

Brokering of Theorem Proving Services Described in MSDL

Jürgen Zimmer

University of Edinburgh, Scotland Universität des Saarlandes, Germany

This work is supported by the CALCULEMUS IHP Training Network HPRN-CT-2000-00102

Motivation

- Our Agent Framework
- An Ontology for Deductive Services
- First-order ATP Services
- Classification of Theorem Proving Problems
- Broker for FO-ATP Services
- A Little Demonstration

Motivation

Motivation

Despite its success, MathWeb-SB some limitations:

- Client applications still have to know
 - which reasoning system to use, and
 - how to access the system.
- User has to coordinate different reasoning systems to solve a problem.
- The MathWeb-SB is not designed for asynchronous communication.
- Technical Problems (OS, Firewalls, Proxies)

From MathWeb-SB to the Semantic MathWeb-SB:

- based on FIPA compliant agent platform (JADE)
- agents offering reasoning services described in service description language:
 - \Rightarrow currently MSDL

(developed in MONET and MathBroker)

- \Rightarrow in the future also OWL-S (OWL)?
- a brokering mechanism for reasoning services.

Implementing agents and communication in JADE

- Designing an Ontology in Protégé-2000 tool (Protégé-2 supports OWL).
- Describing first-order Automated Theorem Provers (ATPs) in MSDL using our ontology.
- Mapping MSDL to Java classes.
- Implementing simple brokering:
 - analysing problems in queries.
 - find most suitable service.

An Ontology for Deduction Services

One Ontology for All


```
<input name='problem'>
<signature>
http://www.mathweb.org/ontology/atp#TPTPProblem
</signature>
</input>
```

. . .

Every first-order proving service...

- accepts standard problem formats TSTP and OMDoc.
- returns a proof object in standard format (TSTP).
- is specialized on a particular domain.

For an **ontology** for first-order ATPs use:

- Experience with the MathWeb-SB.
- Recent work with Geoff Sutcliffe and Stephan Schulz on ATP states.

FO proving problems classified using known features (Sutcliffe & Suttner 2001):

- Logical Class of problem:
 - essentiallyPropositional (finite Herbrand Universe)
 - realFirstOrder
- Equality: *noEquality*, *someEquality*, *pureEquality*
- Presentation: fofForm (first-order formulae) vs. cnfForm (clause normal form)
 - \Rightarrow 16 "Specialists Problems Classes" (SPC)

Performance data of well-known ATPs is available for every SPC.

The ATP SPASS in MSDL

Service: SpassProver		
classification:	Classification with Taxonomy of services or link to Ontology (\rightarrow QPQ)	
	ullet ightarrow spass problem description	
service interface:	$(\rightarrow \texttt{fo-prover.wsdl})$	
implementation details:	Information about hardware, software (calculus, etc.)	

spass problem description		
input parameters:	name: <i>problem</i> , signature: FO-ATP-Pro	blem (Ontology concept)
output parameters:	name: <i>result</i> , signature: FO-ATP-Resu	It (Ontology concept)
pre-conditions:	essentially Propositional (problem)	(OpenMath Object)
	$\land noEquality(problem)$	
	$\land fofForm(problem)$	
post-conditions:		

Service: EProver	
classification:	Classification with Taxonomy of services or link to Ontology (\rightarrow QPQ)
	• \rightarrow e problem description
service interface:	$(\rightarrow \texttt{fo-prover.wsdl})$
implementation details:	Information about hardware, software (calculus, etc.)

e problem description		
input parameters:	name: <i>problem</i> , signature: FO-ATP-Problem (Ontology concept)	
output parameters:	name: <i>result</i> , signature: FO-ATP-Result (Ontology concept)	
pre-conditions:	realFirstOrder(problem)	
	$\land pureEquality(problem)$	
	$\land nonUnitPureEquality(problem)$	
post-conditions:		

Our broker ...

- analyses incoming proving problems using TSTP classifier (G. Sutcliffe).
- annotates problems with new preconditions $\Rightarrow puts problem in SPC.$
- matches new problem with available services using tuProlog engine (DEIS, Università di Bologna).
- ... calls the first matching service.

A little Demo

Two services: EProver & SpassProver

Two queries:

Query 1: Did Agatha commit suicide? $\forall x$. Agatha hates x \Rightarrow Butler hates x, ... classified as *essentiallyPropositional*, *noEquality*, *fofForm*

Query 1: Problem in group theory:

 $\forall x.x * e = x \land \forall x.x * x^{-1} = e \land \forall x.x * x = e \land \forall x.a * b = c$

 $\vdash b * a = c$

classified as *realFirstOrder*, *pureEquality*, *nonUnitPureEquality*

Consequently, broker selects SpassProver for Query 1 and EProver for Query 2. Among others...

Binding of MSDL to agent Ontology Currently, we use JiBX. Mathbroker uses JAXB.

 I/O parameters of MSDL abstract problems: (OMOBJ) vs. XML-serialisation of Java Objects (FO-ATP-Problem)

Invocation of service through JADE agent behaviours (conversations).

Combination of behaviours.

- Knowledge retrieval from ATP users and developers.
- Case study to show benefit of brokering.
- Extend ontology to logics & calculi.
- SOAP binding for MONET and Mathbroker.
- Ontology in OWL (\rightarrow Protege-2.0 & HarmonIA).
- Description of other reasoning systems (e.g., model generators).
- Advanced brokering (dynamic combination of services).

A Dream: MSDL Service Authoring Tool

