Digital Library of Mathematical Functions: LaTeX, MathML and ... OpenMath?

Bruce R. Miller NIST

Needing no introduction...

Old, but still relevant

Citations of AMS55 relative to All Scientific.

AMS55 is apparently used more than ever.

Time for a Rewrite

- New functions;
- New properties of old functions;
- New applications.
- ... and many opportunities.
 - The Internet;
 - Computer Algebra, Theorem Proving systems;
 - The Semantic Web.

DLMF Project

- Started looking at feasibility in 1997.
- NSF funding for authorship in 1999.
- 4 editors, \approx 12 associate editors, \approx 40 authors.
- Goals:
 - New mathematical content updating AMS55,
 - in form of Digital Library,
 - and in print form,
 - by 2005.

Choices: LaTeX, XML, MathML, OpenMath

- LaTeX is obviously good choice for document source.
- ... and obviously bad.
- Target: XML, MathML, and (eventually) OpenMath.

I don't need to tell you why...

Overview of talk

- LATEXML tool.
- Metadata: markup, annotations and connections,
- Data model of the Library
- Math: Parsing, synthesizing meaning.

LATEXML: Goals

- $LAT_EX \Rightarrow XML$ Transformer
 - General purpose.
 - LATEX-like DTD (or other?)
 - Math to MathML, OpenMath
- Closely mimic T_EX behaviour (& Quirks).
- Lossless.
- Extensible, Adaptable.
- Encourage higher-level markup, declarations.
- ... and finish DLMF project!

LATEXML: DLMF Approach

To make more feasible adopt

- Modestly Content-oriented L^AT_EX.
- Discourage Presentation Markup but don't forbid.
- Encourage Content Markup, but keep typeable.
- Use document-specific information (internal/external) to resolve ambiguities.

Metadata: Making Connections

- Traditional LaTeX: \ref, \cite, \index.
- Leverage our mathematics markup.
- Additional markup:
 - Annotations \note.
 - Special metadata: Original handbook reference.
 - Additional declarations.

Metadata: Using Connections

- Postprocessing XML documents.
- Disassemble XML into 'database'.
- Note all connections.

Not really that hard.

DLMF Data Model

- Simple model (maybe too simple)
 - ID ⇒ Object(XML) (Chapter, Section, Table, Equation, ...)
 - linkages embedded within each object (insertion, reference, ...)
- Can (re)construct as necessary
 - Sectional units,
 - Search 'hit-lists'
- Developing an 'Indexing' API by which search, refnum lookup, . . .⇒ ID's

LATEXML Math Processing

$T_{E}X$ source $\xrightarrow{LAT_{E}XML}$ XML

- Let LATEXML deal with TeX quirks.
- Acts as structure-preserving Lexer.
 - Possibly augmented (math) Tokens:
 - Name,
 - Unicode, Font, ...
 - PartOfSpeech (ID, Function, Operator, ...)
 - Type (eventually).
 - preserve any given structure (eg. \frac, ...)

Math: The Easy Stuff

$$a = b+c$$

LATEXML produces the tokens

<XMTok>a</XMTok>

<XMTok>=</XMTok>

<XMTok>b</XMTok>

<XMTok>+</XMTok>

<XMTok>c</XMTok>

LATEXML Math Processing continued

$XML \xrightarrow{IAT_{EXMLpost}} XML'$

- Grammar-based parser.
- Undeclared tokens get PartOfSpeech from
 - Document-specific dictionary (possibly sectionally scoped)
 - Default dictionary
- Resulting Expression tree
 - inspired by OpenMath.
 - ≈ Content MathML;(although we haven't done this yet).
 - Easily converted to Presentation MathML.

Math: The Easy Stuff continued

$$a = b+c$$

LATEXML post parses this into

```
<XMApp><XMTok>=</XMTok>
  <XMTok>a</XMTok>
  <XMApp><XMTok>+</XMTok>
  <XMTok>b</XMTok>
  <XMTok>c</XMTok>
  </XMApp>
</XMApp>
```


Math: The Easy Stuff continued

```
a = b+c
```

Conversion to MathML yields

LATEXML Math Processing future

$$XML'$$
, $\xrightarrow{LATEXMLpost}$ XML''

- Extension of Dictionary to support some Type system.
- Type Analysis to further resolve 'meaning'
- $\blacksquare \Longrightarrow OpenMath.$
- Any advice?

Math: Higher Level Markup

Reduce ambiguities by introducing higher-level markup:

$$\operatorname{deriv[n]{f}{x}} \Rightarrow \frac{d^n f(x+y)}{dx^n}$$

LATEX code:

omitted

LATEXML declaration:

```
DefConstructor('\deriv[]{}{}',
```


Math: Higher Level Markup continued

LATEXML constructs the tree:

```
<XMApp><XMTok name='deriv'/>
  <XMArg><XMTok>f</XMTok>
         <XMTok>(</XMTok>
         <XMTok>x</XMTok>
         <XMTok>+</XMTok>
         <XMTok>y</XMTok>
         <XMTok>)</XMTok>
  </XMArg>
  <XMArg><XMTok>x</XMTok></XMArg>
  <XMArg><XMTok>n</XMTok></XMArg>
</XMApp>
```

Parser can treat args individually,

... avoiding much guesswork.

Math: Special Functions

With appropriate T_EX macrology:

\HyperpFq{p}{q}
$$\Rightarrow {}_pF_q$$

Introduce notion of evaluating a function at:

\HyperpFq{p}{q}@{a}{b}{z}
$$\Rightarrow {}_{p}F_{q}\left(a;b;z\right)$$

or (alternative notation)

\HyperpFq{p}{q}@@{a}{b}{z}
$$\Rightarrow {}_{p}F_{q}\left(\begin{matrix} a \\ b \end{matrix}; z\right)$$

Palatable notation? Easier to type than

$$\left(_{p} _{q} \right) = \left(_{q} \right)$$

Math: Special Functions continued

With the end result:

```
<XMApp>
<XMTok name='HyperpFq'>F</XMTok>
<XMTok>p</XMTok>
<XMTok>q</XMTok>
<XMTok>a</XMTok>
<XMTok>b</XMTok>
<XMTok>b</XMTok>
<XMTok>z</XMTok>
<XMTok>z</XMTok>
</XMApp>
```

and we know which 'F' is intended.

Math: Issues

- Role of text and spacing in math.
- Overloading of symbols (scoping?)
 - f is a function here, but a variable there.
- Palatable content math markup for LaTeX.
- For *really* meaningful math (eg. OpenMath)
 - need type analysis

10 Years of OpenMath,

- need more info from authors
- Open ended...

Trends? (Or Wishes)

- Continued development and support for MathML
- Ditto for OpenMath
- Convergience of Markup styles and DocTypes for
 - Various $\angle AT_EX \Rightarrow XML$ converters
 - Richer LaTeX content markup in general (LaTeX3?)
 - Project Authors able use different tools LATEX, CAS, Thm.Provers, Word Processors.

