| OMdoc example<definition id="c6s1p4_Th2_def_monoid" for="c6s1p4_monoid" type="simple"><metadata>
 <Title xmlns="http://purl.org/DC" xml:lang="en">Definition of a monoid</Title
 <extradata><depends-on>
 <ref theory="c6s1p1_Th3" name="structure" />
 <ref theory="c6s1p3_Th1" name="semi-group" />
 <ref theory="c6s1p3_Th2" name="unit" />
 </depends-on></extradata>
 </metadata>
 <CMP xml:lang="en" format="omtext">
 A <ref xref="c6s1p1_Th3_def_structure">structure</ref>
 <OMOBJ xmlns="http://www.openmath.org/OpenMath">
 <OMA>
 <OMS cd="elementary" name="ordered-triple" />
 <OMV name="M" />
 <OMS cd="c6s1p4_Th2" name="times" />
 <OMV name="e" />
 </OMA>
 </OMOBJ> in which
 <OMOBJ xmlns="http://www.openmath.org/OpenMath">
 <OMA>
 <OMS cd="elementary" name="ordered-pair" />
 <OMV name="M" />
 <OMS cd="c6s1p4_Th2" name="times" />
 </OMA>
 </OMOBJ>
 is a <ref xref="c6s1p3_Th1_def_semi-group">semi-group</ref> with
 <ref xref="c6s1p3_Th2_def_unit">unit</ref>
 <OMOBJ xmlns="http://www.openmath.org/OpenMath"><OMV name="e" /></OMOBJ>
 is called a monoid.
 </CMP>
 <FMP><OMOBJ>
 <OMA><OMS cd="logic1" name="equivalent" />
 <OMA><OMS cd="c6s1p4_Th1" name="monoid" />
 <OMA>
 <OMS cd="elementary" name="ordered-triple" />
 <OMV name="M" />
 <OMS cd="c6s1p4_Th2" name="times" />
 <OMV name="e" />
 </OMA>
 </OMA>
 <OMA><OMS cd="logic1" name="and" />
 <OMA><OMS cd="c6s1p3_Th1" name="semi-group" />
 <OMA>
 <OMS cd="elementary" name="ordered-pair" />
 <OMV name="M" />
 <OMS cd="c6s1p4_Th2" name="times" />
 </OMA>
 <OMA>
 <OMS cd="c6s1p3_Th2" name="unit" />
 <OMV name="e" />
 <OMS cd="c6s1p4_Th2" name="times" />
 </OMA>
 </OMA>
 </OMA>
 </OMOBJ>
 </FMP>
 </definition>
 |