinct semantic constructors require

distinct syntactic constructors
– usual ingredients: numbers, variables, names;

application
– also needed: variable binding, typing syntax

Compositionality
and language analysis

Compositionality analysis of an example
– determine semantic decomposition(s)
– determine distinct semantic constructors

• many, but not limitless possibilities

Analysis of existing languages
– determine if systematic representations of semantic

constructors exist

Design of new language
– construct homomorphism

Compositionality
and Variable Binding Syntax

Variable binding has special semantics
– cannot be reduced to combination of other regular

language ingredients and application
– => need special syntax

Do knowledge communication languages have
systematic special binder syntax?
– Yes: OpenMath, MathML
– No: KIF, CA user languages

• But KIF 3 defines lambda as special syntax

Compositionality
and Higher-Order Operators

Special syntax for variable scoping
– => “parts” must include body and bound vars
– (more parts are possible, e.g. binder)

=> Do specific language ingredients that
represent variable binding require these as
necessary parts?
– Counter examples: KIF “setof”, MathML “min”

When not: construct examples with errors

Compositionality:
Practical Consequences

Found errors in KIF 3.0, dpANS KIF,
MathML
OpenMath Binding Objects explicitly added
to improve compositionality (S. Watt)
Languages with explicit typing require
special type assignment syntax (missing in
all content languages we have looked at)

Categorial Types

analysis tool for content markup languages
– has been applied to mathematical formulas from 1935!

~ type-level generalization of λ calculus called
Lambek calculus
– application, abstraction, reduction rules…
– types of atoms “ignored”/ factored out
– unification of concrete types left as an SEP
– interaction between categorial (structural) and concrete

(lexical) type system generally benign
• Dörre, Manandhar: On constraint-based Lambek calculi, 97

Categorial Types:
Application to OpenMath

Categorial types for OpenMath
– proposal of full categorial type system

• compatible with existing systems
• compositional categorial type assignment function

for all OM Object constructors (application, binding,
attribution, error)

– flushed out and fixed severe OM spec error
• current syntax of OpenMath cannot allow intended

Currying semantics
• problem traced to extra “part” of Binding object

Categorial Types:
Application to MathML (to do)
MathML 2.0, 2nd ed, finally ready for
categorial type system (10/2003)
– Special syntax for variable binding, domain-of-

application...
– Applies systematically to any operator, not just

a few
– Systematic correspondence between

„functional“ and „binder“ usage patterns
conforms to our categorial type system view

Principles

Compositionality Principle
Radical Lexicalism
“Categorial” Semantics

Linguistics Parallel

The Compositionality Principle

Consequences

Consequences…
from Compositionality Principle
Every class of qualitatively different
semantic constructs requires its own special
syntactic construct
– atomic: variable, name, strings, numbers…
– structural: application (positional and named

arguments), binding, typing information
– pragmatic: command, question…

Systematicity

If a class of concepts is open-ended, it
should be handled systematically
– MathML 1 --> 2: make binding and domains of

application available beyond closed set of ops
– MathML 2, 2nd ed.: make them available

systematically, including equivalence of
functional and binder formulation of
generalized quantifiers

– OM2 draft: binder symbols are regular ops, too!

Lexicalism

Clean factorization of semantics into
– structural (a.k.a. “categorial”) semantics
– and lexical semantics (“ontologies”)

meaning(s) of a word is lexical entry
– complex types/semantics as context specs

semantic interpretation or type inference
rules exclusively in structural terms
– lexicon does not allow adding rules

Lexicalism

Lexical type theory “orthogonal” to
structural (“categorial”) type theory
– Result from formal semantics (linguistics) lit:

For a large class of categorial type theories (L2
and lower) and a large class of lexical type
theories (lattice), their combination is very well
behaved (e.g. decidability depends on lexical
“plugin” type theory, not on categorial
“framework” type theory)

Categorial Types

L2 encompasses
– application and abstraction types
– unification over type variables
– currying (and much more)
– no quantification over type variables (!!!)
– no explicit typing (lexical typing only)
– no(?) domain-of-application

result applies to simpler theories, too

Proposals

Cleanup

Make sure standard encodings can
– encode all OM objects

• remove arbitrary size limits in binary encoding

– do round-trip encoding
compatibility with MathML v 2 ed 2
– equivalence of uses of binder symbols in

application or binding objects
– domain-of-application

Standardize Formal
Structural Type System

Extend STS to become full-fledged standard
“categorial” type system for OpenMath
– we can (but don’t have to) define currying

properly here!
– Compatible with proposal for semantic attrs.
– Equivalence of functional and binder uses

• compatible with MathML 2, 2nd ed.
• incompatible with some OM2 proposals!

Possible, but not necessarily trivial

A Consequence for Types

Every type theory for OpenMath must
extend the Standard Structural Type System
Common fundamental type constructors
– abstraction (mapping, n-ary mapping)
– application (reduction)
– natural numbers, reals, complex numbers…
– type descriptor (e.g.)
– CD or required entries in type theory def., e.g.

“Categoriality” property

Prove that extended STS works properly
with embedded type systems
– along the lines of existing proof of

compatibility of L2 type logic with type lattices
– potential problems:

• explicit type assignments
• n-ary operators

MathML compatibility

Common type theory may serve as basis for
formal proof of compatibility between
OpenMath 2.0 and MathML 2.0, 2nd ed.
– Requires research!

OpenMath Layers

Consider re-introducing an extra OpenMath
layer as originally proposed in “Objectives”
– intermediate layer defined as structural

(“categorial”) semantics layer

Reconsider Binding Objects

It turns out that the binder argument to a
binding object complicates its semantics
considerably
– e.g. makes it impossible to define a currying

rule without introducing a categorial theory
Consider pros and cons of replacing binding
objects by lambda objects.
– These lend themselves naturally to currying

	Content Markup: Principles and Consequences
	Introduction
	Introduction (ctd.)
	Research Topic
	Research Ansatz
	Research Method
	Table of Contents
	Linguistics Parallel: Motivation
	Linguistics Ansatz: Language Layers
	Application: Language Layers for OpenMath
	Linguistics Ansatz: Syntax Layer
	Linguistics Ansatz: Syntax- Semantics Interface
	Linguistics Ansatz: Pragmatics
	Compositionality
	Compositionality and Language Design
	Compositionality and language analysis
	Compositionality and Variable Binding Syntax
	Compositionality and Higher-Order Operators
	Compositionality: Practical Consequences
	Categorial Types
	Categorial Types: Application to OpenMath
	Categorial Types: Application to MathML (to do)
	
	Principles
	The Compositionality Principle
	Consequences
	Consequences…from Compositionality Principle
	Systematicity
	Lexicalism
	Lexicalism
	Categorial Types
	Proposals
	Cleanup
	Standardize Formal Structural Type System
	A Consequence for Types
	“Categoriality” property
	MathML compatibility
	OpenMath Layers
	Reconsider Binding Objects

