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1 Content Dictionaries

• Contain names, with formal and informal properties.

• Define the semantics of the mathematical object, so factor means
“the factorization of”.

• Type information in an associated Small Type System (STS) file.

Compare

<OMS name="mean" cd="s-data1"/>
<OMS name="mean" cd="s-dist1"/>.

Both correspond to the MathML symbol <mean/>, but have different se-
mantics.

2 Summary of current state

• MathML-compatible (a moving target).

• Much effort to get the semantics absolutely definite (branch cuts etc.).

arctanDerive(z) = arctanMaple(z).

• Some useful extensions, simple proofs.

• Various forms of polynomial and Gröbner base.

• Dimensions and units.
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3 MathML-induced Changes

<reln> and <fn> deprecated, so <OMA> now translates more uniformly into
<apply>.

Arithmetic Add <arg/>, <real/>, <imaginary/>, <lcm/>, <floor/> and
<ceiling/>.

Relations Add <equivalent/>, <approx/> (what semantics?) and <factorof/>.

Set Theory Add <card/>, corresponding to OpenMath’s

<OMS name="size" cd="set1"/>,

and <cartesianproduct/> (spelled with an “_” in OpenMath).

Elementary Functions MathML added <arccot/>, <arcsec/> and <arccsc/>,
as well as the hyperbolic equivalents.

Set Symbols MathML added <integers/>, <reals/>, <rationals/>, <naturalnumbers/>,
<complexes/> and <primes/>. In OpenMath:

<OMS name="R" cd="setname1"/>.

Constants MathML added <exponentiale/>, <imaginaryi/>, <notanumber/>,
<true/>, <false/>, <pi/>, <eulergamma/> and <infinity/>. In
OpenMath they are

<OMS name="e" cd="nums1"/>.

functions MathML added domain, codomain and image. It also introduced
domainofapplication, as in

∫
C f :

<apply>
<int/>
<domainofapplication>

<ci> C </ci>
</domainofapplication>
<ci> f </ci>

</apply>

This particular example was already catered for in OpenMath, as in

<OMOBJ>
<OMA>
<OMS name="defint" cd="calculus1"/>
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<OMV name="C"/>
<OMV name="f"/>

</OMA>
</OMOBJ>

Piecewise MathML added three symbols for piece-wise definitions of func-
tions: piecewise, piece and otherwise. These were encoded into
OpenMath as elements of the new piece1 CD.

Vectors MathML added the symbols divergence, grad, curl and laplacian.
Similarly, vectorproduct, scalarproduct and outerproduct.

4 Extensions to the MathML CDs

Arithmetic The arith2 CD contains two symbols: inverse intended to
represent the additive or multiplicative inverse of an element, and
times, an explicitly commutative version of the times symbol in the
arith1 CD.

The fns2 CD contains three symbols.

apply to list which represents the application of an n-ary function
to all the elements of a list.

kernel which represents the usual algebraic object.

right compose (logically redundant).

Lists The list2 CD contains cons, first and rest. I propose nil,
append and reverse.

Set Names The setname2 CD contains several others: A (the algebraic
numbers), Boolean, GFp, GFpn, H (the Hamiltonian, or hyper-complex,
numbers), QuotientField (which takes an integral domain as argu-
ment) and Zm.

Linear Algebra MathML, and OpenMath’s linalg2 CD, define matrices
as built up from rows. The linalg3 CD defines a column-oriented
view of matrices, via matrix, matrixcolumn and vector.

The linalg4 CD contains some additional linear algebra symbols
representing abstract concepts: characteristic_eqn, columncount,
eigenvalue (this takes two arguments: the first should be the matrix,
the second should be an index to specify the eigenvalue), eigenvector,
rank, rowcount and size.

The linalg5 CD contains various symbols for defining matrices of spe-
cial shapes. They are: anti-Hermitian, banded, constant, diagonal_matrix,
Hermitian, identity, lower-Hessenberg, lower-triangular, scalar,
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skew-symmetric, symmetric, tridiagonal, upper-Hessenberg, upper-triangular
and zero.

5 Polynomials

There are (currently) 5 CDs.

poly An abstract view of polynomials, also operations like conversion

polyd A distributed view of polynomials, also with orderings and Gröbner
base concepts

polyr A recursive view of polynomials

polyslp A straight-line program view

polysts Types for STS to work correctly for the above CDs

5.1 The poly CD

The poly CD supports generic views of polynomials.

convert This takes a polynomial in one polynomial ring, and the speci-
fication of a second polynomial ring, and expresses the polynomial
represented in that second ring.

degree The total degree function.

degree wrt The degree with respect to a specific variable (the second ar-
gument to the symbol).

expand This symbol represents the conversion of a factored or squarefreed
form into an expanded polynomial over the same ring, so that, for ex-
ample, factored(recursive) → recursive.

factor This is a call for a factorisation. The result should be an expression
built with factored.

factored The constructor for a factorization. Its arguments are formal
powers where the polynomials are supposed to be irreducible (except
possibly for a content from the ground ring) and relatively prime.

gcd This is an n-ary symbol, representing the greatest common divisor of
its polynomial arguments.

lcm This is an n-ary symbol, representing the least common multiple of its
polynomial arguments.
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power Takes a polynomial and a (non-negative) integer and produces a for-
mal power. power from arith1 would suggest the expanded form.

resultant This takes two polynomials and a variable as arguments, and
represents the resultant of the two polynomials with respect to that
variable.

squarefree This is a call for a square free decomposition.

squarefreed As for factored above.

5.2 The polyr CD

The polyr CD deals with polynomials described in recursive format, so that
the polynomial 2 ∗ y3 ∗ z5 + x+ 1 in Z[z][y][x] can be conceptually encoded
as

poly_r_rep(x,
term(1,1),
term(0,poly_r_rep(y,

term(3,poly_r_rep(z,
term(5,2))),

term(0,1))))

poly r rep This takes a variable and then any number of term arguments in
decreasing degree order, and constructs a polynomial in that variable
with those terms.

term Takes two arguments: a degree (from N) and a coefficient, and makes
a term.

polynomial ring r This constructs the data type of a (recursive) polyno-
mial ring, e.g. Z[x, y, z] (implemented as Z[z][y][x]) would be:

<OMOBJ>
<OMA>
<OMS name="polynomial_ring_r" cd="polyr"/>
<OMS name="Z" cd="setname1"/>
<OMV name="x"/>
<OMV name="y"/>
<OMV name="z"/>

</OMA>
</OMOBJ>

As can be seen, the first argument is the coefficient ring (which could
itself be a polynomial domain) and the rest are variables.
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polynomial r This constructs a polynomial in a specific ring: the first ar-
gument is a polynomial ring r and the second is a poly_r_rep in
that ring.

5.3 The polyd CD

The polyd CD deals with polynomials described in distributed format, so
that the polynomial x2y6 + 3y5 can be encoded (including the type of the
ring to which it belongs) as

DMP(poly_ring_d(Z, 2),
SDMP(term(1, 2, 6), term(3, 0, 5)))

DMP This symbol takes two arguments: a distributed polynomial ring (built
with the poly_ring_d symbol) and a polynomial (built with SDMP)
and returns the polynomial in that ring.

DMPL As DMP, except that it takes an arbitrary number of SDMPs, and re-
turns a list of polynomials (all in the same ring).

groebner This symbol represents the construction of a Gröbner basis: the
first argument is an ordering, and the second a list of polynomials
(i.e. a DMPL). If sent to a computational engine, the result should be
a groebner_basis object.

groebner basis This is the constructor for an auto-reduced Gröbner basis.
The first argument to this symbol is an ordering, and the second is a
DPML representing the basis.

plus This takes a DMPL as its (single) argument, and returns a DMP (in the
same ring) representing the sum of the polynomials in the DMPL.

poly ring d This constructs a distributed polynomial ring (i.e. an object
of type polynomial_ring). Its two arguments are the coefficient ring
and the number of variables. Hence these are essentially polynomials
in anonymous variables. Is this right?

power Takes two arguments, a DMP and a non-negative integer, and should
return a DMP representing the appropriate power of the input DMP.

reduce The represents the reduction of the first argument, a polynomial
(i.e. a DMP) with respect to the second argument, a Gröbner basis
(i.e. a groebner_basis object). The result, if this is passed to a
computational agent, should be a DMP.

SDMP The constructor for multivariate polynomials without any indication
of variables or domain for the coefficients. Its arguments are “mono-
mial”s, built with the term constructor. No monomials should differ
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only by the coefficient. SDMPs can be attributed with the ”ordering”
symbol to indicate a particular ordering of its monomials.

term This symbol takes n+1 arguments (where n is the number of variables
in the relevant poly_ring_d): the first is the coefficient, and the rest
are non-negative integers representing the exponents of the various
variables.

times This takes a DMPL as its (single) argument, and returns a DMP (in the
same ring) representing the product of the polynomials in the DMPL.

ordering This specifies how the monomials are ordered. Thus the polyno-
mial x2y6 + 3y5 can be more fully encoded as follows

<OMOBJ>
<OMATTR>
<OMATP>
<OMS name="ordering" cd="polyd"/>
<OMS name="graded_lexicographic" cd="polyd"/>
</OMATP>
<OMA>
<OMS name="DMP" cd="polyd"/>
<OMA>
<OMS name="poly_ring_d" cd="polyd"/>
<OMS name="Z" cd="setname1"/>
<OMI> 2 </OMI>
</OMA>
<OMA>
<OMS name="SDMP" cd="polyd"/>

...

elimination One of the orderings. It takes three arguments: the first is a
number k of variables, the second is an ordering to apply to the first
k variables, and the third is an ordering to apply as a tie-breaker to
the rest of the variables.

<OMA>
<OMS name="elimination" cd="polyd"/>
<OMI> 1 </OMI>
<OMS name="lexicographic" cd="polyd"/>
<OMS name="graded_reverse_lexicographic" cd="polyd"/>

</OMA>

graded lexicographic

graded reverse lexicographic
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lexicographic

reverse lexicographic

5.4 The polyslp CD

The polyslp CD deals with polynomials described in straight-line program
format so that x2y2 can be represented as:
<OMOBJ>

<OMA>

<OMS cd="polyslp" name="polynomial_SLP"/>

<OMA>

<OMS cd="polyslp" name="poly_ring_SLP"/>

<OMS cd="setname1" name="Z"/>

<OMV name="x"/>

<OMV name="y"/>

</OMA>

<OMA>

<OMS cd="polyslp" name="prog_body"/>

<OMA>

<OMS cd="polyslp" name="inp_node"/>

<OMV name="x"/>

</OMA>

<OMA>

<OMS cd="polyslp" name="inp_node"/>

<OMV name="y"/>

</OMA>

<OMA>

<OMS cd="polyslp" name="op_node"/>

<OMS cd="opnode" name="times"/>

<OMI> 1 </OMI>

<OMI> 1 </OMI>

</OMA>

<OMA>

<OMS cd="polyslp" name="op_node"/>

<OMS cd="opnode" name="times"/>

<OMI> 2 </OMI>

<OMI> 2 </OMI>

</OMA>

<OMA>

<OMS cd="opnode" name="return"/>

<OMA>

<OMS cd="polyslp" name="op_node"/>

<OMS cd="opnode" name="times"/>

<OMI> 3 </OMI>

<OMI> 4 </OMI>

</OMA>

</OMA>

</OMA>

</OMA>

</OMOBJ>

const node This takes one argument, which is a value in the coefficient ring
of the poly_ring_SLP.

depth This unary symbol represents the maximum depth of an SLP, i.e.
the longest path from any node to a return node.

inp node This takes one argument, which is the name of one of the variables
in the poly_ring_SLP.

left ref Takes as argument a node of an slp. Returns the value of the left
hand pointer of the node.

length This unary symbol represents the length (number of arguments to
prog_body) in an SLP.
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monte carlo eq This represents a Monte-Carlo equality test, it takes three
arguments, the first two are slps representing polynomials, the third
argument is the maximum probability of incorrectness that is required
of the equality test.

node selector Takes an slp as the first argument, the second argument is
the position of the required node. Returns the node of the slp at this
position.

op node This constructor takes three arguments. The first argument is a
symbol from the opnode CD, meant to specify whether the node is a
plus, minus, times or divide node, the second and third arguments are
integers, which are the numbers of the lines which are the arguments
of the operation.

poly ring SLP The constructor of the polynomial ring. The first argument
is a ring, (the ring of the coefficients), the rest are the variables, in
any order.

polynomial SLP This actually builds a polynomial in a given SLP ring (the
first argument). The second argument has to be a prog_body.

prog body This takes n arguments, which are the instructions of a straight-
line program. In particular they must be of types const_node, inp_node
or op_node, possibly wrapped inside the return symbol from the
opnode CD.

quotient A quotient function for polynomials represented by SLPs. It is a
requirement that this is an exact division.

return node Takes an slp as the argument, and returns the return node of
the slp.

right ref Takes as argument a node of an slp. Returns the value of the
right hand pointer of the node.

slp degree A unary symbol taking an SLP as argument and representing
the apparent multiplicative degree of the SLP, without performing any
cancellation.

The related opnode CD contains the symbols for the four binary arithmetic
operations (divide, minus, plus and times), as well as the unary return
symbol.

6 Dimensions and Units

There have been several well-publicised problems with the misunderstanding
of units. However, before units can be formalised, dimensions have to be.
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6.1 Dimensions

The CD dimensions1 contains some fundamental and derived dimensions.
The fundamental ones are charge, length, mass, temperature and time.
The derived ones are area, volume, speed, velocity, acceleration, force,
pressure, current and voltage. Formal Mathematical Properties link the
derived ones to the fundamental ones.

6.2 Units

There are two CDs currently that capture units: units_metric1 and units_
imperial1. The definitions in these are fairly obvious. Though this has not
yet been done, the conversion of imperial units to metric (for the fundamen-
tal dimensions) should be encoded as Formal Mathematical Properties, so
that conversions could then be deduced for the other units by means of the
Formal Mathematical Properties in the dimensions1 CD.

7 Proofs

It is often said that OpenMath cannot handle proofs.

<OMA>
<OMS cd="logic3" name="complete_prop_theorem"/>
<OMA>

<OMS cd="logic1" name="implies"/>
<OMV name="A"/>
<OMV name="A"/>

</OMA>
<OMA>

<OMS cd="logic3" name="proof"/>
<OMA>

<OMS cd="list1" name="list"/>
.....

</OMA>
</OMA>

</OMA>

Individual lines of the proof would look like

<OMA>
<OMS cd="logic3" name="axiom_instance"/>

((a⇒ ((a⇒ a)⇒ a))⇒ ((a⇒ (a⇒ a))⇒ (a⇒ a)))

((a⇒ (b⇒ c))⇒ ((a⇒ b)⇒ (a⇒ c)))

</OMA>
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or lines using

<OMS cd="logic3" name="ModusPonens"/>

Question. Axiom 4 of predicate calculus is normally written as

(∀xA(x)⇒ A(t)).

This seems to call for a “substitution” symbol. Should this be just in logic3,
or be more general? If it is to be more general, it should probably be of the
form “multiple parallel substitution”, as in

(Expression, List Symbol, List Expression)→ Expression,

since this effect is hard to achieve in other ways.
The axiom has caveats (t must be free for x in A) in predicate logic, but
OpenMath should not attempt to stipulate them. Should it have tests for
them, e.g.

free?(A, x, t)?

8 Immediate Suggestions

• Augment list2.

• Let polyd name its variables (attribute ?).

• Some meaning to approx (maybe attributes ?).

• More work on the units CDs, especially FMPs.

• Think about formal proofs.

9 Future work on CDs

Special Functions Some work has been done. As with elementary func-
tions, there is a great need for precision over branch cuts etc.

<OMA>
<OMA>
<OMS name="J" cd="Bessel"/>
<OMV name="nu"/>

</OMA>
<OMV name="z"/>

</OMA>

or
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<OMA>
<OMS name="BesselJ" cd="specfun1"/>
<OMV name="nu"/>
<OMV name="z"/>

</OMA>

Abstract Algebra Many more CDs need to be written and/or formalised.
Problems of consistency:

Degree S12, M12 are permutation groups acting on 12 symbols;

Size F20 is a permutation group of size 20, normally acting on 5 ele-
ments;

?? D12?

Also need to deal with ideals etc., rather than just lists of polynomials
(different lists can represent the same ideal).

Algorithms A CD to describe algorithmic concepts would be useful, partly
from the point of view of the wider publication-related aspects of
OpenMath, and partly for use in concepts such as symbolic differ-
entiation; i.e. differentiating an algorithm.

Logics While basic classical logic (propositional, predicate) is catered for,
there is nothing on other forms of logic (intuitionistic etc.). Different
concepts of equality also need to be handled.

10 Yesterday’s Decisions

• Augment list2 with (at least) nil, reverse, append.

* Agreed.

• Attributes to approx: abserr, relerr and O.

* Agreed for abserr and relerr; O referred to the asymptotics CD (in
draft).

• More work on the units CDs, especially FMPs.
(get a draft to MathML for MathML3)

• Special functions:

– curried where sensible;

– <OMS name="J" cd="Bessel"/>.

Input from UWO and INRIA.
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* Agreed — check with NIST.

• Publish a draft of logic3.

* Agreed.

11 Today’s Decisions

• Let polyd name its variables:

Either an attribute variable_names;

Or a second constructor which named the variables.

* Change the poly_ring_d constructor to require variable names: cross-
check with CoCoa phrasebooks.

• substitute command:

Either in logic3 (one symbol);

Or in a subst1 CD, as a multiple-in-parallel operator.

* Use lambda-abstraction to express substitution.

• Do we want is_groebner as well as (instead of?) groebner_basis?

* Agreed (as well as).

12 Near Future Decisions

• Does Arjeh really need another polynomial CD?

• Abstract algebra: James cooperate with Arjeh.

• Algorithms CD: James cooperate with Arjeh.

When does James visit Arjeh (or v.v.)?
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