
The binary encoding in

OPENMATH 2

MICHAEL KOHLHASE

School of Engineering & Science
International University Bremen, Germany

http://www.faculty.iu-bremen.de/mkohlhase

1 c©: Michael Kohlhase IU
B

)

Why oh Why do we need a Binary Encoding for OM
• OPENMATH setup: abstract OM objects, XML encoding, binary encoding

(The core of OPENMATH is the OM object model, not the XML encoding)

• Content Objects can get rather large,
(think finite group representations, Coq proof terms)

and XML is verbose for generality (a factor of 5++ can help)

• parse-time is proportional to file size (so gzip does not help)

• in some applications (e.g. MBASE), OM Objects are better stored as
binary blobs

• if we do not standardize it, ad-hoc solutions will bloom
(interoperability will suffer)

2 c©: Michael Kohlhase IU
B

)

Binary Encoding How-To
• Idea: Use single bytes token for start (and stop) tags

– bit 1-5 for the token identifier (what kind of element)

– bit 6 is a status bit, currrently only used for streaming flag”
(new in OM2, see below)

– bit 7 is the “sharing bit” (new in OM2, facilitates sharing)

– bit 8 is the “long flag” (4-byte string/sequence lengths)

3 c©: Michael Kohlhase IU
B

)

Parts of the Grammar
start → [24] object [25]

˛

˛

˛
[24+64] object [25+64]

integer → [1] []
˛

˛

˛
[1+64] [n] id:n []

˛

˛

˛
[1+32] []

˛

˛

˛
[1+128] { }

˛

˛

˛
[1+64+128] {n} id:n { }

˛

˛

˛
[1+32+128] { }

˛

˛

˛
[2] [n] [] digits:n

˛

˛

˛
[2+64] [n] [m] [] digits:n id:m

˛

˛

˛
[2+32] [n] [] digits:n

˛

˛

˛
[2+128] {n} [] digits:n

˛

˛

˛
[2+64+128] {n} {n} [] digits:n id:n

˛

˛

˛
[2+32+128] {n} [] digits:n

symbol → [8] [n] [m] cd:n sym:m
˛

˛

˛
[8+64] [n] [m] [k] cd:n sym:m id:k

˛

˛

˛
[8+128] {n} {m} cd:n sym:m

˛

˛

˛
[8+64+128] {n} {m} {k} cd:n sym:m id:k

application → [16] object objects [17] bigl| [16+64] {m} id:m object objects [17]

4 c©: Michael Kohlhase IU
B

)

A Binary Encoding Example
Hex Meaning
58 begin object tag
2 version 2.0 (major)
0 version 2.0 (minor)
10 begin application tag
08 symbol tag
06 cd length
05 name length
61 a (cd name begin
72 r .
69 i .
74 t .
68 h .
31 1 .)
74 t (symbol name begin
69 i .
6d m .
65 e .
73 s .)

Hex Meaning
10 begin application tag
08 symbol tag
06 cd length
04 name length
61 a (cd name begin
72 r .
69 i .
74 t .
68 h .
31 1 .)
70 p (symbol name begin
6c l .
75 u .
73 s .)
05 variable tag
01 name length
78 x (name)
05 variable tag
01 name length
79 y (variable name)
11 end application tag

Hex Meaning
10 begin application tag
48 symbol tag (with share bit

on)
01 reference to second symbol

seen (arith1:plus)
45 variable tag (with share bit

on)
00 reference to first variable

seen (x)
05 variable tag
01 name length
7a z (variable name)
11 end application tag
11 end application tag
19 end object tag

5 c©: Michael Kohlhase IU
B

)

Implementation and Evaluation
• The OM2 binary encoding has been implemented based on the INRIA C

library API

– XOM (XML-encoded OM) to BOM (Binary OM) translation
(based on Xerces/Sax)

– BOM to XOM translation (based on Xerces/DOM)

– implemented in C/C++, GPL, will be available soon from http:

//www.faculty.iu-bremen.de/mkohlhase/kwarc/software

Sample XOM BOM B/X% Gzip XOM Gzip BOM

1 764 kb 206 kb 26.96% 198 kb 162 kb

2 659 kb 174 kb 26.4% 166 kb 142 kb

3 1359 kb 378 kb 27.81% 178 kb 149 kb

• still lacking: streaming, structure sharing, comparison to competition

6 c©: Michael Kohlhase IU
B

)

Representing Integers on BOM
• Integers are encoded depending on how large they are.

• Small integers (token identifier 1)

– Integers between -128 and 127 are encoded by a single byte.

– Example: 16 is encoded as 0x01 0x10.

– Integers between −2
31 and 2

31 are encoded by tag 129 (long flag 6
set) followed 4-byte integer (most significant byte first).

– Example: 128 is encoded as 0x81 0x00 0x00 0x00 0x80

7 c©: Michael Kohlhase IU
B

)

Representing Large Integers on BOM
• Large Integers (not arbitrary length but close)

– token identifier 2

– 1/4-byte number of digits,

– sign/base byte: + (0x2B) or - (0x2D) or-ed with base mask bits: 0 for
base 10 or 0x40 for base 16 0 for base 10 or 0x40 for base 16

– a string of digits (as characters) in their natural order.

• Example 8589934592 (233) is encoded as 0x02 0x0A 0x2B 0x38

0x35 0x38 0x39 0x39 0x33 0x34 0x35 0x39 0x32

• Even larger Integers by general streaming technology (new with OM2)

8 c©: Michael Kohlhase IU
B

)

Streaming with the Binary Encoding
• some basic objects (integers, strings, bytearrays, and foreign objects) can

be extremely large

• New: use the fifth bit as the streaming bit

• If the fifth bit is not set, this packet
is the final packet of the basic object.

(OM1 compatibility)

• If the bit is set, then more packets of the
basic object will follow directly after this
one.

• Idea: start processing the object immedi-
ately (most significant first)

Streaming a Large Integer
Hex Meaning

22 begin streamed big integer tag

FF 255 digits in packet

2B sign +

... the 255 digits as characters

22 begin streamed big integer tag

FF 255 digits in packet

2B sign + (disregarded)

... the 255 digits as characters

2 begin final big integer tag

42 68 digits in packet

2B sign + (disregarded)

... the 68 digits as characters

9 c©: Michael Kohlhase IU
B

)

A more efficient Representation for Large Integers?
• Bill Naylor: representation as base 10 or base 16 digits wastes half+ the

space (why not use bytes directly)

• Problem: not many token identifiers left (have to think of OM3)

• Idea: use the sign/base byte (interpret byte encoding as base 256 digits)

– remember: + (0x2B) or - (0x2D) or-ed with base mask bits: 0 for base
10 or 0x40 for base 16

– new: use base mask bit 1 0x80 for byte encoding.

– Pro: OM1-compatible, space requirements like for small integers

10 c©: Michael Kohlhase IU
B

)

Proposed Wording for OM2
This ’sign/base’ byte is + (0x2B) or - (0x2D) for the sign or-ed with the base
mask bits that can be 0 for base 10 or 0x40 for base 16 or 0x80 for “base
256”. It is followed by the sequence of digits (as characters for bases 10 and
16 as in the XML encoing, and as bytes for base 256) in their natural order.
For example, [. . .] and the hexadecimal number xfffffff1 is encoded as
0x02 0x08 0x6b 0x66 0x66 0x66 0x66 0x66 0x66 0x66 0x31 in
the base 16 character encoding and as 0x02 0x04 0xFF 0xFF 0xFF

0xFI in the byte encoding (base 256).

11 c©: Michael Kohlhase IU
B

)

The Competition: Binary Formats for General XML
• WAP: special purpose tags for (subset of) html (similar to BOM)

• BOX (Binary Optimized XML) (http://box.sf.net)

– use [1] 3 OMA ... [3] for <OMA> ... </OMA> and

– [2] 73 ... [3], where OMA is the 73
th element name in the

document.

– Attributes, namespaces, . . . similar.

– simple, elegant, covers all XML, allows structure sharing

• BIM (Binary Encoded MPEG-7) (searchon http://www.mpeg.org)

– schema-based (do not transmit default values, element names)

– streaming by tree-update semantics
(has someone seen the implementation?)

• W3C has chartered a WG on binary XML formats
(wait for Rec, use BOM in interim)

12 c©: Michael Kohlhase IU
B

)

Conclusions and Further Work
• BOM gives significant space reductions even without full sharing

• BOM is somewhat less essential in OM2, since XOM allows sharing

• More space savings for large integers possible.

• BOM may become obsolete, but is good interimsolution (at least)

• further evaluation needed:

– comparison to generic approaches: BiM BOX

– parse/generation time comparison (not just space)

– large scale examples

• Call: for an OM test/benchmark suite (maybe in a new OM network?)

13 c©: Michael Kohlhase IU
B

)

