Helsinki Learning System

Mika Seppälä
University of Helsinki and
Florida State University

On-line education

"The next big killer application for the Internet is going to be education. Education over the Internet is going to make e-mail usage look like a rounding error."

- John Chambers, President and CEO, Cisco Systems, Inc. (Source: The Conference Board of Canada)

Expectations

- Virtual educational material will replace current text books
- On-line distance learning will be a low cost alternative to traditional class-room education

Reality

- Text books will stay for many years
- On-line distance learning will attract only a small fraction of students during the next several years

Why so pessimistic?

- Development of educational materials that use the potential of the new media in a right way will take a long time a new paradigm has to be born
- Broadband access to internet is not yet available for those who otherwise would choose distance learning as their preferred mode of studying

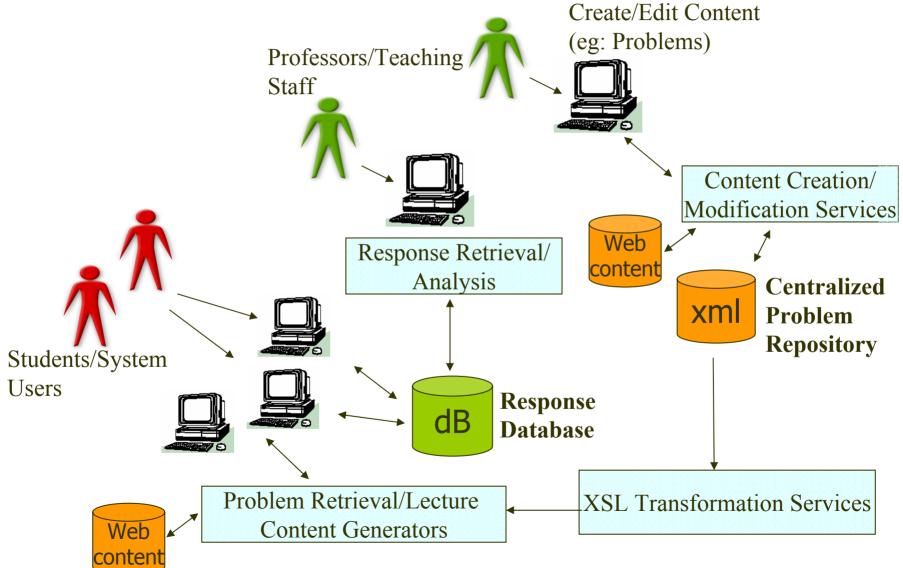
Keys to success

- Find methods to enhance traditional teaching by new tools
- Aim for distance learning but design for class—room use first
- Offer new services
- Our solution: Helsinki Learning System (HLS)

Elementary Problem databases

- Have been used extensively in low level math courses at FSU
- Allow students to perform self-assesments prior to taking examinations
- Have reduced the failure rate by about 50%

HLS Adaptive problem databases



The MAMMA project headed by J. Väänänen and M. Seppälä has developed an adaptive intelligent learning system that will enhance traditional books. Via the on-line CCD, the problem database can be used with any text relevant to the course in question.

Main features of HLS

- The system is multilingual
- Exercises are problem trees with different feed-backs to correct, wrong and 'I do not know' answers
- When used in exams, the problem tree structure allows automatic partial credit

System Architecture - I


Main technical features of HLS

- •Developed in Java Using the latest Java Servlet and JSP technologies.
- •Java and XML Cross-platform deployment
- •Not a static system, unlike many standard class websites.
- •Can be integrated with existing courseware like eGrade, Blackboard etc.

HLS Exercises are problem trees

Root problem

$$\int \frac{x^5 - x^4 + 2x^3 - x^2 + 2x - 1}{x^3 + x - x^2 - 1} dx$$

Divide the polynomials

2

$$\int (x^2 + 1) dx$$

3

Find partial fraction decomposition for

$$\frac{x^2+x}{x^3-x^2+x-1}$$

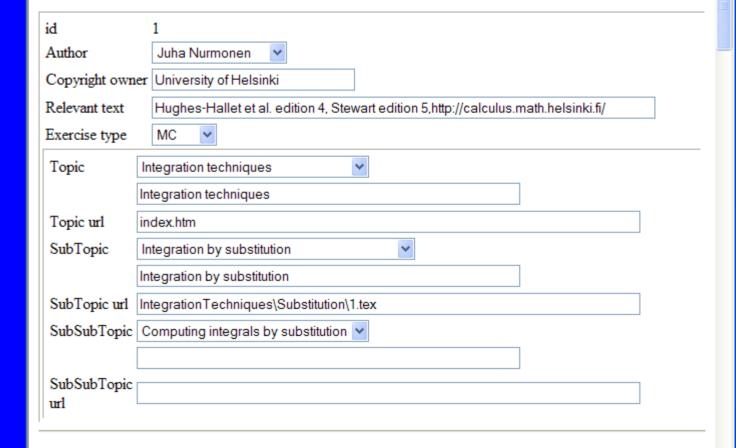
$$\int \frac{dx}{x-1}$$

$$\int \frac{dx}{x^2 + 1}$$

HLS Problems
are XML files
confirming to
the Problem
DTD

```
<?xml version="1.0" encoding="iso-8859-1" ?>
 <!DOCTYPE ProblemBase (View Source for full doctype...)>
- <ProblemBase xml:base="c:\Applications\resin-2.0.2</p>
   \webapps\mathapp\xmlrepository\mpb.xml">
 - <Problem xmlns:xlink="http://www.w3.org/1999/xlink" xlink:label="ah00014">
     <TimeStamp>2001-11-01</TimeStamp>
     <Author xlink:href="http://www.helsinki.fi/~ahalko/">Aapo Halko</Author>
     <CopyrightOwner>University of Helsinki</CopyrightOwner>
     <Level>10</Level>
     <RelevantText>Hughes-Hallet et al. edition 4, Stewart edition
       5.http://calculus.math.helsinki.fi/</RelevantText>
     <Topic xlink:href="">Integration and differentation</Topic>
     <SubTopic xlink:href="">Chain rule and its applications</SubTopic>
     <ProblemType>MC</ProblemType>
   - <ProblemBody xml:lang="EN">
       <ProblemText>Calculate $f'(1)$, where $f$ is the inverse of $x^3+x+1
         $.</ProblemText>
     < <Choices>
         <Choice soln="0">$1/5$.</Choice>
         <Choice soln="1">$1$.</Choice>
         <Choice soln="0">$1/3$.</Choice>
         <Choice soln="0">$5$.</Choice>
         <Choice soln="0">$0$.</Choice>
       </Choices>
     </ProblemBody>
   - <ProblemBody xml:lang="FI">
       <ProblemText>Laske $f'(1)$, missä $f$ on funktion $x^3+x+1$
         käänteisfunktio.</ProblemText>
     - <Choices>
         <Choice soln="0">$1/5$.</Choice>
         <Choice soln="1">$1 $.</Choice>
         <Choice soln="0">$1/3$.</Choice>
         <Choice soln="0">$ 5$.</Choice>
         <Choice soln="0">$0$.</Choice>
       </Choices>
     </ProblemBody>
   </Problem>
 - <Problem xmlns:xlink="http://www.w3.org/1999/xlink" xlink:label="ah00021"</p>
     root="true">
     <TimeStamp>2001-11-22</TimeStamp>
     <Author xlink:href="http://www.helsinki.fi/~ahalko">Aapo Halko</Author>
     <ConvrightOwner>University of Helsinki/ConvrightOwner>
```

HLS Problem Editor


Topic	Applications of integration			
	Applications of integration			
Topic url	index.htm			
SubTopic	Volumes of solids 🕶			
	Volumes of solids			
SubTopic url	Applications2/1.tex			
SubSubTopic				
SubSubTopic url				
Root:				
Include I do not know button:				
Level	56			
Subproblem 1	ah00031			
Subproblem 2				
Subproblem 3				
Copy English version to other versions				

English version

Problem text

A circle $x^2+(y-2)^2=1$ rotates around the x^2-axis . What is the volume of this resulting torus?

HLS Exercise Editor

Problem sequence

Problem ref	mpbch.xml#jn00068	
Order	1	
On correct		
Display solution:		
Go to		
	Congratulations! That was correct.	^

Mika Seppälä

Powered by

System Requirements

Display with IBM

Mathematics displayed by

Meaning of the word "calculus"

Oxford English Dictionary definition for "calculus"

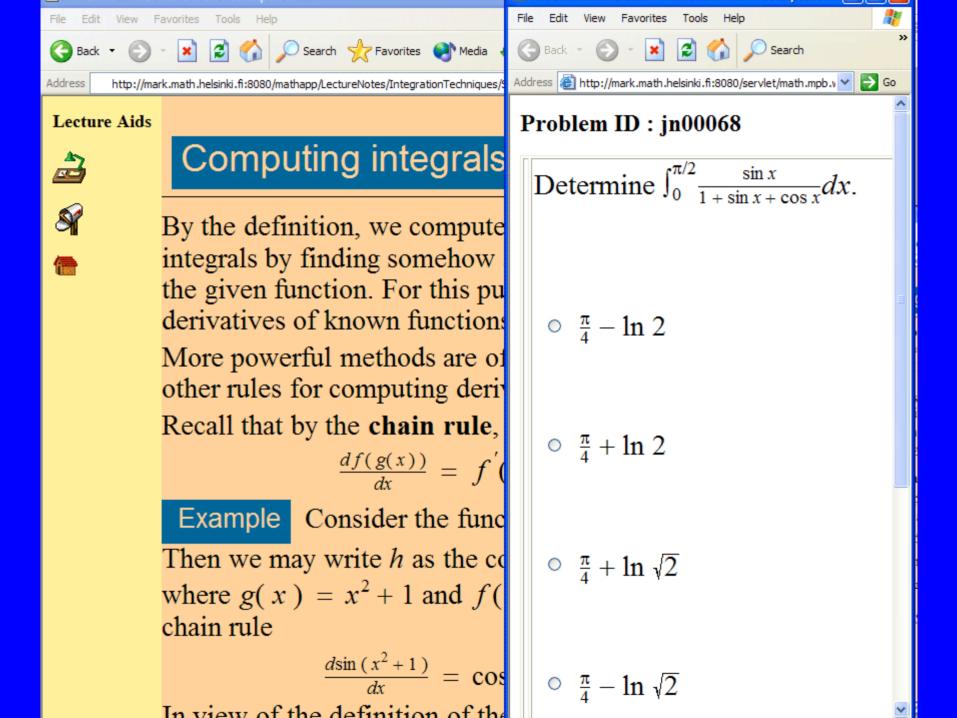
Computing integrals by substitution

By the definition, we compute antiderivatives or indefinite integrals by finding somehow a function whose derivative is the given function. For this purpose we may use a table of derivatives of known functions.

More powerful methods are offered by the chain rule and by other rules for computing derivatives.

Recall that by the **chain rule**,

$$\frac{df(g(x))}{dx} = f'(g(x))g'(x).$$


Example Consider the function $h(x) = \sin(x^2 + 1)$. Then we may write h as the composed function $h = f \circ g$, where $g(x) = x^2 + 1$ and $f(u) = \sin(u)$. Then by the chain rule

$$\frac{d\sin(x^2+1)}{dx} = \cos(x^2+1)(2x).$$

In view of the definition of the integral, this means that

$$\int 2x\cos(x^2+1)dx = \sin(x^2+1) + C.$$

Single Variable Calculus by Mika Seppälä

HLS Report Card: dialogue to help students to solve problems

Calculate
$$\int_0^1 \left(\frac{1+t}{1+t^2} - \frac{1}{1+t} \right) dt$$
.

The integral has to be solved by substitution. The next problem will direct you to the correct substitution.

Correct answer is $\int_0^1 \frac{t}{(1+t)(1+t^2)} dt$.

This has to be integrated further. The following problem is a variation of this one.

You have to perform partial fraction decomposition. That leads to an integral of the type of the next problem. Can you integrate this one?

$$\bigcirc \quad \frac{\pi}{8} - \frac{1}{2} \ln \sqrt{2}$$

$$\circ$$
 $\frac{\pi}{8} - \frac{1}{2} \ln 2$

$$\bigcirc \quad \frac{\pi}{4} - \ln \sqrt{2}$$

$$\bigcirc \quad \frac{\pi}{4} - \ln 2$$

$$\underbrace{}_{4\sqrt{2}}^{\pi}$$

Developing Content for the HLS

- Group in Helsinki (2 senior persons, 5 junior)
- Project at FSU (aim: to hire 5 persons)
- Collaboration with UNED (Madrid, translation to Spanish)
- Collaboration with a group in Mexico (translation to Mexican Spanish)

