
Version: 1.0
Date: February 2000

The OpenMath Standard

The OpenMath Esprit Consortium

Editors

O. Caprotti, D. P. Carlisle and A. M. Cohen

c© 2000 The OpenMath Consortium (24.969)

ESPRIT project 24969: OpenMath

Abstract

This document proposes OpenMath as a standard for the communication of
semantically rich mathematical objects. This draft of the OpenMath standard
comprises the following: a description of OpenMath objects, the grammar of
xml and of the binary encoding of objects, a description of Content Dictionar-
ies and an xml document type definition for validating Content Dictionaries.
The non-normative Chapter 1 of this document briefly overviews the history
of OpenMath.

The OpenMath Standard iii

Contents

1 OpenMath Movement 4

1.1 History . 4

1.2 OpenMath Society . 5

2 Introduction to OpenMath 6

2.1 OpenMath Architecture . 6

2.2 OpenMath Objects and Encodings . 6

2.3 Content Dictionaries . 6

2.4 Additional Files . 7

2.5 Phrasebooks . 8

3 OpenMath Objects 9

3.1 Formal Definition of OpenMath Objects . 9

3.1.1 Basic OpenMath objects . 9

3.1.2 Compound OpenMath Objects . 10

3.2 Further Description of OpenMath Objects . 10

3.3 Summary . 13

4 OpenMath Encodings 14

4.1 The xml Encoding . 14

4.1.1 A Grammar for the xml Encoding . 14

4.1.2 Description of the Grammar . 15

4.1.3 Embedding OpenMath in XML Documents 20

4.2 The Binary Encoding . 20

4.2.1 A Grammar for the Binary Encoding . 20

4.2.2 Description of the Grammar . 20

Page 1 of 62

ESPRIT project 24969: OpenMath

4.2.3 Implementation Note . 23

4.2.4 Example of Binary Encoding . 24

4.3 Summary . 25

5 Content Dictionaries 26

5.1 Introduction . 26

5.2 Content Dictionaries . 27

5.3 The XML Encoding for Content Dictionaries . 28

5.3.1 The DTD Specification of Content Dictionaries 28

5.3.2 Further Requirements of an OpenMath Content Dictionary 28

5.4 Additional Information . 31

5.4.1 Signature Files . 31

5.4.2 CDGroups . 34

5.5 Content Dictionaries Reviewing Process . 36

6 OpenMath Compliance 37

6.1 Encoding . 37

6.2 Content Dictionaries . 37

6.3 Lexical Errors . 38

7 Conclusion 39

A 40

A.1 The meta Content Dictionary . 40

A.2 The arith1 Content Dictionary File . 45

A.3 The arith1 STS Signature File . 51

A.4 The MathML CDGroup . 54

A.5 The error Content Dictionary . 55

B Change Log 60

Page 2 of 62 The OpenMath Standard

List of Figures

2.1 The OpenMath Architecture . 7

3.1 The OpenMath application and binding objects for sin(x) and λx.x+2 in tree-like
notation. 12

4.1 DTD for the OpenMath xml encoding of objects. 16

4.2 Grammar for the xml encoding of OpenMath objects. 17

4.3 Grammar of the binary encoding of OpenMath objects. 21

5.1 DTD Specification of Content Dictionaries . 29

5.2 DTD Specification of Signature Files . 32

5.3 DTD Specification of CDGroups . 35

Page 3 of 62

Chapter 1

OpenMath Movement

1999/08/24
Changed title This chapter is a historical account of OpenMath and should be regarded as non-normative.

OpenMath is a standard for representing mathematical objects, allowing them to be exchanged
between computer programs, stored in databases, or published on the worldwide web. While
the original designers were mainly developers of computer algebra systems, it is now attracting
interest from other areas of scientific computation and from many publishers of electronic doc-
uments with a significant mathematical content. There is a strong relationship to the MathML
recommendation [3] from the Worldwide Web Consortium, and a large overlap between the
two developer communities. MathML deals principally with the presentation of mathematical
objects, while OpenMath is solely concerned with their semantic meaning or content. While
MathML does have some limited facilities for dealing with content, it also allows semantic in-
formation encoded in OpenMath to be embedded inside a MathML structure. Thus the two
technologies may be seen as highly complementary.

1.1 History

OpenMath was originally developed through a series of workshops held in Zurich (1993 and
1996), Oxford (1994), Amsterdam (1995), Copenhagen (1995), Bath (1996), Dublin (1996), Nice
(1997), Yorktown Heights (1997), Berlin (1998), and Tallahassee (1998). The participants in
these workshops formed a global OpenMath community which was coordinated by a Steering
Committee and operated through electronic mailing groups and ad-hoc working parties. This1999/07/16

Reword to reflect
birth of OM Society

loose arrangement has been formalised through the establishment of an OpenMath Society. Up
until the end of 1996 much of the work of the community was funded through a grant from
the Human Capital and Mobility program of the European Union, the contributions of several
institutions and individuals. A document outlining the objectives and basic design of OpenMath
was produced (later published as [1]). By the end of 1996 a simplified specification had been
agreed on and some prototype implementations have come about [9].

In 1996 a group of European participants in OpenMath decided to bid for funding under the
European Union’s Fourth Framework Programme for strategic research in information technol-
ogy. This bid was successful and the project started in late 1997. The principal aims of the
project are to formalise OpenMath as a standard and to develop it further through industrial
applications; this document is a product of that process and draws heavily on the previous work

Page 4 of 62

ESPRIT project 24969: OpenMath

described earlier. OpenMath participants from all over the world continue to meet regularly and
cooperate on areas of mutual interest, and recent workshops in Tallahassee (November 1998) 1999/07/16

Extend History
slightly

and Eindhoven (June 1999) endorsed drafts of this document as the current OpenMath standard.

1999/07/16
Final conclusion
paragraph removed1.2 OpenMath Society
1999/08/24
New sectionIn November 1998 the OpenMath Society has been established to coordinate all OpenMath

activities. The society is based in Helsinki, Finland and is steered by the executive committee
whose members are elected by the society. The official web page of the society is http://www.
openmath.org.

The OpenMath Standard Page 5 of 62

Chapter 2

Introduction to OpenMath

This chapter briefly introduces OpenMath concepts and notions that are referred to in the rest
of this document.

2.1 OpenMath Architecture

The architecture of OpenMath is described in Figure 2.1 and summarizes the interactions among
the different OpenMath components. There are three layers of representation of a mathematical
object [7]. A private layer that is the internal representation used by an application. An abstract
layer that is the representation as an OpenMath object. Third is a communication layer that
translates the OpenMath object representation to a stream of bytes. An application dependent
program manipulates the mathematical objects using its internal representation, it can convert
them to OpenMath objects and communicate them by using the byte stream representation of
OpenMath objects.

2.2 OpenMath Objects and Encodings
1999/08/26
Moved this section
up, to mirror
chapter sequence

OpenMath objects are representations of mathematical entities that can be communicated among
various software applications in a meaningful way, that is, preserving their “semantics”.

OpenMath objects and encodings are described in detail in Chapter 3 and Chapter 4.1999/08/24
Note on encodings
and possibility of
other encodings

The standard endorses encodings in XML and binary format. These are the encodings supported
by the official OpenMath libraries. However they are not the only possible encodings of Open-
Math objects. Users that wish to define their own encoding using some other specific language
(e.g. Lisp) may do so provided there is an effective translation of this encoding to an official one.

2.3 Content Dictionaries

Content Dictionaries (CDs) are used to assign informal and formal semantics to all symbols
used in the OpenMath objects. They define the symbols used to represent concepts arising in a

Page 6 of 62

ESPRIT project 24969: OpenMath

Program A Program B

Phrasebook A
CDs

Phrasebook B
CDs

OM encoding OM encoding

Possible Object Shortcut

General Transport Layer
(XML or Binary)

OpenMath
Object

Encoded
Object

A-Specific
Representation

B-Specific
Representation

OpenMath
Object

Encoded
Object

pr
iv

at
e

la
ye

r
co

m
m

un
ic

at
io

n
la

ye
r

ab
st

ra
ct

 la
ye

r

Figure 2.1: The OpenMath Architecture

particular area of mathematics.

The Content Dictionaries are public, they represent the actual common knowledge among Open-
Math applications. Content Dictionaries fix the “meaning” of objects independently of the ap-
plication. The application receiving the object may then recognize whether or not, according to
the semantics of the symbols defined in the Content Dictionaries, the object can be transformed
to the corresponding internal representation used by the application.

2.4 Additional Files
1999/06/23
This is new

Several additional files are related to Content Dictionaries. Signature files contain the signatures
of symbols defined in some OpenMath Content Dictionary and their format is endorsed by this
standard.

The OpenMath Standard Page 7 of 62

ESPRIT project 24969: OpenMath

Furthermore, the standard fixes how to define as a CDGroup a specific set of Content Dictio-
naries.

Auxiliary files that define presentation and rendering or that are used for manipulating and
processing Content Dictionaries are not discussed by the standard.1999/10/01

Removed mention
to DefMP files

2.5 Phrasebooks

The conversion of an OpenMath object to/from the internal representation in a software appli-
cation is performed by an interface program called Phrasebook. The translation is governed by
the Content Dictionaries and the specifics of the application. It is envisioned that a software
application dealing with a specific area of mathematics declares which Content Dictionaries it
understands. As a consequence, it is expected that the Phrasebook of the application is able to
translate OpenMath objects built using symbols from these Content Dictionaries to/from the
internal mathematical objects of the application.2000/04/10

Reword
OpenMath objects do not specify any compuational behaviour, they merely represent mathe-
matical expressions. Part of the OpenMath philosophy is to leave it to the application to decide
what it does with an object once it has received it. OpenMath is not a query or programming
language. Because of this, OpenMath does not prescribe a way of forcing “evaluation” or “sim-
plification” of objects like 2 + 3 or sin(π). Thus, the same object 2 + 3 could be transformed to
5 by a computer algebra system, or displayed as 2 + 3 by a typesetting tool.

Page 8 of 62 The OpenMath Standard

Chapter 3

OpenMath Objects

In this chapter we provide a self-contained description of OpenMath objects. We first do so at an
informal level (Section 3.2) and next by means of an abstract grammar description (Section 3.1). 1999/08/24

Reshuffled the
sections on OM
Objects

3.1 Formal Definition of OpenMath Objects

OpenMath represents mathematical objects as terms or as labelled trees that are called Open-
Math objects or OpenMath expressions. The definition of an abstract OpenMath object is then
the following. 1999/07/16

Restructure the
definition of OM
Objects3.1.1 Basic OpenMath objects

The Basic OpenMath Objects form the leaves of the OpenMath Object tree. A Basic OpenMath
Object is of one of the following. 1999/09/10

Expand
descriptions of basic
objects

(i) Integer.

Integers in the mathematical sense, with no predefined range. They are “infinite precision”
integers (also called “bignums” in computer algebra).

(ii) IEEE floating point number.

Double precision floating-point numbers following the ieee 754-1985 standard [11].
(iii) Character string.

A Unicode Character string. This also corresponds to ‘characters’ in xml.
(iv) Bytearray.

A sequence of bytes.
(v) Symbol.

A Symbol encodes two fields of information, a name and a Content Dictionary. Each is a
sequence of characters matching a regular expression, as described below.

(vi) Variable.

A Variable consists of a name which is a sequence of characters matching a regular expres-
sion, as described below.

Page 9 of 62

ESPRIT project 24969: OpenMath

3.1.2 Compound OpenMath Objects

OpenMath objects are built recursively as follows.

(i) Basic OpenMath objects are OpenMath objects.
(ii) If A1, . . . , An (n > 0) are OpenMath objects, then

application(A1, . . . , An)

is an OpenMath application object.1999/08/24
Cleaned up
Attribution

(iii) If S1, . . . , Sn are OpenMath symbols, and A, A1, . . . , An, (n > 0) are OpenMath objects,
then

attribution(A,S1 A1, . . . , Sn An)

is an OpenMath attribution object and A is the object stripped of attributions. The op-
eration of recursively applying stripping to the stripped object is called flattening of the
attribution. When the stripped object after flattening is a variable, the attributed object
is called attributed variable.

(iv) If B and C are OpenMath objects, and v1, . . ., vn (n ≥ 0) are OpenMath variables or
attributed variables, then

binding(B, v1, . . . , vn, C)

is an OpenMath binding object.
(v) If S is an OpenMath symbol and A1, . . . , An (n ≥ 0) are OpenMath objects, then

error(S,A1, . . . , An)

is an OpenMath error object.

3.2 Further Description of OpenMath Objects
1999/08/24
Condensed Informal
and Notes Informally, an OpenMath object can be viewed as a tree and is also referred to as a term. The

objects at the leaves of OpenMath trees are called basic objects. The basic objects supported
by OpenMath are:2000/04/10

Add integer and
float

Integer Arbitrary Precision integers.
Float OpenMath floats are ieee 754 Double precision floating-point numbers. Other types

of floating point number may be encoded in OpenMath by the use of suitable content
dictionaries.

Character strings are sequences of characters. These characters come from the Unicode stan-
dard [8].

Bytearrays are sequences of bytes. There is no “byte” in OpenMath as an object of its own.
However, a single byte can of course be represented by a bytearray of length 1. The
difference between strings and bytearrays is the following: a character string is a sequence
of bytes with a fixed interpretation (as characters, Unicode texts may require several bytes
to code one character), whereas a bytearray is an uninterpreted sequence of bytes with no
intrinsic meaning. Bytearrays could be used inside OpenMath errors to provide information
to, for example, a debugger; they could also contain intermediate results of calculations,
or ‘handles’ into computations or databases.

Page 10 of 62 The OpenMath Standard

ESPRIT project 24969: OpenMath

2000/04/10
Change Example Symbols are uniquely defined by the Content Dictionary in which they occur and by a name.

In definition in Section 3.1 we have left this information implicit. However, it should
be kept in mind that all symbols appearing in an OpenMath object are defined in a
Content Dictionary. The form of these definitions is explained in Chapter 5. Each symbol
has no more than one definition in a Content Dictionary. Many Content Dictionaries
may define differently a symbol with the same name (e.g., the symbol union is defined
as associative-commutativeset theoretic union in a Content Dictionary set1 but another
Content Dictionary, multiset1 might define a symbol union as the union of multi-sets.
The name of a symbol can only contain alphanumeric characters and underscores. More
precisely, a symbol name matches the following regular expression: 1999/09/10

Remove ’ from
regexp[A-Za-z] [A-Za-z0-9_]*

Notice that these symbol names are case sensitive. OpenMath recommends that symbol
names should be no longer than 100 characters. 1999/09/10

Removed
suggestion to utf7
hint variable names

Variables are meant to denote parameters, variables or indeterminates (such as bound variables
of function definitions, variables in summations and integrals, independent variables of
derivatives). Plain variable names are restricted to use a subset of the printable ASCII
characters. Formally the names must match the regular expression:

[A-Za-z0-9=+(),-./:?!#$%*;=@[]^_‘{|}]+

The four following constructs can be used to make compound OpenMath objects.

Application constructs an OpenMath object from a sequence of one or more OpenMath ob-
jects. The first argument of application is referred to as “head” while the remaining
objects are called “arguments”. An OpenMath application object can be used to convey
the mathematical notion of application of a function to a set of arguments. For instance,
suppose that the OpenMath symbol sin is defined in a Content Dictionary for trigonom-
etry, then application(sin, x) is the abstract OpenMath object corresponding to sin(x).
More generally, an OpenMath application object can be used as a constructor to convey a
mathematical object built from other objects such as a polynomial constructed from a set
of monomials. Constructors build inhabitants of some symbolic type, for instance the type
of rational numbers or the type of polynomials. The rational number, usually denoted as
1/2, is represented by the OpenMath application object application(Rational, 1, 2). The
symbol Rational must be defined, by a Content Dictionary, as a constructor symbol for
the rational numbers.

Binding objects are constructed from an OpenMath object, and from a sequence of zero or
more variables followed by another OpenMath object. The first OpenMath object is the
“binder” object. Arguments 2 to n − 1 are always variables to be bound in the “body”
which is the nth argument object. It is allowed to have no bound variables, but the binder
object and the body should be present. Binding can be used to express functions or logical
statements. The function λx.x+ 2, in which the variable x is bound by λ, corresponds to
a binding object having as binder the OpenMath symbol lambda:

binding(lambda, x,application(plus, x, 2)).

Binding of several variables as in:

binding(B, v1, . . . , vn, C)

The OpenMath Standard Page 11 of 62

ESPRIT project 24969: OpenMath
1999/10/21
New tree figure,
suggested by
Andreas Strotmann

�����������	��
�����

sin x

plus x 2

�������������
�����

� ���������

lambda x

Figure 3.1: The OpenMath application and binding objects for sin(x) and λx.x+ 2 in tree-like
notation.

is semantically equivalent to composition of binding of a single variable, namely

binding(B, v1, (binding(B, v2, (. . . ,binding(B, vn, C) . . .).

Note that it follows from this that repeated occurences of the same variable in a binding
operator are allowed. For example the object1999/10/04

Rephrase slightly

binding(lambda, v, v,application(times, v, v))

is semantically equivalent to:

binding(lambda, v,binding(lambda, v,application(times, v, v)))

so that the outermost binding is actually a constant function (v does not occur free in the
body application(times, v, v)))).

Phrasebooks are allowed to use α conversion in order to avoid clashes of variable names.
Suppose an object Ω contains an occurrence of the object binding(B, v, C). This object
binding(B, v, C) can be replaced in Ω by binding(B, z, C ′) where z is a variable not
occurring free in C and C ′ is obtained from C by replacing each free (i.e., not bound by
any intermediate binding construct) occurrence of v by z. This operation preserves the
semantics of the object Ω. In the above example, a phrasebook is thus allowed to transform
the object to, e.g.

binding(lambda, v,binding(lambda, z,application(times, z, z))).

Attribution decorates an object with a sequence of one or more pairs made up of an OpenMath
symbol, the “attribute”, and an associated OpenMath object, the “value of the attribute”.
The value of the attribute can be an attribution object itself. As example of this, consider
the OpenMath objects representing groups, automorphism groups, and group dimensions.
It is then possible to attribute an OpenMath object representing a group by its automor-
phism group, itself attributed by its dimension.

Composition of attributions, as in

attribution(attribution(A,S1 A1, . . . , Sh Ah), Sh+1 Ah+1, . . . , Sn An)

is semantically equivalent to a single attribution, that is

attribution(A,S1 A1, . . . , Sh Ah, Sh+1 Ah+1, . . . , Sn An).

Page 12 of 62 The OpenMath Standard

ESPRIT project 24969: OpenMath

The operation that produces an object with a single layer of attribution is called flattening.

Multiple attributes with the same name are allowed. While the order of the given attributes
does not imply any notion of priority, potentially it could be significant. For instance,
consider the case in which Sh = Sn (h < n) in the example above. Then, the object is to
be interpreted as if the value An overwrites the value Ah. (OpenMath however does not
mandate that an application preserves the attributes or their order.) 1999/08/24

Removed reference
to syntactic class of
an attributed
variable

Objects can be decorated in a multitude of ways. In [4], typing of OpenMath objects
is expressed by using an attribution. The object attribution(A, type t) represents the
judgment stating that object A has type t. Note that both A and t are OpenMath objects.

Attribution can act as either annotation, in the sense of adornment, or as modifier. In the
former case, replacement of the adorned object by the object itself is probably not harmful
(preserves the semantics). In the latter case however, it may very well be. Therefore,
attribution in general should by default be treated as a construct rather than as adornment.
Only when the CD definitions of the attributes make it clear that they are adornments,
can the attributed object be viewed as semantically equivalent to the stripped object.

Error is made up of an OpenMath symbol and a sequence of zero or more OpenMath objects.
This object has no direct mathematical meaning. Errors occur as the result of some
treatment on an OpenMath object and are thus of real interest only when some sort of
communication is taking place. Errors may occur inside other objects and also inside other
errors. Error objects might consist only of a symbol as in the object: error(S). 1999/09/22

Remove
classification of
suggested error
types, does not fit
current CD scheme

3.3 Summary

• OpenMath supports basic objects like integers, symbols, floating-point numbers, character
strings, bytearrays, and variables.
• OpenMath compound objects are of four kinds: applications, bindings, errors, and attri-

butions.
• OpenMath objects have the expressive power to cover all areas of computational mathe-

matics.
1999/09/22
Paragraph moved
from previous
section

Observe that an OpenMath application object is viewed as a “tree” by software applications that
do not understand Content Dictionaries, whereas a Phrasebook that understands the semantics
of the symbols, as defined in the Content Dictionaries, should interpret the object as functional
application, constructor, or binding accordingly. Thus, for example, for some applications, the
OpenMath object corresponding to 2 + 5 may result in a command that writes 7.

The OpenMath Standard Page 13 of 62

Chapter 4

OpenMath Encodings

In this chapter, two encodings are defined that map between OpenMath objects and byte streams.
These byte streams constitute a low level representation that can be easily exchanged between
processes (via almost any communication method) or stored and retrieved from files.

The first encoding uses ISO 646:1983 characters [12] (also known as ascii characters) and is
an xml application. Although the xml markup of the encoding uses only ascii characters,
OpenMath strings may uses arbitrary Unicode/ISO 10646:1988 characters [8] It can be used, for
example, to send OpenMath objects via e-mail, news, cut-and-paste, etc. The texts produced
by this encoding can be part of xml documents.

The second encoding is a binary encoding that is meant to be used when the compactness of the
encoding is important (interprocess communications over a network is an example).

Note that these two encodings are sufficiently different for autodetection to be effective: an
application reading the bytes can very easily determine which encoding is used.

4.1 The xml Encoding

This encoding has been designed with two main goals in mind:

1. to provide an encoding that uses the most common character set (so that it can be eas-
ily included in most documents and transport protocols) and that is both readable and
writable by a human.

2. to provide an encoding that can be included (embedded) in xml documents.

4.1.1 A Grammar for the xml Encoding
1999/09/09
Modify description
of XML encoding to
make dtd

normative, and
other changes to
increase portability
to xml applications.

The xml encoding of an OpenMath object is defined by the dtd given in Figure 4.1 below, with
the following additional rules not implied by the xml dtd.

• Comments are permitted only between elements, not within element character data.
• Processing Instructions are only allowed before the OMOBJ element.

Page 14 of 62

ESPRIT project 24969: OpenMath

• The content of an OMB element, is a valid base64-encoded text.
• The character data forming element content and attribute values matches the regular

expressions of Figure 4.2.

In addition, if the xml document encoding the OpenMath object is linearised into the xml

concrete syntax, the following further constraints apply, which ensure thet the encoding may be
read by OpenMath applications that may not include a full xml parser. 1999/09/09

Restrictions on not
using foo=’xxxx’
dropped• The document should use utf-8 encoding.

• Entity and character references should not be used.
• A <!DOCTYPE declaration should not be used. 1999/09/21

Restrict empty
element syntax• The xml empty element form <. . . /> should always be used to encode elements such as

omf which are specified in the dtd as being empty. It should never be used for elements
that may sometimes be empty, such as omstr.

Such a linearisation of an xml encoded OpenMath Object would match the match the character
based grammar given in Figure 4.2.

The notation used in this section and in Figure 4.2 should be quite straightforward (+ meaning
“one or more”, ? meaning zero or one, and | meaning “or”). The start symbol of the grammar
is “start”, “space” stands for the space character, “cr” for the carriage return character, “nl” for
the line feed character and “tab” for the horizontal tabulation character.

4.1.2 Description of the Grammar

An encoded OpenMath object is placed inside an OMOBJ element. This element can contain the
elements (and integers) as described above.

We briefly discuss the xml encoding for each type of OpenMath object starting from the basic
objects.

Integers are encoded using the OMI element around the sequence of their digits in base 10 or 16
(most significant digit first). White space may be inserted between the characters of the
integer representation, this will be ignored. After ignoring white space, integers written 1999/09/22

White space
allowed in integer
strings

in base 10 match the regular expression -?[0-9]+. Integers written in base 16 match
-?x[0-9A-F]+.

The integer 10 can be thus encoded as <OMI> 10 </OMI> or as <OMI> xA </OMI> but
neither <OMI> +10 </OMI> nor <OMI> +xA </OMI> can be used.

The negative integer −120 can be encoded as either as decimal <OMI> -120 </OMI> or as
hexadecimal <OMI> -x78 </OMI>.

Symbols are encoded using the OMS element. This element has two xml-attributes cd and name.
The value of cd is the name of the Content Dictionary in which the symbol is defined and
the value of name is the name of the symbol. The name of the Content Dictionary is
compulsory, but a future revision of the OpenMath standard might introduce a defaulting
mechanism. For example, <OMS cd="transc" name="sin"/> is the encoding of the symbol
named sin in the Content Dictionary named transc.

The OpenMath Standard Page 15 of 62

ESPRIT project 24969: OpenMath

<!-- DTD for OM Objects - sb 29.10.98 -->

<!-- sb 3.2.99 -->

<!-- general list of embeddable elements

: excludes OMATP as this is only embeddable in OMATTR

: excludes OMBVAR as this is only embeddable in OMBIND -->

<!ENTITY % omel "OMS | OMV | OMI | OMB | OMSTR

| OMF | OMA | OMBIND | OME

| OMATTR ">

<!-- things which can be variables -->

<!ENTITY % omvar "OMV | OMATTR" >

<!-- symbol -->

<!ELEMENT OMS EMPTY>

<!ATTLIST OMS name CDATA #REQUIRED cd CDATA #REQUIRED >

<!-- variable -->

<!ELEMENT OMV EMPTY>

<!ATTLIST OMV name CDATA #REQUIRED >

<!-- integer -->

<!ELEMENT OMI (#PCDATA) >

<!-- byte array -->

<!ELEMENT OMB (#PCDATA) >

<!-- string -->

<!ELEMENT OMSTR (#PCDATA) >

<!-- floating point -->

<!ELEMENT OMF EMPTY>

<!ATTLIST OMF dec CDATA #IMPLIED hex CDATA #IMPLIED>

<!-- apply constructor -->

<!ELEMENT OMA (%omel;)+ >

<!-- binding constructor & variable -->

<!ELEMENT OMBIND ((%omel;), OMBVAR, (%omel;)) >

<!ELEMENT OMBVAR (%omvar;)+ >

<!-- error -->

<!ELEMENT OME (OMS, (%omel;)*) >

<!-- attribution constructor & attribute pair constructor -->

<!ELEMENT OMATTR (OMATP, (%omel;)) >

<!ELEMENT OMATP (OMS, (%omel;))+ >

<!-- OM object constructor -->

<!ELEMENT OMOBJ (%omel;) >

<!ATTLIST OMOBJ xmlns CDATA #FIXED "http://www.openmath.org/OpenMath">

Figure 4.1: DTD for the OpenMath xml encoding of objects.

Page 16 of 62 The OpenMath Standard

ESPRIT project 24969: OpenMath

1999/07/16
White space
allowed in integer
strings

S −→ (space|tab|cr|nl)+
integer −→ (- S?)? [0-9]+ (S [0-9]+)* | (- S?)? x S? [0-9A-F]+ (S [0-9A-F]+)*
cdname −→ [a-z][a-z0-9_]*
symbname −→ [A-Za-z][A-Za-z0-9_]*
fpdec −→ (-?)([0-9]+)?(.[0-9]+)?(e([+|-]?)[0-9]+)?
fphex −→ [0-9ABCDEF]+
varname −→ ([A-Za-z0-9+=(),-./:?!#$%*;@[]^_‘{|}])+
base64 −→ ([A-Za-z0-9+/=] | S)+
char −→ XML Character Data

1999/09/09
removed ’ from
varname

symbnameatt −→ name S? = S? (" symbname " | ’ symbname ’)
cdnameatt −→ cd S? = S? (" cdname " | ’ cdname ’)
varnameatt −→ name S? = S? (" varname " | ’ varname ’)
fpdecatt −→ dec S? = S? (" fpdec " | ’ fpdec ’)
fphexatt −→ hex S? = S? (" fphex " | ’ fphex ’)
PI −→ <? char ?>

comment −→ <!-- char -->

SC −→ S+ | (comment S)+
start −→ (SC | PI)* <OMOBJ S?> S? object S? </OMOBJ S?>
symbol −→ <OMS S symbnameatt S cdnameatt S? />

| <OMS S cdnameatt S symbnameatt S? />

variable −→ <OMV S varnameatt S? />

| <OMATTR S?> SC? omatp SC? variable SC? </OMATTR S?>
omatp −→ <OMATP S?> SC? attrs SC? </OMATP S?>
object −→ symbol

| variable
| <OMI S?> S? integer S? </OMI S?>
| <OMF S fpdecatt S? />

| <OMF S fphexatt S? />

| <OMSTR S?> char </OMSTR S?>
| <OMB S?> base64 </OMB S?>
| <OMA S?> SC? object SC? objects SC? </OMA S?>
| <OMBIND S?> SC? object SC?

<OMBVAR S?> SC? variables SC? </OMBVAR S?>
SC? object SC? </OMBIND S?>

| <OME S?> SC? symbol SC? objects SC? </OME S?>
| <OMATTR S?> SC? <OMATP S?> SC? attrs SC? </OMATP S?>

SC? object SC? </OMATTR S?>
attrs −→ symbol S? object

| symbol S? object S? attrs
objects −→ SC?

| object SC? objects
variables −→ SC?

| variable SC? variables

Figure 4.2: Grammar for the xml encoding of OpenMath objects.

The OpenMath Standard Page 17 of 62

ESPRIT project 24969: OpenMath

Variables are encoded using the OMV element, with only one xml-attribute, name, whose value is
the variable name. The variable name is a subset of the printable ascii set of characters. In
particular, neither spaces nor double-quote " are allowed in variable names. For instance,
the encoding of the object representing the variable x is: <OMV name="x"/>

Floating-point numbers are encoded using the OMF element that has either the xml-attribute
dec or the xml-attribute hex. The two xml-attributes cannot be present simultaneously.
The value of dec is the floating-point number expressed in base 10, using the common
syntax:

(-?)([0-9]+)?("."[0-9]+)?(e(-?)[0-9]+)?.

The value of hex is the digits of the floating-point number expressed in base 16, with digits
0-9, A-F (mantissa, exponent, and sign from lowest to highest bits) using a least significant
byte ordering. For example, <OMF dec="1.0e-10"/> is a valid floating-point number.

Character strings are encoded using the OMSTR element. Its content is a Unicode text (The
default encoding is utf-8[17], although xml encoded OpenMath may be embedded in a
containing xml document that specifies alternative encoding in the xmldeclaration. Note
that as always in xml the characters < and & need to be represented by the entity references
< and & respectively.

Bytearrays are encoded using the OMB element. Its content is a sequence of characters that is
a base64 encoding of the data. The base64 encoding is defined in rfc 1521 [2]. Basically,
it represents an arbitrary sequence of octets using 64 “digits” (A through Z, a through z,
0 through 9, + and /, in order of increasing value). Three octets are represented as four
digits (the = character for padding to the right at the end of the data). All line breaks and
carriage return, space, form feed and horizontal tabulation characters are ignored. The
reader is refered to [2] for more detailed information.

In detail the encoding of an OpenMath object is described below.

Applications are encoded using the OMA element. The application whose root is the OpenMath
object e0 and whose arguments are the OpenMath objects e1, . . . , en is encoded as <OMA>
C0 C1. . .Cn </OMA> where Ci is the encoding of ei.

For example, application(sin, x) is encoded as:

<OMA>
<OMS cd="transc1" name="sin"/>
<OMV name="x"/>
</OMA>

provided that the symbol sin is defined to be a function symbol in a Content Dictionary
named transc1.

Binding is encoded using the OMBIND element. The binding by the OpenMath object b of the
OpenMath variables x1, x2, . . ., xn in the object c is encoded as <OMBIND> B <OMBVAR>
X1 . . . Xn </OMBVAR> C </OMBIND> where B, C, and Xi are the encodings of b, c and xi,
respectively.

For instance the encoding of binding(lambda, x,application(sin, x)) is:

Page 18 of 62 The OpenMath Standard

ESPRIT project 24969: OpenMath

<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="x"/>

</OMBVAR>
<OMA>
<OMS cd="transc1" name="sin"/>
<OMV name="x"/>

</OMA>
</OMBIND>

Binders are defined in Content Dictionaries, in particular, the symbol lambda is defined in
the Content Dictionary fns1 for functions over functions.

Attributions are encoded using the OMATTR element. If the OpenMath object e is attributed
with (s1, e1), . . . , (sn, en) pairs (where si are the attributes), it is encoded as <OMATTR>
<OMATP> S1 C1 . . .Sn Cn </OMATP> E </OMATTR> where Si is the encoding of the symbol
si, Ci of the object ei and E is the encoding of e.

Examples are the use of attribution to decorate a group by its automorphism group:

<OMATTR>
<OMATP>

<OMS cd="groups" name="automorphism_group" />
[..group-encoding..]

</OMATP>
[..group-encoding..]

</OMATTR>

or to express the type of a variable:

<OMATTR>
<OMATP>

<OMS cd="ecc" name="type" />
<OMS cd="ecc" name="real" />

</OMATP>
<OMV name="x" />

</OMATTR>

Errors are encoded using the OME element. The error whose symbol is s and whose arguments
are the OpenMath objects e1, . . . , en is encoded as <OME> Cs C1. . .Cn </OME> where Cs
is the encoding of s and Ci the encoding of ei.

If an aritherror Content Dictionary contained a DivisionByZero symbol, then the object
error(DivisionByZero,application(divide, x, 0)) would be encoded as follows:

<OME>
<OMS cd="aritherror" name="DivisionByZero"/>
<OMA>

<OMS cd="arith1" name="divide" />
<OMV name="x"/>
<OMI> 0 </OMI>

</OMA>
</OME>

The OpenMath Standard Page 19 of 62

ESPRIT project 24969: OpenMath

4.1.3 Embedding OpenMath in XML Documents
1999/09/21
New section on
embedding OM in
XML documents

The above encoding of xml encoded OpenMath specifies the grammar to be used in files that en-
code a single OpenMath object, and specifies the character streams that a conforming OpenMath
application should be able to accept or produce.

When embedding xml encoded OpenMath objects into a larger XML document one may wish,
or need, to use other XML features. For example use of extra xml attributes to specify xml

Namespaces [16] or xml:lang attributes to specify the language used in strings [14]. Also, the
encoding used in the larger document may not be utf-8.2000/03/20

Namespace URI, as
discussed on OM
Soc list

In particular, if OpenMath is used with applications that use the XML Namespace Recommne-
dation [16] then they should ensure that OpenMath elements are in the namespace http:
www.openmath.org/OpenMath. This is most conveniently achieved by adding the namespace
declaration
xmlns="http:www.openmath.org/OpenMath"
as an attribute to each OMOBJ element in the document.

If such xml features are used then the xml application controlling the document must, if passing
the OpenMath fragment to an OpenMath application, remove any such extra attributes and must
ensure that the fragment is encoded according to the grammar specified above.

4.2 The Binary Encoding

The binary encoding was essentially designed to be more compact than the xml encodings, so
that it can be more efficient if large amounts of data are involved. For the current encoding,
we tried to keep the right balance between compactness, speed of encoding and decoding and
simplicity (to allow a simple specification and easy implementations).

4.2.1 A Grammar for the Binary Encoding
1999/06/24
New attrvar
production Figure 4.3 gives a grammar for the binary encoding. The following conventions are used in

this section: [n] denotes a byte whose value is the integer n (n can range from 0 to 255), {m}
denotes four bytes representing the (unsigned) integer m in network byte order, [] denotes an
arbitrary byte, { } denotes an arbitrary sequence of four bytes. name:n denotes a sequence of n
bytes named name. name:2n denotes a sequence of 2n bytes. “start” is the start symbol of the
grammar.

4.2.2 Description of the Grammar

An OpenMath object is encoded as a sequence of bytes starting with the begin object tag
(value 24) and ending with the end object tag (value 25). These are similar to the <OMOBJ> and
</OMOBJ> tags of the xml encoding.

The encoding of each kind of OpenMath object begins with a tag that is a single byte, holding
a token identifier and two flags, the long flag and the shared flag. The identifier is stored in the
first 6 bits (1 to 6). The long flag is the eighth bit and the shared flag is the seventh bit.

Here is a description of the binary encodings of every kind of OpenMath object:.

Page 20 of 62 The OpenMath Standard

ESPRIT project 24969: OpenMath

start −→ [24] object [25]
object −→ integer

| float
| variable
| symbol
| string
| bytearray
| construct

integer −→ [1] []
| [1 + 128] { }
| [2] [n] [] digits:n
| [2 + 128] {n} [] digits:n

float −→ [3] { } { }
variable −→ [5] [n] varname:n

| [5 + 128] {n} varname:n
| [5 + 64] [n]

symbol −→ [8] [n] [m] cdname:n symbname:m
| [8 + 128] {n} {m} cdname:n symbname:m
| [8 + 64] [n]

string −→ [6] [n] chars:n
| [6 + 128] {n} chars:n
| [7] [n] chars:2n
| [7 + 128] {n} chars:2n
| [7 + 64] [n]

bytearray −→ [4] [n] bytes:n
| [4 + 128] {n} bytes:n

construct −→ [16] object objects [17]
| [22] symbol objects [23]
| [18] attrpairs object [19]
| [26] object bvars object [27]

attrpairs −→ [20] pairs [21]
pairs −→ symbol object

| symbol object pairs
bvars −→ [28] vars [29]
vars −→ attrvar

| attrvar vars
attrvar −→ variable

| [18] attrpairs attrvar [19]
objects −→

| object objects

Figure 4.3: Grammar of the binary encoding of OpenMath objects.

The OpenMath Standard Page 21 of 62

ESPRIT project 24969: OpenMath

Integers are encoded depending on how large they are. There are four possible formats. Integers
between -128 and 127 are encoded as the small integer tag (1) followed by a single byte that
is the value of the integer (interpreted as a signed character). For example 16 is encoded
as 0x01 0x10. Integers between −231 (-2147483648) and 231−1 (2147483647) are encoded
as the small integer tag with the long flag set followed by the integer encoded in little
endian format on four bytes (network byte order: the most significant byte comes first).
For example, 128 is encoded as 0x81 0x00000080. The most general encoding begins with
the big integer tag (token identifier 2) with the long flag set if the number of bytes in the
encoding of the digits is greater or equal than 256. It is followed by the length (in bytes) of
the sequence of digits, encoded on one byte (0 to 255, if the long flag was not set) or four
bytes (network byte order, if the long flag was set). It is then followed by a byte describing
the sign and the base. This ’sign/base’ byte is + (0x2B) or - (0x2D) for the sign ored
with the base mask bits that can be 0 for base 10 or 0x40 for base 16. It is followed by
the strings of digits (as characters) in their natural order (as in the xml encoding). For
example, 8589934592 (233) is encoded 0x02 0x0A 0x2B 0x38353839393334353932 and
xfffffff1 is encoded as 0x02 0x08 0x6b 0x6666666666666631. Note that it is permitted
to encode a “small” integer in any “bigger” format.

Symbols are encoded as the symbol tag (8) with the long flag set if the maximum of the length
of the Content Dictionary name and the symbol name is greater than or equal to 256 (note
that this should never be the case if the rules on symbols and Content Dictionary names
are applied), then followed by the length of the Content Dictionary name as a byte (if
the long flag was not set) or a four byte integer (in network byte order) followed by the
length of the symbol name as a byte (if the long flag was not set) or a four byte integer (in
network byte order), followed by the characters of the Content Dictionary name, followed
by the characters of the symbol name.

Variables are encoded using the variable tag (5) with the long flag set if the number of bytes
(characters) in the variable name is greater than or equal to 256 (this should never happen
if the rules on variables are followed). Then, there is the number of characters as a byte
(if the long flag was not set) or a four byte integer (in network byte order), followed by
the characters of the name of the variable. For example, the variable x is encoded as 0x05
0x01 0x78.

Floating-point number are encoded using the floating-point number tag (3) followed by eight
bytes that are the IEEE 754 representation [11], most significant bytes first. For example,
0.1 is encoded as 0x03 0x000000000000f03f.

Character string are encoded in two ways depending on whether the string contains utf-16

characters or not. If the string contains only 8 bit characters, it is encoded as the one byte
character string tag (6) with the long flag set if the number of bytes (characters) in the
string is greater than or equal to 256. Then, there is the number of characters as a byte
(if the length flag was not set) or a four byte integer (in network byte order), followed by
the characters in the string. If the string contains two byte characters, it is encoded as
the two byte character string tag (7) with the long flag set if the number of characters in
the string is greater or equal to 256. Then, there is the number of characters as a byte (if
the long flag was not set) or a four byte integer (in network byte order), followed by the
characters (utf-16 encoded Unicode).

Bytearrays are encoded using the bytearray tag (4) with the long flag set if the number of
bytes in the number of elements is greater than or equal to 256. Then, there is the number
of elements, as a byte (if the long flag was not set) or a four byte integer (in network byte
order), followed by the elements of the arrays in their normal order.

Page 22 of 62 The OpenMath Standard

ESPRIT project 24969: OpenMath

Applications are encoded using the application tag (16). More precisely, the application of E0

to E1. . .En is encoded using the application tag (16), the sequence of the encodings of E0

to En and the end application tag (17).
Bindings are encoded using the binding tag (26). More precisely, the binding by B of variables

V1. . .Vn in C is encoded as the binding tag (26), followed by the encoding of B, followed
by the binding variables tag (28), followed by the encodings of the variables V1 . . .Vn,
followed by the end binding variables tag (29), followed by the encoding of C, followed by
the end binding tag (27).

Attribution are encoded using the attribution tag (18). More precisely, attribution of the
object E with (S1, E1), . . . (Sn, En) pairs (where Si are the attributes) is encoded as the
attributed object tag (18), followed by the encoding of the attribute pairs as the attribute
pairs tag (20), followed by the encoding of each symbol and value, followed by the end
attribute pairs tag (21), followed by the encoding of E, followed by the end attributed
object tag (19).

Error are encoded using the error tag (22). More precisely, S0 applied to E1. . .En is encoded
as the error tag (22), the encoding of S0, the sequence of the encodings of E0 to En and
the end error tag (23).

4.2.2.1 Sharing

This binary encoding supports the sharing of symbols, variables and strings (up to a certain
length for strings) within one object. That is, sharing between objects is not supported. A
reference to a shared symbol, variable or string is encoded as the corresponding tag with the
long flag not set and the shared flag set, followed by a positive integer n coded on one byte (0 to
255). This integer references the n + 1-th such sharable sub-object (symbol, variable or string
up to 255 characters) in the current OpenMath object (counted in the order they are generated
by the encoding). For example, 0x48 0x01 references a symbol that is identical to the second
symbol that was found in the current object. Strings with 8 bit characters and strings with 16
bit characters are two different kinds of objects for this sharing. Only strings containing less
than 256 characters can be shared (i.e. only strings up to 255 characters).

4.2.3 Implementation Note

A typical implementation of the binary encoding uses four tables, each of 256 entries, for symbol,
variables, 8 bit character strings whose lengths are less than 256 characters and 16 bit character
strings whose lengths are less than 256 characters. When an object is read, all the tables are
first flushed. Each time a sharable sub-object is read, it is entered in the corresponding table if
it is not full. When a reference to the shared i-th object of a given type is read, it stands for the
i-th entry in the corresponding table. It is an encoding error if the i-th position in the table has
not already been assigned (i.e. forward references are not allowed). Sharing is not mandatory,
there may be duplicate entries in the tables (if the application that wrote the object chose not
to share optimally).

Writing an object is simple. The tables are first flushed. Each time a sharable sub-object is
encountered (in the natural order of output given by the encoding), it is either entered in the
corresponding table (if it is not full) and output in the normal way or replaced by the right
reference if it is already present in the table.

The OpenMath Standard Page 23 of 62

ESPRIT project 24969: OpenMath

4.2.4 Example of Binary Encoding

As an example of this binary encoding, we can consider the OpenMath object whose xml en-
coding is

<OMOBJ>
<OMA>

<OMS name="times" cd="arith1"/>
<OMA>
<OMS name="plus" cd="arith1"/>
<OMV name="x"/>
<OMV name="y"/>

</OMA>
<OMA>
<OMS name="plus" cd="arith1"/>
<OMV name="x"/>
<OMV name="z"/>

</OMA>
</OMA>

</OMOBJ>

It is binary encoded as the sequence of bytes given by the following table.

Hex Meaning Hex Meaning

18 begin object tag 68 h .)
10 begin application tag 31 1 .)
08 symbol tag 70 p (symbol name begin
06 cd length 6c l .
05 name length 75 u .
61 a (cd name begin 73 s .)
72 r . 05 variable tag
69 i . 01 name length
74 t . 78 x (name)
68 h . 05 variable tag
31 1 .) 01 name length
74 t (symbol name begin 79 y (variable name)
69 i . 11 end application tag
6d m . 10 begin application tag
65 e . 48 symbol tag (with share bit on)
73 s .) 01 reference to second symbol seen (arith1:plus)
10 begin application tag 45 variable tag (with share bit on)
08 symbol tag 00 reference to first variable seen (x)
06 cd length 05 variable tag
04 name length 01 name length
61 a (cd name begin 7a z (variable name)
72 r . 11 end application tag
69 i . 11 end application tag
74 t . 19 end object tag

Page 24 of 62 The OpenMath Standard

ESPRIT project 24969: OpenMath

4.3 Summary

The key points of this chapter are:

• The xml encoding for OpenMath objects uses most common character sets.
• The xml encoding is readable, writable and can be embedded in most documents and

transport protocols.
• The binary encoding for OpenMath objects should be used when efficiency is a key issue.

It is compact yet simple enough to allow fast encoding and decoding of objects.

The OpenMath Standard Page 25 of 62

Chapter 5

Content Dictionaries

In this chapter we give a brief overview of Content Dictionaries before explicitly stating their
functionality and encoding.

5.1 Introduction

Content Dictionaries (CDs) are central to the OpenMath philosophy of transmitting mathemat-
ical information. It is the OpenMath Content Dictionaries which actually hold the meanings of
the objects being transmitted.

For example if application A is talking to application B, and sends, say, an equation involving
multiplication of matrices, then A and B must agree on what a matrix is, and on what matrix
multiplication is, and even on what constitutes an equation. All this information is held within
some Content Dictionaries which both applications agree upon.

A Content Dictionary holds the meanings of (various) mathematical “words”. These words are
OpenMath basic objects referred to as symbols in Section 3.1.

With a set of symbol definitions (perhaps from several content Dictionaries), A and B can now
talk in a common “language”.

It is important to stress that it is not Content Dictionaries themselves which are being passed, but
some “mathematics” whose definitions are held within the Content Dictionaries. This means
that the applications must have already agreed on a set of Content Dictionaries which they
“understand” (i.e., can cope with to some degree).1999/10/04

Rephrase slightly
In many cases, the Content Dictionaries that an application understands will be constant, and
be intrinsic to the application’s mathematical use. However the above approach can also be used
for applications which can handle every Content Dictionary (such as an OpenMath parser, or
perhaps a typesetting system), or alternatively for applications which understand a changeable
number of Content Dictionaries (perhaps after being sent Content Dictionaries in some way).

The primary use of Content Dictionaries is thought to be for designers of Phrasebooks,the
programs which translate between the OpenMath mathematical object and the corresponding
(often internal) structure of the particular application in question. For such a use the Content
Dictionaries have themselves been designed to be as readable and precise as possible.

Page 26 of 62

ESPRIT project 24969: OpenMath

Another possible use for OpenMath Content Dictionaries could rely on their automatic com-
prehension by a machine (e.g., when given definitions of objects defined in terms of previously
understood ones), in which case Content Dictionaries may have to be passed as data. Towards
this end, a Content Dictionary has been written which contains a set of symbols sufficient to
represent any other Content Dictionary. This means that Content Dictionaries may be passed
in the same way as other (OpenMath) mathematical data.

Finally, the syntax of the Content Dictionaries has been designed to be relatively easy to learn
and to write, and also free from the need for any specialist software. This is because it is
acknowledged that there is an enormous amount of mathematical information to represent, and
so most of the Content Dictionaries will be written by “ordinary” mathematicians, encoding
their particular fields of expertise. A further reason is that the mathematics conveyed by a 1999/08/24

More motivation on
design of CDs

specific Content Dictionary should be understandable independently of any application.

The key points from this section are:

• Content Dictionaries should be readable and precise to help Phrasebook designers,
• Content Dictionaries should be readily write-able to encourage widespread use,
• It ought to be possible for a machine to understand a Content Dictionary to some degree.

5.2 Content Dictionaries

In this section we define the overall structure of Content Dictionaries.

Other than Content Dictionary comments (which have no real semantics), Content Dictionaries
have been designed to hold two types of information: that which is pertinent to the whole Content
Dictionary, and that which is restricted to a particular symbol definition. Specific information 1999/08/24

New paragraph to
reflect recent
changes

pertaining to the symbols like the signature and the defining mathematical properties is conveyed
in additional files associated to Content Dictionaries.

Information that is pertinent to the whole Content Dictionary includes:

• The name of the Content Dictionary.
• A description of the Content Dictionary.
• A date when the Content Dictionary is next planned to be reviewed.
• A date on which the Content Dictionary was last edited.
• The current version and revision numbers of the Content Dictionary.
• The status of the Content Dictionary.
• An optional URL for this Content Dictionary.
• An optional list of Content Dictionaries on which this Content Dictionary depends. That

is, those named in Examples and FMP in this Content Dictionary.
• An optional comment, possibly containing the author’s name.

Information that is restricted to a particular symbol includes:

• The name of the symbol.
• A description of this symbol.
• An optional comment.

The OpenMath Standard Page 27 of 62

ESPRIT project 24969: OpenMath

• Optional properties that this symbol should obey.
• Optional examples of the use of this symbol.

1999/08/24
removed refs to old
changes

1999/06/22
new paragraph

1999/08/24
Defmp added

1999/10/04
Rephrase slightly

As mentioned earlier, certain kinds of data pertaining to symbols may be conveyed in files other
than a Content Dictionary. In particular, information on signatures according to a type system
may be described in Signature Files whose format is given in Section 5.4.1. Other information
such as presentation forms, extra defining mathematical properties may be associated with Con-
tent Dictionaries using files whose format is not specified by this standard. It is expected that a
common method of defining the presentation for OpenMath symbols is via xsl [15] stylesheets
giving transformations to MathML.

Content Dictionaries may be grouped into CD Groups. These groups allow applications to easily
refer to collections of Content Dictionaries. One particular CDGroup of interest is the “MathML
CDGroup”. This group expresses the collection of the core Content Dictionaries that is designed
to have the same semantic scope as the content elements of MathML 2 [13]. OpenMath objects2000/04/10

MathML 2 built from symbols that come from Content Dictionaries in this CDGroup may be expected to
be eaily transformed between OpenMath and MathML encodings. The detailed structure of a
CDGroup is described in section 5.4.2 below.

5.3 The XML Encoding for Content Dictionaries

Content Dictionaries are XML documents. A valid Content Dictionary document should

• be valid according to the DTD given in Figure 5.1,
• adhere to the extra conditions on the content of the elements given in Section 5.3.2.

An example of a complete Content Dictionary is given in Appendix A.1, which is the Meta
Content Dictionary for describing Content Dictionaries themselves. A more typical Content
Dictionary is given in Appendix A.2, the arith1 Content Dictionary for basic arithmetic func-
tions.

5.3.1 The DTD Specification of Content Dictionaries

The XML DTD for Content Dictionaries is given in Figure 5.1. The allowed elements are further
described in the following section.

5.3.2 Further Requirements of an OpenMath Content Dictionary

The notion of being a valid Content Dictionary is stronger than merely being successfully parsed
by the DTD. This is because the content of the elements, referred to in Figure 5.1 as PCDATA
and CDATA, must actually make sense to, say, a Phrasebook designer. In this section we define
exactly the format of the elements used in Content Dictionaries.1999/06/20

now we have this
numbering
mechanism, should
it be documented?

CDName The text occurring in the CDName element corresponds to the name of Content Dictio-
nary, and is of the form specified in Chapter 4.

Page 28 of 62 The OpenMath Standard

ESPRIT project 24969: OpenMath

<!-- omcd.dtd -->
<!-- ** -->
<!-- -->
<!-- DTD for OpenMath CD -->
<!-- (c) EP24969 the ESPRIT OpenMath Consortium -->
<!-- date = 28.aug.1998 -->
<!-- author = s.buswell sb@stilo.demon.co.uk -->
<!-- -->
<!-- edited by n.howgrave-graham 30.aug.98 -->
<!-- edited by sb 4.sep.98 -->
<!-- edited by nh-g 4.sep.98 -->
<!-- edited by sb 1.nov.98 -->
<!-- edited by dpc 1999-04-13 -->
<!-- edited by dpc 1999-05-11 CDDate & CDVersion -->
<!-- edited by dpc 1999-06-21 Delete Signature&Presentation -->
<!-- Force Name as first child of -->
<!-- CDDefinition -->
<!-- -->
<!-- ** -->
<!ELEMENT CDName (#PCDATA) >
<!ELEMENT Description (#PCDATA) >
<!ELEMENT CDReviewDate (#PCDATA) >
<!ELEMENT CDDate (#PCDATA) >
<!ELEMENT CDVersion (#PCDATA) >
<!ELEMENT CDStatus (#PCDATA) >
<!ELEMENT CDURL (#PCDATA) >
<!ELEMENT CDUses (CDName*) >
<!ELEMENT CDComment (#PCDATA) >
<!ELEMENT Name (#PCDATA) >
<!ELEMENT CMP (#PCDATA) >

<!-- include dtd for OM objects -->
<!ENTITY % omobjectdtd SYSTEM "omobj.dtd" >
%omobjectdtd;

<!ELEMENT FMP (OMOBJ?) >

<!ELEMENT Example (#PCDATA | OMOBJ)* >

<!ELEMENT CDDefinition (Name,
(Description | CDComment | CMP | FMP | Example)*) >

<!ELEMENT CD (CDName | Description | CDReviewDate | CDDate |
CDVersion | CDStatus | CDURL | CDUses |
CDComment | Example | CDDefinition)* >

<!-- end of DTD for OM CD -->

Figure 5.1: DTD Specification of Content Dictionaries

The OpenMath Standard Page 29 of 62

ESPRIT project 24969: OpenMath

Description The text occurring in the Description element is used to give a description of the
enclosing element, which could be a symbol or the entire Content Dictionary. The content
of this element can be any XML text.

CDReviewDate The text occurring in the CDReviewDate element corresponds to the earliest
possible revision date of the Content Dictionary. The date formats should be ISO-compliant
in the form YYYY-MM-DD, e.g. 1953-09-26.

CDDate The text occurring in the CDDate element corresponds to the date of this version of the
Content Dictionary. The date formats should be ISO-compliant in the form YYYY-MM-
DD, e.g. 1953-09-26.1999/06/23

new paragraph

1999/11/24
Now just an integre

CDVersion The text occurring in the CDVersion element corresponds to the version number of
the current version of a Content Dictionary. It should be a non negative integer.

In CDs that do not have status experimental, CD version numbering should adhere to the
following. The version number should be a positive integer.

No changes can be introduced that invalidate objects built with previous versions. Any
change that influences phrasebook compliance, like adding a new symbol to a Content
Dictionary, is considered a major change. and should be reflected by an increase in this
version number. Other changes, like adding an example or correcting a description, are
considered minor changes. For minor changes the version number is not changed, but an
increas should be made to the revision number, as described below. A change such as
removing a symbol should not be made, instead a new CD, with a different name should
be produced, so as not to invalidate existing objects.

As detailed in chapter 6, OpenMath compliant applications state which versions of which
CDs they support.

Experimental CDs may expect to have changes such as adding or removing symbols as
they are developed, without requiring the name of the CD to be changed.1999/11/24

New field, formally
‘.y’ of version
number

CDRevision The text occurring in the CDRevision element corresponds to the revision, or ‘minor
version number’ of the current version of a Content Dictionary. It should be a non negative
integer.

Minor changes to a CD that do not warrant the release of a CD with an increased version
number should be marked by increasing the revision number specified in this field. When
the Cd Version number is increased, the Revision number is normally reset to zero.

CDStatus The text occurring in the CDStatus element corresponds to the status of Content
Dictionary, and can be either official (approved by the OpenMath Society according to
the procedure outlined in Section 5.5), experimental (currently being tested), private
(used by a private group of OpenMath users) or obsolete (an obsolete Content Dictionary
kept only for archival purposes).

CDURL The text occurring in the CDURL element should be a valid URL where the source file for
the Content Dictionary encoding can be found (if it exists). The filename should conform
to ISO 9660 [6].1999/06/23

new wording CDUses The content of this element should be a series of CDName elements, each naming a Content
Dictionary used in the Example and FMPs of the current Content Dictionary.

CDComment The content of this element should be text that does not convey any crucial informa-
tion concerning the current Content Dictionary. It can be used in the Content Dictionary
header to report the author of the Content Dictionary and to log change information. In
the body of the Content Dictionary, it can be used to attach extra remarks to certain
symbols.1999/10/01

Due to lack of
inspiration, I added
only these few lines

Page 30 of 62 The OpenMath Standard

ESPRIT project 24969: OpenMath

1999/06/23
new description

Example The text occurring in the Example element is used to give examples of the enclosing
symbol, and can be any XML text. In addition to text the element may contain examples
as xml encoded OpenMath, inside OMOBJ elements. Note that Examples must be with
respect to some symbol and cannot be “loose” in the Content Dictionary.

Name The text occurring in the Name element corresponds to the name of the symbol, and is
specified as in Chapter 4.

CMP The text occurring in the CMP element corresponds to a property of the symbol. An ap-
plication which says it understands a Content Dictionary symbol need not understand a
commented property of the symbol.

FMP The content of the FMP element also corresponds to a property1 of the symbol, however
the content of this element must be a valid OpenMath object in the XML encoding. An
application which says it understands a Content Dictionary symbol need not understand
a formal property of the symbol.

5.4 Additional Information
1999/08/25
Introduction to
splitting-up in files

1999/10/04
Rephrase slightly

Content Dictionaries contain just one part of the information that can be associated to a symbol
in order to stepwise define its meaning and its functionality. OpenMath Signature files, CD-
Groups, and possibly files of extra mathematical properties, are used to convey the different
aspects that as a whole make up a mathematical definition.

5.4.1 Signature Files
1999/08/25
Introduced
Signature Files.
Early drafts of the
OpenMath
standard specified
that Content
Dictionaries had a
Signature element
in which the
signature of the
symbol was defined.
The disadvantage of
this approach is
that the signature
would need to
reference a specific
type system.
Signature Files
allow for more
generality.

OpenMath may be used with any type system. One just needs to produce a Content Dictionary
which gives the constructors of the type system, and then one may build OpenMath objects
representing types in the given type system. These are typically associated with OpenMath
objects via the OpenMath attribution constructor.

A Small Type System, called STS, has been designed to give semi-formal signatures to OpenMath
symbols and is documented in [10]. The signature file given in Appendix A.3 is based on this
formalism. Using the same mechanism, [5] shows how pure type systems can also be employed
to assign types to OpenMath symbols.

5.4.1.1 The DTD Specification of Signature Files

Signature Files are xml documents, hence a valid Signature File should

• be valid according to the dtd given in Figure 5.2,
• adhere to the extra conditions on the content of the elements given in Section 5.4.1.2.

Signature files have a header which specifies the Content Dictionary and determines the type sys-
tem being used, and the Content Dictionary which contains the symbols for which the signatures
are being given. Each signature takes the form of an xml encoded OpenMath object.

1It corresponds to a theorem of a theory in some formal system.

The OpenMath Standard Page 31 of 62

ESPRIT project 24969: OpenMath

<!-- omcds.dtd -->
<!-- *** -->
<!-- -->
<!-- DTD for OpenMath CD Signatures -->
<!-- (c) EP24969 the ESPRIT OpenMath Consortium -->
<!-- David Carlisle 1999-04-13 -->
<!-- David Carlisle 1999-05-21 -->
<!-- Olga Caprotti 1999-08-25 removed CDComment -->
<!-- -->
<!-- *** -->

<!-- include dtd for OM objects -->
<!ENTITY % omobjectdtd SYSTEM "omobj.dtd" >
%omobjectdtd;

<!ELEMENT CDSComment (#PCDATA) >
<!ELEMENT CDSReviewDate (#PCDATA) >
<!ELEMENT CDSStatus (#PCDATA) >

<!ELEMENT CDSignatures (CDSComment | CDSReviewDate |
CDSStatus | Signature)* >

<!ATTLIST CDSignatures cd CDATA #REQUIRED
type CDATA #REQUIRED >

<!ELEMENT Signature (OMOBJ) >

<!ATTLIST Signature name CDATA #REQUIRED >

<!-- end of DTD for OM CD Signatures -->

Figure 5.2: DTD Specification of Signature Files

Page 32 of 62 The OpenMath Standard

ESPRIT project 24969: OpenMath

5.4.1.2 Further Requirements of a Signature File
1999/08/26
Added PCDATA
for Additional FilesThe notion of being a valid Signature File is stronger than merely being successfully parsed

by the dtd in Figure 5.2. In this section we define exactly the format of the elements used
in Signature Files. Several of the requirements are the same as those on elements of Contents
Dictionaries.

CDSignatures The outermost element of the Signature File is characterized by two required
attributes that identify the type system and the Content Dictionary whose signatures are
defined. The value of the xml attribute type is the name of the Content Dictionary or of
the CDGroup (cfg. Section 5.4.2) that represents the type system. The value of the XML
attribute cd is the name of the Content Dictionary whose symbols are assigned signatures
in this Signature File. Both values are of the form specified in Chapter 4.

CDSComment See CDComment in Section 5.3.2.
CDSreviewDate The text occurring in the CDSReviewDate element corresponds to the earliest

possible revision date of the Signature File. The date formats should be ISO-compliant in
the form YYYY-MM-DD, e.g. 2000-02-29.

CDSStatus The text occurring in the CDSStatus element corresponds to the status of the Sig-
nature File, and can be either official (approved by the OpenMath Society according to
the procedure outlined in Section 5.5), experimental (currently being tested), private
(used by a private group of OpenMath users) or obsolete (an obsolete Signature File kept
only for archival purposes).

Signature The content of the Signature element has to be a valid OpenMath object in xml

encoding as specified in Chapter 4. Additionally, the object must represent a valid type in 1999/08/01
This notion might
be too strict, it also
need CDUses
possibly

the type system identified by the XML attribute type of the CDSignature element. See
Section 5.4.1.3 for examples.

5.4.1.3 Examples

An example of a signature file for the type system STS and the arith1 Content Dictionary is
given in Appendix A.3 . Each signature entry is similar to the following one for the OpenMath 1999/08/01

arith1.sts is not
valid wrt DTD

symbol <OMS cd="arith1" name="plus"/>:

<Signature name="plus">
<OMOBJ>
<OMA>
<OMS name="mapsto" cd="sts"/>
<OMA>
<OMS name="nassoc" cd="sts"/>
<OMV name="AbelianSemiGroup"/>
</OMA>
<OMV name="AbelianSemiGroup"/>
</OMA>

</OMOBJ>
</Signature>

The OpenMath Standard Page 33 of 62

ESPRIT project 24969: OpenMath

5.4.2 CDGroups
1999/06/20
All new, partly
taken from SB
paper

1999/10/04
Rephrase slightly

The CD Group mechanism is a convenience mechanism for identifying collections of CDs. A
CD Group file is an xml document used in the (static or dynamic) negotiation phase where
communicating applications declare and agree on the Content Dictionaries which they process.
It is a complement, or an alternative, to the individual declaration of Content Dictionaries
understood by an application. Note that CD Groups do not affect the OpenMath objects
themselves. Symbols in an object always refer to content dictionaries, not groups.1999/06/20

Does this go to
compliancy? For an application to declare that it “understands CDGroup G” is exactly equivalent to, and

interchangable with, the declaration that it “understands Content Dictionaries x1, x2, . . . xn”,
where x1, . . . xn are the members of CDGroup G.

5.4.2.1 The DTD Specification of CDGroups

CDGroups are XML documents, hence a valid CDGroup should

• be valid according to the DTD given in Figure 5.3,
• adhere to the extra conditions on the content of the elements given in Section 5.4.2.2.

Apart from some header information such as CDGroupName and CDGroup version, a CDGroup is
simply an unordered list of CDs, identified by name and optionally version number and URL.

5.4.2.2 Further Requirements of a CDGroup
1999/08/26
Added PCDATA
for CDGroup The notion of being a valid CDGroup implies that the following requirements on the content of

the elements described by the DTD in Figure 5.2 are also met.

CDGroup The XML element CDGroup is the outermost element in a CDGroup document.1999/08/01
For consistency,
CDGName would
be better

CDGroupName The text occurring in the CDGroupName element corresponds to the name of the
CDGroup. For the syntactical requirements, see CDName in Section 5.3.2.

CDGroupURL The text occurring in the CDGroupURL element identifies the location of the CD-
Group file, not necessarily of the member Content Dictionaries. For the syntactical re-
quirements, see CDURL in Section 5.3.2.

CDGroupDescription The text occurring in the CDGroupDescription element describes the
mathematical area of the CDGroup.

CDGroupMember The XML element CDGroupMember encloses the data identifying each member
of the CDGroup.

CDName The text occurring in the CDName element corresponds to the name of a Content Dictio-
nary in the CDGroup. For the syntactical requirements, see CDName in Section 5.3.2.

CDVersion The text occurring in the CDVersion element identifies which version of the Content
Dictionary isto be taken as member of the CDGroup. This element is optional. In case
it is missing, the latest version is the one included in the CDGroup. For the syntactical
requirements, see CDVersion in Section 5.3.2.

CDURL The text occurring in the CDURL element identifies the location of the Content Dictionary
to be taken as member of the CDGroup. This element is optional. In case it is missing,
the location of the CDGroup identified by the element CDGroupURL is assumed. For the1999/08/01

Or the official CD
repository?

syntactical requirements, see CDURL in Section 5.3.2.

Page 34 of 62 The OpenMath Standard

ESPRIT project 24969: OpenMath

<!-- CDgroup.dtd -->
<!-- *** -->
<!-- -->
<!-- DTD for OpenMath CD group -->
<!-- (c) EP24969 the ESPRIT OpenMath Consortium -->
<!-- date = 18.Feb.1999 -->
<!-- author = s.buswell sb@stilo.demon.co.uk -->
<!-- -->
<!-- -->
<!-- available at -->
<!-- http://www.openmath.org/cd/dtd/CDgroup.dtd -->
<!-- -->
<!-- *** -->

<!-- info on the CD group itself -->

<!ELEMENT CDGroupName (#PCDATA) >
<!ELEMENT CDGroupDescription (#PCDATA) >
<!ELEMENT CDGroupVersion (#PCDATA) >
<!ELEMENT CDGroupURL (#PCDATA) >

<!-- info on the CDs in the group -->

<!ELEMENT CDGroupMember (CDName, CDVersion?, CDURL?) >
<!ELEMENT CDName (#PCDATA) >
<!ELEMENT CDVersion (#PCDATA) >
<!ELEMENT CDURL (#PCDATA) >

<!ELEMENT CDComment (#PCDATA) >

<!-- structure of the group -->
<!ELEMENT CDGroup (CDGroupName, CDGroupDescription,

CDGroupVersion, CDGroupURL,
(CDGroupMember | CDComment)*) >

<!-- end of DTD for OM CDGroup -->

Figure 5.3: DTD Specification of CDGroups

The OpenMath Standard Page 35 of 62

ESPRIT project 24969: OpenMath

CDComment See CDComment in Section 5.3.2.
1999/10/04
Delete subsec: Note
on Symbols, CDs
and CDGroups

2000/04/10
Delete examples
(MathML
CDGroup is in
appendix, core
CDGroup no longer
exists

1999/08/25
This section to be
added

1999/10/04
Delete subsec:
DefMP Files and
XSL

5.5 Content Dictionaries Reviewing Process

1999/10/04
Rephrase slightly

The OpenMath Society is responsible for implementing a review and referee process to assess
the accuracy of the mathematical content of Content Dictionaries. The status (see CDStatus)
and/or the version number (see CDVersion) of a Content Dictionary may change as a result of
this review process.

Page 36 of 62 The OpenMath Standard

Chapter 6

OpenMath Compliance

Applications that meet the requirements specified in this chapter may label themselves as Open-
Math compliant. OpenMath compliancy is defined so as to maximize the potential for interop-
erability amongst OpenMath applications. 1999/11/24

New chapter, after
discussions at
Esprit OpenMath
meeting in Bath6.1 Encoding

This standard defines two reference encodings for OpenMath, the binary encoding and XML
encoding, defined in chapter 4.

As a minimum, an OpenMath compliant application, which accepts or generates OpenMath
objects, must be capable of doing so using the XML encoding. The ability to use other encodings
is optional.

6.2 Content Dictionaries

An OpenMath compliant application must be able to support the error Content Dictionary
defined in Appendix A.5.

A compliant application must declare the names and version numbers of the Content Dictionaries
that it supports. Equivalently it may declare the Content Dictionary Group (or groups) and
major version number (not revision number), rather than listing individual Content Dictionaries.
Application that support all Content Dictionaries (e.g. renderers) should refer to the implicit
CD Group all

If a compliant application supports a Content Dictionary then it must explicitly declare any
symbols in the Content Dictionaries that are not supported. Phrasebooks are encouraged to
support every symbol in the Content Dictionaries.

Symbols which are not listed as unsupported are supported by the application. The meaning of
supported will depend on the application domain. For example an OpenMath renderer should
provide a default display for any OpenMath object that only references supported symbols,
whereas a Computer Algebra System will be expected to map such an object to a suitable

Page 37 of 62

ESPRIT project 24969: OpenMath

internal representation, in this system, of this mathematical object. It is expected that the
application’s phrasebooks for supported Content Dictionaries will be constructed such that prop-
ertes of the symbol expressed in the Content Dictionary are respected as far as possible for the
given application domain. However OpenMath compliance does not imply any guarantee by the
OpenMath Society on the accuracy of these representations.

Content Dictionaries available from the official OpenMath repository at www.openmath.org need
only be referenced by name, other Content Dictionaries should be referenced by the URL declared
in the CDURL field of the Dictionary. This URL may be used to retrieve the Content Dictionary.

When receiving an OpenMath symbol, e.g. s, that is not supported from a supported Content
Dictionary, a compliant application will act as if it had received the OpenMath object

error(Unhandled Symbol, s)

where Unhandled Symbol is the symbol from the error Content Dictionary.

Similarly if it receives a symbol, e.g. s, from an unsupported Content Dictionary, it will act as
if it had received the OpenMath object

error(Unsupported CD, s)

Finally if the compliant application receives a symbol from a supported Content Dictionary but
with an unknown name, then this must either be an incorrect object, or possibly the object has
been built using a later version of the Content Dictionary. In either case, the application will
act as if it had received the OpenMath object

error(Unexpected Symbol, s)

6.3 Lexical Errors

The previous section defines the behaviour of a compliant application upon receiving well formed
OpenMath objects containing unexpected symbols. This standard does not specify any behaviour
for an application upon receiving ill-formed objects.

Page 38 of 62 The OpenMath Standard

Chapter 7

Conclusion

The goal of this document is to define the OpenMath standard. The things are addressed by
the OpenMath standard are:

• Informal and formal definition of the OpenMath objects.
• Informal and formal definition of the notion of Content Dictionaries.

To do this, OpenMath objects are precisely defined and two encodings are described to represent
these objects using xml and binary code. Furthermore, the Document Type Definition for
validating Content Dictionaries and OpenMath objects is given.

Page 39 of 62

Appendix A

A.1 The meta Content Dictionary

<CD>

<CDName> meta </CDName>

<CDReviewDate> 1999-09-01 </CDReviewDate>

<CDDate> 1999-05-11 </CDDate>

<CDVersion> 1.1a </CDVersion>

<CDStatus> experimental </CDStatus>

<CDURL> http://openmath.nag.co.uk/Projects/openmath/corecd/cd/meta.ocd </CDURL>

<Description>

This is a content dictionary to represent content dictionaries, so

that they may be passed between OpenMath compliant application in a

similar way to mathematical objects.

The information written here is taken from chapter 4 of the current

draft of the "OpenMath Standard".

</Description>

<CDComment>

First Draft 1998 N. Howgrave-Graham.

Modified 1999-02-13 R Timoney to fix errors and omissions.

Modified 1999-03-28 D Carlisle to change description of Signature.

Rewritten 1999-05-07 D Carlisle.

Modified 1999-05-11 D Carlisle. Added CDDate and CDVersion.

</CDComment>

<CDDefinition>

<Name> CD </Name>

<Description>

The top level element for the Content Dictionary. It just acts

as a container for the elements described below.

</Description>

</CDDefinition>

Page 40 of 62

ESPRIT project 24969: OpenMath

<CDComment>

For those that do not have access to the DTD, the elements

allowed in a Content Dictionary are the following

(in no particular order):

<![CDATA[

<CD>

<CDName> </CDName>

<Description> </Description>

<CDReviewDate> </CDReviewDate>

<CDDate> </CDDate>

<CDVersion> </CDVersion>

<CDStatus> </CDStatus>

<CDURL>? </CDURL>

<CDUses>? <CDUses>

<CDDefinition>*

<Name> </Name>

<Description>* </Description>

<Signature>? </Signature>

<Example>* </Example>

<FMP>* </FMP>

<CMP>* </CMP>

<Presentation>? </Presentation>

</CDDefinition>

]]>

where an asterisk (?) denotes it can repeated 0 or 1 times, and a star

(*) denotes 0 or more times.

</CDComment>

<CDDefinition>

<Name> CDName </Name>

<Description>

An element which contains the string corresponding to the name of the CD.

Here and elsewhere white space occurring at the begining or end of the

string will be ignored. The string must match the syntax for

CD names given in the OpenMath Standard.

</Description>

</CDDefinition>

<CDDefinition>

<Name> CDURL </Name>

<Description>

An optional element.

If it is used it contains a string representing the URI where the

cannonical reference copy of this CD is stored.

</Description>

</CDDefinition>

<CDDefinition>

<Name> Example </Name>

<Description>

An element which contains an arbitrary number of children,

The OpenMath Standard Page 41 of 62

ESPRIT project 24969: OpenMath

each of which is either a string or an XML encoding of an OpenMath Object.

These children give examples in natural language, or in OpenMath, of the

enclosing symbol definition.

</Description>

</CDDefinition>

<CDDefinition>

<Name> CDDate </Name>

<Description>

An element which contains a date as a string in the ISO-8601

YYYY-MM-DD format. This gives the date at which the Content Dictionary

was last edited.

</Description>

</CDDefinition>

<CDDefinition>

<Name> CDVersion </Name>

<Description>

An element which contains a version string for the CD.

This should be of the form 1.2a with the letter just being changed

for "cosmetic" edits to the file, and the major or minor version numbers

being changed for structural changes that affect the OpenMath Objects

that may use this CD.

</Description>

</CDDefinition>

<CDDefinition>

<Name> CDReviewDate </Name>

<Description>

An element which contains a date as a string in the ISO-8601

YYYY-MM-DD format. This gives the date at which the Content Dictionary

is next scheduled for review. It should be expected to be stable

until at least this date.

</Description>

</CDDefinition>

<CDDefinition>

<Name> CDStatus </Name>

<Description>

An element giving information on the status of the CD.

The content of the element must be one of the following.

official (approved by the OpenMath Society),

experimental (currently being tested),

private (used by a private group of OpenMath users), or

obsolete (an obsolete CD kept only for archival purposes).

</Description>

</CDDefinition>

Page 42 of 62 The OpenMath Standard

ESPRIT project 24969: OpenMath

<CDDefinition>

<Name> CDUses </Name>

<Description>

An element which contains zero or more CDNames which correspond

to the CDs that this CD depends on. This makes an inheritance

structure for CDs. If the CD is dependent on any other CDs they must

be present here.

</Description>

</CDDefinition>

<CDDefinition>

<Name> Description </Name>

<Description>

An element which contains a string corresponding to the

description of either the CD or the symbol

(depending on which is the enclosing element).

</Description>

</CDDefinition>

<CDDefinition>

<Name> Name </Name>

<Description>

An element containing the string corresponding to the name of

the symbol being defined. This must match the syntax for

symbol names given in the OpenMath Standard.

</Description>

</CDDefinition>

<CDDefinition>

<Name> Signature </Name>

<Description>

An optional element which contains the XML encoding

of an OpenMath object corresponding to

the type of the symbol being defined.

This is not used in the current CD as the signatures are specified

separately in signature files, to allow different type systems to

be used.

</Description>

</CDDefinition>

<CDDefinition>

<Name> Presentation </Name>

<Description>

An optional element (which may be repeated many times) which contains

a string corresponding to a way of presenting the symbol being defined.

</Description>

</CDDefinition>

<CDDefinition>

<Name> CMP </Name>

<Description>

An optional element (which may be repeated many times) which contains

a string corresponding to a property of the symbol being

The OpenMath Standard Page 43 of 62

ESPRIT project 24969: OpenMath

defined.

</Description>

</CDDefinition>

<CDDefinition>

<Name> FMP </Name>

<Description>

An optional element which contains an arbitrary number of children,

each of which is either a string or an XML encoding of an OpenMath Object.

Each child corresponds to to a property of the symbol being

defined.

</Description>

</CDDefinition>

</CD>

Page 44 of 62 The OpenMath Standard

ESPRIT project 24969: OpenMath

A.2 The arith1 Content Dictionary File

<CD>

<CDName> arith1 </CDName>

<CDURL> http://openmath.nag.co.uk/Projects/openmath/corecd/cd/arith1.ocd </CDURL>

<CDReviewDate> 1999-09-01 </CDReviewDate>

<CDStatus> experimental </CDStatus>

<CDDate> 1999-07-15 </CDDate>

<CDVersion> 1.02 </CDVersion>

<CDUses>

<CDName>alg1</CDName>

<CDName>fns1</CDName>

<CDName>integer</CDName>

<CDName>interval</CDName>

<CDName>logic1</CDName>

<CDName>quant1</CDName>

<CDName>relation1</CDName>

</CDUses>

<Description>

This CD defines symbols for common arithmetic functions.

</Description>

<CDDefinition>

<Name> plus </Name>

<Description>

An nary commutative function plus.

</Description>

<CMP> a + b = b + a </CMP>

<FMP>

<OMOBJ>

<OMBIND>

<OMS cd="quant1" name="forall"/>

<OMBVAR>

<OMV name="a"/>

<OMV name="b"/>

</OMBVAR>

<OMA>

<OMS cd="relation1" name="eq"/>

<OMA>

<OMS cd="arith1" name="plus"/>

<OMV name="a"/>

<OMV name="b"/>

</OMA>

<OMA>

<OMS cd="arith1" name="plus"/>

<OMV name="b"/>

<OMV name="a"/>

</OMA>

</OMA>

</OMBIND>

</OMOBJ>

</FMP>

</CDDefinition>

The OpenMath Standard Page 45 of 62

ESPRIT project 24969: OpenMath

<CDDefinition>

<Name> unary_minus </Name>

<Description>

This symbol denoting unary minus. Ie

the additive inverse.

</Description>

<CMP> a + (-a) = 0 </CMP>

<FMP>

<OMOBJ>

<OMBIND>

<OMS cd="quant1" name="forall"/>

<OMBVAR>

<OMV name="a"/>

</OMBVAR>

<OMA>

<OMS cd="relation1" name="eq"/>

<OMA>

<OMS cd="arith1" name="plus"/>

<OMV name="a"/>

<OMA>

<OMS cd="arith1" name="unary_minus"/>

<OMV name="a"/>

</OMA>

</OMA>

<OMS cd="alg1" name="zero"/>

</OMA>

</OMBIND>

</OMOBJ>

</FMP>

</CDDefinition>

<CDDefinition>

<Name> minus </Name>

<Description>

The binary minus symbol. This is equivalent to adding the

additive inverse.

</Description>

<CMP> a - b = a + (-b) </CMP>

<FMP>

<OMOBJ>

<OMBIND>

<OMS cd="quant1" name="forall"/>

<OMBVAR>

<OMV name="a"/>

<OMV name="b"/>

</OMBVAR>

<OMA>

<OMS cd="relation1" name="eq"/>

<OMA>

<OMS cd="arith1" name="minus"/>

<OMV name="a"/>

<OMV name="b"/>

</OMA>

<OMA>

Page 46 of 62 The OpenMath Standard

ESPRIT project 24969: OpenMath

<OMS cd="arith1" name="plus"/>

<OMV name="a"/>

<OMA>

<OMS cd="arith1" name="unary_minus"/>

<OMV name="b"/>

</OMA>

</OMA>

</OMA>

</OMBIND>

</OMOBJ>

</FMP>

</CDDefinition>

<CDDefinition>

<Name> times </Name>

<Description>

This is an n-ary multiplication function.

</Description>

</CDDefinition>

<CDDefinition>

<Name> divide </Name>

<Description>

This is the (binary) division function that denotes the first argument

right-divided by the second, i.e. divide(a,b)=a*inverse(b). It is the

inverse of multiplication function as commented below.

</Description>

<CMP> whenever not(a=0) then a/a = 1 </CMP>

<FMP>

<OMOBJ>

<OMBIND>

<OMS cd="quant1" name="forall"/>

<OMBVAR>

<OMV name="a"/>

</OMBVAR>

<OMA>

<OMS cd="logic1" name="implies"/>

<OMA>

<OMS cd="relation1" name="neq"/>

<OMV name="a"/>

<OMS cd="alg1" name="zero"/>

</OMA>

<OMA>

<OMS cd="relation1" name="eq"/>

<OMA>

<OMS cd="arith1" name="divide"/>

<OMV name="a"/>

<OMV name="a"/>

</OMA>

<OMS cd="alg1" name="one"/>

</OMA>

</OMA>

</OMBIND>

</OMOBJ>

The OpenMath Standard Page 47 of 62

ESPRIT project 24969: OpenMath

</FMP>

</CDDefinition>

<CDDefinition>

<Name> power </Name>

<Description>

A binary powering function. The first argument is raised to the power

of the second argument. When the second argument is not an integer

care should be taken to the meaning of this function; however it is

here to represent general powering.

</Description>

</CDDefinition>

<CDDefinition>

<Name> conjugate </Name>

<Description>

A unary function to give the complex conjugate of its argument

</Description>

</CDDefinition>

<CDDefinition>

<Name> abs </Name>

<Description>

A unary function to give the absolute value of its argument. This is

used for the absolute size of complex numbers as well (commonly

referred to as mod).

</Description>

</CDDefinition>

<CDDefinition>

<Name> root </Name>

<Description>

A binary function to give roots. The first argument is "lowered" to

the root of the second argument. This can be viewed as the inverse of

powering as commented below.

Care should be taken to the meaning of this function (i.e. which root

is being taken); however it is here to represent the general notion of

taking n’th roots.

</Description>

<CMP> power(root(a,n),n) = a </CMP>

<FMP>

<OMOBJ>

<OMBIND>

<OMS cd="quant1" name="forall"/>

<OMBVAR>

<OMV name="a"/>

<OMV name="n"/>

</OMBVAR>

<OMA>

<OMS cd="relation1" name="eq"/>

<OMA>

<OMS cd="arith1" name="power"/>

<OMA>

Page 48 of 62 The OpenMath Standard

ESPRIT project 24969: OpenMath

<OMS cd="arith1" name="root"/>

<OMV name="a"/>

<OMV name="n"/>

</OMA>

<OMV name="n"/>

</OMA>

<OMV name="a"/>

</OMA>

</OMBIND>

</OMOBJ>

</FMP>

</CDDefinition>

<CDDefinition>

<Name> sum </Name>

<Description>

Form taking two arguments, first being an integer interval giving the

range of summation, second being the function to be summed. Compare

defint in calculus CD.

</Description>

<Example>

<OMOBJ>

<OMA>

<OMS cd="arith1" name="sum"/>

<OMA>

<OMS cd="interval" name="integer_interval"/>

<OMI> 1 </OMI>

<OMI> 10 </OMI>

</OMA>

<OMBIND>

<OMS cd="fns1" name="lambda"/>

<OMBVAR>

<OMV name="x"/>

</OMBVAR>

<OMA>

<OMS cd="arith1" name="divide"/>

<OMI>1</OMI>

<OMV name="x"/>

</OMA>

</OMBIND>

</OMA>

</OMOBJ>

</Example>

</CDDefinition>

<CDDefinition>

<Name> product </Name>

<Description>

Form taking two arguments, first being an integer interval giving the

range of summation, second being the function to be multiped.

The OpenMath Standard Page 49 of 62

ESPRIT project 24969: OpenMath

Compare defint in calculus CD.

</Description>

<Example>

<OMOBJ>

<OMA>

<OMS cd="relation1" name="eq"/>

<OMA>

<OMS cd="integer" name="factorial"/>

<OMV name="n" />

</OMA>

<OMA>

<OMS cd="arith1" name="product"/>

<OMA>

<OMS cd="interval" name="integer_interval"/>

<OMI> 1 </OMI>

<OMV name="n"/>

</OMA>

<OMBIND>

<OMS cd="fns1" name="lambda"/>

<OMBVAR>

<OMV name="i"/>

</OMBVAR>

<OMV name="i"/>

</OMBIND>

</OMA>

</OMA>

</OMOBJ>

</Example>

</CDDefinition>

</CD>

Page 50 of 62 The OpenMath Standard

ESPRIT project 24969: OpenMath

A.3 The arith1 STS Signature File
1999/07/16
ADD arith1
signature file

<CDSignatures type="sts" cd="arith1">

<CDComment>

Date: 1999-04-13

Author: David Carlisle

</CDComment>

<Signature name="plus">

<OMOBJ>

<OMA>

<OMS name="mapsto" cd="sts"/>

<OMA>

<OMS name="nassoc" cd="sts"/>

<OMV name="AbelianSemiGroup"/>

</OMA>

<OMV name="AbelianSemiGroup"/>

</OMA>

</OMOBJ>

</Signature>

<Signature name="unary_minus">

<OMOBJ>

<OMA>

<OMS name="mapsto" cd="sts"/>

<OMV name="AbelianGroup"/>

<OMV name="AbelianGroup"/>

</OMA>

</OMOBJ>

</Signature>

<Signature name="minus">

<OMOBJ>

<OMA>

<OMS name="mapsto" cd="sts"/>

<OMV name="AbelianGroup"/>

<OMV name="AbelianGroup"/>

<OMV name="AbelianGroup"/>

</OMA>

</OMOBJ>

</Signature>

<Signature name="times">

<OMOBJ>

<OMA>

<OMS name="mapsto" cd="sts"/>

<OMA>

<OMS name="nassoc" cd="sts"/>

<OMV name="AbelianSemiGroup"/>

</OMA>

<OMV name="AbelianSemiGroup"/>

</OMA>

</OMOBJ>

The OpenMath Standard Page 51 of 62

ESPRIT project 24969: OpenMath

</Signature>

<Signature name="divide">

<OMOBJ>

<OMA>

<OMS name="mapsto" cd="sts"/>

<OMV name="AbelianGroup"/>

<OMV name="AbelianGroup"/>

<OMV name="AbelianGroup"/>

</OMA>

</OMOBJ>

</Signature>

<Signature name="power">

<OMOBJ>

<OMA>

<OMS name="mapsto" cd="sts"/>

<OMS name="NumericalValue" cd="sts"/>

<OMS name="NumericalValue" cd="sts"/>

<OMS name="NumericalValue" cd="sts"/>

</OMA>

</OMOBJ>

</Signature>

<Signature name="conjugate">

<OMOBJ>

<OMA>

<OMS name="mapsto" cd="sts"/>

<OMS name="C" cd="setname"/>

<OMS name="C" cd="setname"/>

</OMA>

</OMOBJ>

</Signature>

<Signature name="abs">

<OMOBJ>

<OMA>

<OMS name="mapsto" cd="sts"/>

<OMS name="C" cd="setname"/>

<OMV name="R" cd="setname"/>

</OMA>

</OMOBJ>

</Signature>

<Signature name="root">

<OMOBJ>

<OMA>

<OMS name="mapsto" cd="sts"/>

<OMS name="NumericalValue" cd="sts"/>

<OMS name="NumericalValue" cd="sts"/>

<OMS name="NumericalValue" cd="sts"/>

</OMA>

</OMOBJ>

</Signature>

Page 52 of 62 The OpenMath Standard

ESPRIT project 24969: OpenMath

<Signature name="sum" >

<OMOBJ>

<OMA>

<OMS name="mapsto" cd="sts" />

<OMV name="IntegerRange" />

<OMA>

<OMS name="mapsto" cd="sts" />

<OMS name="Z" cd="setname" />

<OMV name="AbelianMonoid" />

</OMA>

<OMV name="AbelianMonoid" />

</OMA>

</OMOBJ>

</Signature>

<Signature name="product" >

<OMOBJ>

<OMA>

<OMS name="mapsto" cd="sts" />

<OMV name="IntegerRange" />

<OMA>

<OMS name="mapsto" cd="sts" />

<OMS name="Z" cd="setname" />

<OMV name="AbelianMonoid" />

</OMA>

<OMV name="AbelianMonoid" />

</OMA>

</OMOBJ>

</Signature>

</CDSignatures>

The OpenMath Standard Page 53 of 62

ESPRIT project 24969: OpenMath

A.4 The MathML CDGroup
1999/08/26
ADD MathML
CDGroup

<CDGroup>

<CDGroupName>mathml</CDGroupName>

<CDGroupVersion>1.0</CDGroupVersion>

<CDGroupURL>

http://www.nag.co.uk/Projects/openmath/corecd/cdgroups/mathml.ocd</CDGroupURL>

<CDGroupDescription>MathML Compatibility CD Group</CDGroupDescription>

<CDComment>This is the first version of the MathML compatibility CD group.

It was created by S.Buswell on 29 March 1999.</CDComment>

<CDComment>Algebra</CDComment>

<CDGroupMember>

<CDName>alg1</CDName>

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/alg1.ocd</CDURL></CDGroupMember>

<CDComment>Arithmetic</CDComment>

<CDGroupMember>

<CDName>arith1</CDName>

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/arith1.ocd</CDURL></CDGroupMember>

<CDComment>Constructor for Floating Porint Numbers</CDComment>

<CDGroupMember>

<CDName>bigfloat</CDName>

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/bigfloat.ocd</CDURL></CDGroupMember>

<CDComment>Calculus</CDComment>

<CDGroupMember>

<CDName>calculus1</CDName>

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/calculus1.ocd</CDURL></CDGroupMember>

<CDComment>Functions on functions</CDComment>

<CDGroupMember>

<CDName>fns1</CDName>

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/fns1.ocd</CDURL></CDGroupMember>

<CDComment>Integer arithmetic</CDComment>

<CDGroupMember>

<CDName>integer</CDName>

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/integer.ocd</CDURL></CDGroupMember>

<CDComment>Intervals</CDComment>

<CDGroupMember>

<CDName>interval</CDName>

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/interval.ocd</CDURL></CDGroupMember>

<CDComment>Linear Algebra - vector & matrix constructors</CDComment>

<CDGroupMember>

<CDName>linalg1</CDName>

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/linalg1.ocd</CDURL></CDGroupMember>

<CDComment>Linear Algebra - operators on vectors & matrices</CDComment>

<CDGroupMember>

<CDName>linalg3</CDName>

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/linalg3.ocd</CDURL></CDGroupMember>

<CDComment>Limits of unary functions</CDComment>

<CDGroupMember>

<CDName>limit</CDName>

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/limit.ocd</CDURL></CDGroupMember>

<CDComment>List constructors</CDComment>

<CDGroupMember>

<CDName>list1</CDName>

Page 54 of 62 The OpenMath Standard

ESPRIT project 24969: OpenMath

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/list1.ocd</CDURL></CDGroupMember>

<CDComment>Basic logical operators</CDComment>

<CDGroupMember>

<CDName>logic1</CDName>

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/logic1.ocd</CDURL></CDGroupMember>

<CDComment>Minima and maxima</CDComment>

<CDGroupMember>

<CDName>minmax</CDName>

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/minmax.ocd</CDURL></CDGroupMember>

<CDComment>Symbols for creating numbers, including some defined constants

(which can be seen as nullary constructors)</CDComment>

<CDGroupMember>

<CDName>nums</CDName>

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/nums.ocd</CDURL></CDGroupMember>

<CDComment>The basic quantifiers forall and exists.</CDComment>

<CDGroupMember>

<CDName>quant1</CDName>

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/quant1.ocd</CDURL></CDGroupMember>

<CDComment>Common arithmetic relations</CDComment>

<CDGroupMember>

<CDName>relation1</CDName>

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/relation1.ocd</CDURL></CDGroupMember>

<CDComment>Set-theoretic operators and constructors</CDComment>

<CDGroupMember>

<CDName>set1</CDName>

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/set1.ocd</CDURL></CDGroupMember>

<CDComment>Basic statistical operators</CDComment>

<CDGroupMember>

<CDName>stats1</CDName>

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/stats1.ocd</CDURL></CDGroupMember>

<CDComment>Basic transcendental functions</CDComment>

<CDGroupMember>

<CDName>transc1</CDName>

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/transc1.ocd</CDURL></CDGroupMember>

<CDComment>Types that are needed in openMath for MathML alignment</CDComment>

<CDGroupMember>

<CDName>typmml</CDName>

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/typmml.ocd</CDURL></CDGroupMember>

<CDComment>Alternative encoding symbols for compatibility with the MathML

Semantic mapping constructs.</CDComment>

<CDGroupMember>

<CDName>altenc</CDName>

<CDURL>http://www.nag.co.uk/Projects/openmath/corecd/cd/altenc.ocd</CDURL></CDGroupMember>

</CDGroup>

A.5 The error Content Dictionary

<CD>

<CDName> error </CDName>

<CDURL> http://www.nag.co.uk/Projects/openmath/corecd/cd/error.ocd </CDURL>

<CDReviewDate> 2000-09-01 </CDReviewDate>

The OpenMath Standard Page 55 of 62

ESPRIT project 24969: OpenMath

<CDStatus> experimental </CDStatus>

<CDDate> 2000-04-18 </CDDate>

<CDVersion> 1 </CDVersion>

<CDRevision> 0 </CDRevision>

<CDUses>

<CDName> setname2 </CDName>

<CDName> arith1 </CDName>

<CDName> specfun1 </CDName>

</CDUses>

<CDDefinition>

<Name> unhandled_symbol </Name>

<Description>

This symbol represents the error which is raised when an application

reads a symbol which is present in the mentioned content

dictionary, but which it has not implemented.

When receiving such a symbol, the application should act as if it had

received the OpenMath error object constructed from unhandled_symbol

and the unhandled symbol as in the example below.

</Description>

<Example>

The application does not implement the quaternions:

<OMOBJ>

<OME>

<OMS cd="error" name="unhandled_symbol"/>

<OMS cd="setname2" name="H"/>

</OME>

</OMOBJ>

</Example>

</CDDefinition>

<CDDefinition>

<Name> unexpected_symbol </Name>

<Description>

This symbol represents the error which is raised when an application

reads a symbol which is not present in the mentioned content dictionary.

When receiving such a symbol, the application should act as if it had

received the OpenMath error object constructed from unexpected_symbol

and the unexpected symbol as in the example below.

</Description>

<Example>

The application received a mistyped symbol

<OMOBJ>

<OME>

<OMS cd="error" name="unexpected_symbol"/>

<OMS cd="arith1" name="plurse"/>

</OME>

</OMOBJ>

</Example>

</CDDefinition>

Page 56 of 62 The OpenMath Standard

ESPRIT project 24969: OpenMath

<CDDefinition>

<Name> unsupported_CD </Name>

<Description>

This symbol represents the error which is raised when an application

reads a symbol where the mentioned content dictionary is not

present.

When receiving such a symbol, the application should act as if it had

received the OpenMath error object constructed from unsupported_CD and

the symbol from the unsupported Content Dictionary as in the example

below.

</Description>

<Example>

The application does not know about the CD specfun1

<OMOBJ>

<OME>

<OMS cd="error" name="unsupported_CD"/>

<OMS cd="specfun1" name="BesselJ"/>

</OME>

</OMOBJ>

</Example>

</CDDefinition>

</CD>

The OpenMath Standard Page 57 of 62

Bibliography

[1] John A. Abbott, André van Leeuwen, and A. Strotmann. OpenMath: Communicating
Mathematical Information between Co-operating Agents in a Knowledge Network. Journal
of Intelligent Systems, 1998. Special Issue: ”Improving the Design of Intelligent Systems:
Outstanding Problems and Some Methods for their Solution.”.

[2] N. Borenstein and N Freed. MIME (Multipurpose Internet Mail Exten-
sions) Part One: Mechanism for Specifying and Describing the Format
of Internet Message Bodies. RFC: 1521, September 1993. Available at
http://www.math-inf.uni-greifswald.de/ teumer/mime/1521/rfc1521ToC.html.

[3] Stephen Buswell, Stan Devitt, Angel Diaz, Nico Poppelier, Bruce Smith, Neil Soiffer,
Robert Sutor, and Stephen Watt. Mathematical Markup Language (MathML) 1.0 Speci-
fication. W3C Recommendation 19980407, April 1998. Available at http://www.w3.org/
TR/REC-MathML/.

[4] O. Caprotti and A. M. Cohen. A Type System for OpenMath. OpenMath Deliverable
1.3.1b, September 1998. http://www.nag.co.uk/projects/OpenMath.html.

[5] Olga Caprotti and Arjeh M. Cohen. A Type System for OpenMath. OpenMath Deliverable
1.3.2b, OpenMath Esprit Consortium, http://www.nag.co.uk/projects/OpenMath.html,
February 1999.

[6] Technical committee / subcommittee: JTC 1. ISO 9660:1988 Information processing –
Volume and File Structure of CDROM for Information Interchange. ISO 9660, 1988.

[7] OpenMath Consortium. OpenMath Version 1 - Draft, June 1998. Available at
ftp://ftp-sop.inria.fr/safir/OM/v1.ps .

[8] Unicode Consortium. The Unicode Standard: Version 2.0. Addison-Wesley Developers
Press, 1996.

[9] S. Dalmas, M. Gaëtano, and S. Watt. An OpenMath 1.0 Implementation. pages 241–248.
ACM Press, 1997.

[10] J. Davenport. A Small OpenMath Type System. OpenMath Deliverable 1.3.2b, April 1999.
http://www.nag.co.uk/projects/OpenMath/omstd/.

[11] Ieee standard for binary floating-point arithmetic. ANSI/IEEE Standard 754, 1985.

[12] Iso 7-bit coded character set for information interchange. ISO 646:1983, 1983.

Page 58 of 62

ESPRIT project 24969: OpenMath

[13] Nico Poppelier, Robert Miner, Patrick Ion, David Carlisle, Ron Ausbrooks, Stephen Buswell,
Stéphane Dalmas, Stan Devitt, Angel Diaz, Roger Hunter, Bruce Smith, Neil Soiffer,
Robert Sutor, and Stephen Watt. Mathematical Markup Language (MathML) 2.0 Specifi-
cation. W3C Working Draft 20000328, April 1998. Available at http://www.w3.org/TR/
REC-MathML2/.

[14] W3C. Extensible Markup Language XML 1.0. REC-xml-19980210, February 1998. http:
//www.w3.org/TR/REC-xml.

[15] W3C. Extensible Stylesheet Language (XSL) Specification. W3C Working Draft, 21 Apr
1999. http://www.w3.org/TR/WD-xsl/.

[16] W3C. Namespaces in XML. REC-xml-names-19990114, January 1999. http://www.w3.
org/TR/REC-xml-names.

[17] F. Yergeau. UTF-8, a transformation format of ISO 10646. RFC 2279, January 1998. Alis
Technologies.

The OpenMath Standard Page 59 of 62

Appendix B

Change Log

1999/06/20 OC . page 28
now we have this numbering mechanism, should
it be documented?

1999/06/20 OC . page 33
All new, partly taken from SB paper

1999/06/20 OC . page 34
Does this go to compliancy?

1999/06/22 OC . page 28
new paragraph

1999/06/23 OC . page 7
This is new

1999/06/23 DPC . page 30
new paragraph

1999/06/23 DPC . page 30
new wording

1999/06/23 OC . page 30
new description

1999/06/24 DPC . page 20
New attrvar production

1999/07/16 DPC . page 4
Extend History slightly

1999/07/16 DPC . page 4
Reword to reflect birth of OM Society

1999/07/16 DPC . page 5
Final conclusion paragraph removed

1999/07/16 DPC . page 9
Restructure the definition of OM Objects

1999/07/16 DPC . page 15
White space allowed in integer strings

1999/07/16 DPC . page 51
ADD arith1 signature file

1999/08/01 OC . page 33
arith1.sts is not valid wrt DTD

1999/08/01 OC . page 33
This notion might be too strict, it also need
CDUses possibly

1999/08/01 OC . page 34
For consistency, CDGName would be better

1999/08/01 OC . page 34
Or the official CD repository?

1999/08/24 OC . page 4
Changed title

1999/08/24 OC . page 5
New section

1999/08/24 OC . page 6
Note on encodings and possibility of other en-
codings

1999/08/24 OC . page 9
Reshuffled the sections on OM Objects

1999/08/24 OC . page 10
Cleaned up Attribution

1999/08/24 OC . page 10
Condensed Informal and Notes

1999/08/24 OC . page 13
Removed reference to syntactic class of an at-
tributed variable

1999/08/24 OC . page 27
More motivation on design of CDs

Page 60 of 62

ESPRIT project 24969: OpenMath

1999/08/24 OC . page 27
New paragraph to reflect recent changes

1999/08/24 OC . page 28
Defmp added

1999/08/24 OC . page 28
removed refs to old changes

1999/08/25 OC . page 31
Introduced Signature Files. Early drafts of the
OpenMath standard specified that Content Dic-
tionaries had a Signature element in which the
signature of the symbol was defined. The dis-
advantage of this approach is that the signature
would need to reference a specific type system.
Signature Files allow for more generality.

1999/08/25 OC . page 31
Introduction to splitting-up in files

1999/08/25 OC . page 36
This section to be added

1999/08/26 OC . page 6
Moved this section up, to mirror chapter se-
quence

1999/08/26 OC . page 33
Added PCDATA for Additional Files

1999/08/26 OC . page 34
Added PCDATA for CDGroup

1999/08/26 OC . page 54
ADD MathML CDGroup

1999/09/09 DPC . page 14
Modify description of XML encoding to make
dtd normative, and other changes to increase
portability to xml applications.

1999/09/09 DPC . page 15
removed ’ from varname

1999/09/09 DPC . page 15
Restrictions on not using foo=’xxxx’ dropped

1999/09/10 DPC . page 9
Expand descriptions of basic objects

1999/09/10 DPC . page 10
Remove ’ from regexp

1999/09/10 DPC . page 11
Removed suggestion to utf7 hint variable names

1999/09/21 DPC . page 15
Restrict empty element syntax

1999/09/21 DPC . page 20
New section on embedding OM in XML docu-
ments

1999/09/22 DPC . page 13
Paragraph moved from previous section

1999/09/22 DPC . page 13
Remove classification of suggested error types,
does not fit current CD scheme

1999/09/22 DPC . page 15
White space allowed in integer strings

1999/10/01 OC . page 8
Removed mention to DefMP files

1999/10/01 OC . page 30
Due to lack of inspiration, I added only these
few lines

1999/10/04 DPC . page 12
Rephrase slightly

1999/10/04 DPC . page 26
Rephrase slightly

1999/10/04 DPC . page 28
Rephrase slightly

1999/10/04 DPC . page 31
Rephrase slightly

1999/10/04 DPC . page 33
Rephrase slightly

1999/10/04 DPC . page 36
Delete subsec: DefMP Files and XSL

1999/10/04 DPC . page 36
Delete subsec: Note on Symbols, CDs and CD-
Groups

1999/10/04 DPC . page 36
Rephrase slightly

1999/10/21 OC . page 11
New tree figure, suggested by Andreas Strot-
mann

1999/11/24 DPC . page 30
New field, formally ‘.y’ of version number

1999/11/24 DPC . page 30
Now just an integre

The OpenMath Standard Page 61 of 62

ESPRIT project 24969: OpenMath

1999/11/24 DPC/OC page 37
New chapter, after discussions at Esprit Open-
Math meeting in Bath

2000/03/20 DPC . page 20
Namespace URI, as discussed on OM Soc list

2000/04/10 DPC . page 8
Reword

2000/04/10 DPC . page 10
Add integer and float

2000/04/10 DPC . page 10
Change Example

2000/04/10 DPC . page 28
MathML 2

2000/04/10 DPC . page 36
Delete examples (MathML CDGroup is in ap-
pendix, core CDGroup no longer exists

Page 62 of 62 The OpenMath Standard

