Version: 1.1b
Date: October 24 2002

The OpenMath Standard

The OpenMath Esprit Consortium

Editors
O.Caprotti, D.P.Carlisle and A.M.Cohen

© 2002 The OpenMath Consortium (24.969)

ESPRIT project 24969: OpenMath

Abstract

This document proposes OpenMath as a standard for the communication
of semantically rich mathematical objects. This draft of the OpenMath
standard comprises the following: a description of OpenMath objects, the
grammar of XML and of the binary encoding of objects, a description of
Content Dictionaries and an XML document type definition for validat-
ing Content Dictionaries. The non-normative Chapter 1 of this document
briefly overviews the history of OpenMath.

The OpenMath Standard

iii

ESPRIT project 24969: OpenMath

Change-marked edition notes

This edition contains colour coded change markings relative to the OpenMath 1.0 docu-
ment. ..

e Deleted text is marked in red.

Sections with new text

e BJ Further Description of OpenMath Objects

e L T.1 A Grammar for the xml Encoding

The OpenMath Standard Page 1 of 81

Contents

L OpeniMath NMovement

[.I Historyl
.2 OpenMath dSocietyl

[z Introduction to UpeniViath

2.1 OUpenMath Architecturd

2.2 OUpenbath Objects and Encodingd

2.4 Additional Filed

. Phrasebookd

o UpeniMath Objects

p.l Formal Dennition ot UpeniMaih Objecty
p.l.I basic UpenlMath objecty
p.l.2 Compound UpenMatn Objecty

pb.2 PFurther Description ot UpenMath Ubjecty

.......................

4 OUpeniMath Encodings

.1 'Ihe XML Encoding

d.1.1 A Grammar for the XML Encoding

g.1.2 Description of the Grammay.

g.l.o BEmbedding OpenMath in XML Documentsg

(=}

© O © N 9 Y

10
10
10
11
12
15

17
17
18
21
24

Page 2 of 81

ESPRIT project 24969: OpenMath

B2 The Binary Encoding e 24
.2.1 A Grammar for the Binary Encoding 24

B.2.2 Description of the Grammay. 26

E.2.3 Implementation Notd. 28

f.2.4 Example of Binary Encoding 28

T, WIINATY] © « v o v o e e e e e e e e e e e e 29
b__Confent Dicfionaried 30
BT Tnfroducfion o L 30
b2 Confent ictionaries Lo L L s s e e e e e e e e e e e 31
b3 The XML Encoding for Content Dictionaried 32
b.3.T The DTD Specification of Content Dictionaried 33

p.3.2 Further Requirements of an UpenMath Content Dictionary 33

b4 Additional Informationlo 0L L Lo oo s e e e e 36
b.4.T Signature Filed e 36

42 TDGroupy e 38

pb-5— Confent Dictionaries Reviewing Procesy 41

b OpenMath Compliancd 42
8 dingl 42
EZConfent Dicfionaried o o e 42
bo lexical Brrord L L L 0oL L e e e e 43

[Conclhusionl 44
A_CID Filed 45
[A.T The meta Content Dicfionary] 46
[A.2Z The arithT Content Dictionary Fild 51
A.o I'he arithl 515 Signature Filgo o000 71
A.4 "1he MathML CDGroug o oo o .. 75
[A.5 The error Confent Dictionary] 78

The OpenMath Standard Page 3 of 81

List of Figures

.1 "The Openllath Architecturd 8
B.1 T'he OpenMath application and binding objects tor sin(x) and Ax.x + 2 1In |
[free-Tikemofafion] L e 13
g.1 DD tor the UpeniMath XML encoding of objects) 19
B.2 Grammar for the XML encoding of UpeniMath objects] 20
B.3 Grammar of the binary encoding of OpenfMath objects]. 25
b.T DTD Specification of Content Dictionaried 34
p.2 D1D Speciication of dignature Filed0, 37
b.3 DTD Specification of CDGroupd 40

Page 4 of 81

Chapter 1

OpenMath Movement

This chapter is a historical account of OpenMath and should be regarded as non-normative.

OpenMath is a standard for representing mathematical objects, allowing them to be ex-
changed between computer programs, stored in databases, or published on the worldwide
web. While the original designers were mainly developers of computer algebra systems, it is
now attracting interest from other areas of scientific computation and from many publishers
of electronic documents with a significant mathematical content. There is a strong relation-
ship to the MathML recommendation [3] from the Worldwide Web Consortium, and a large
overlap between the two developer communities. MathML deals principally with the pre-
sentation of mathematical objects, while OpenMath is solely concerned with their semantic
meaning or content. While MathML does have some limited facilities for dealing with con-
tent, it also allows semantic information encoded in OpenMath to be embedded inside a
MathML structure. Thus the two technologies may be seen as highly complementary.

1.1 History

OpenMath was originally developed through a series of workshops held in Zurich (1993
and 1996), Oxford (1994), Amsterdam (1995), Copenhagen (1995), Bath (1996), Dublin
(1996), Nice (1997), Yorktown Heights (1997), Berlin (1998), and Tallahassee (1998). The
participants in these workshops formed a global OpenMath community which was coordi-
nated by a Steering Committee and operated through electronic mailing groups and ad-hoc
working parties. This loose arrangement has been formalised through the establishment of
an OpenMath Society. Up until the end of 1996 much of the work of the community was
funded through a grant from the Human Capital and Mobility program of the European
Union, the contributions of several institutions and individuals. A document outlining the
objectives and basic design of OpenMath was produced (later published as []). By the end
of 1996 a simplified specification had been agreed on and some prototype implementations
have come about [6].

Page 5 of 81

ESPRIT project 24969: OpenMath

In 1996 a group of European participants in OpenMath decided to bid for funding under
the European Union’s Fourth Framework Programme for strategic research in information
technology. This bid was successful and the project started in late 1997. The principal aims
of the project are to formalise OpenMath as a standard and to develop it further through
industrial applications; this document is a product of that process and draws heavily on the
previous work described earlier. OpenMath participants from all over the world continue
to meet regularly and cooperate on areas of mutual interest, and recent workshops in
Tallahassee (November 1998) and Eindhoven (June 1999) endorsed drafts of this document
as the current OpenMath standard.

1.2 OpenMath Society

In November 1998 the OpenMath Society has been established to coordinate all OpenMath
activities. The society is based in Helsinki, Finland and is steered by the executive com-
mittee whose members are elected by the society. The official web page of the society is
http://www.openmath.org.

Page 6 of 81 The OpenMath Standard

http://www.openmath.org

Chapter 2

Introduction to OpenMath

This chapter briefly introduces OpenMath concepts and notions that are referred to in the
rest of this document.

2.1 OpenMath Architecture

The architecture of OpenMath is described in Figure 2.1 and summarizes the interactions
among the different OpenMath components. There are three layers of representation of a
mathematical object [I0]. A private layer that is the internal representation used by an
application. An abstract layer that is the representation as an OpenMath object. Third is
a communication layer that translates the OpenMath object representation to a stream of
bytes. An application dependent program manipulates the mathematical objects using its
internal representation, it can convert them to OpenMath objects and communicate them
by using the byte stream representation of OpenMath objects.

2.2 OpenMath Objects and Encodings

OpenMath objects are representations of mathematical entities that can be communicated
among various software applications in a meaningful way, that is, preserving their “seman-
tics”.

OpenMath objects and encodings are described in detail in Chapter 3 and Chapter 4.

The standard endorses encodings in XML and binary format. These are the encodings
supported by the official OpenMath libraries. However they are not the only possible
encodings of OpenMath objects. Users that wish to define their own encoding using some
other specific language (e.g. Lisp) may do so provided there is an effective translation of
this encoding to an official one.

Page 7 of 81

ESPRIT project 24969:

OpenMath

Program A

A-Specific
Representation

Phrasebook A

A

CDs

\ 4

OpenMath
Object

Program B

B-Specific
Representation

A

_ Possible Object Shortcut

OM encoding

A

\ 4

Encoded
Object

_ General Transport Layer

<

(XML or Binary)

Figure 2.1: The OpenMath Architecture

private layer

Phrasebook B

CDs
A 4
OpenMath
Object %
T §
L
OM encoding
\ A
g
Encoded g
i S
Object 5
5
E
&
o

Page 8 of 81

The OpenMath Standard

ESPRIT project 24969: OpenMath

2.3 Content Dictionaries

Content Dictionaries (CDs) are used to assign informal and formal semantics to all symbols
used in the OpenMath objects. They define the symbols used to represent concepts arising
in a particular area of mathematics.

The Content Dictionaries are public, they represent the actual common knowledge among
OpenMath applications. Content Dictionaries fix the “meaning” of objects independently of
the application. The application receiving the object may then recognize whether or not,
according to the semantics of the symbols defined in the Content Dictionaries, the object
can be transformed to the corresponding internal representation used by the application.

2.4 Additional Files

Several additional files are related to Content Dictionaries. Signature files contain the
signatures of symbols defined in some OpenMath Content Dictionary and their format is
endorsed by this standard.

Furthermore, the standard fixes how to define as a CDGroup a specific set of Content
Dictionaries.

Auxiliary files that define presentation and rendering or that are used for manipulating and
processing Content Dictionaries are not discussed by the standard.

2.5 Phrasebooks

The conversion of an OpenMath object to/from the internal representation in a software
application is performed by an interface program called Phrasebook. The translation is
governed by the Content Dictionaries and the specifics of the application. It is envisioned
that a software application dealing with a specific area of mathematics declares which
Content Dictionaries it understands. As a consequence, it is expected that the Phrasebook
of the application is able to translate OpenMath objects built using symbols from these
Content Dictionaries to/from the internal mathematical objects of the application.

OpenMath objects do not specify any compuational behaviour, they merely represent math-
ematical expressions. Part of the OpenMath philosophy is to leave it to the application to
decide what it does with an object once it has received it. OpenMath is not a query or
programming language. Because of this, OpenMath does not prescribe a way of forcing
“evaluation” or “simplification” of objects like 2 4+ 3 or sin(w). Thus, the same object 2 + 3
could be transformed to 5 by a computer algebra system, or displayed as 2 + 3 by a type-
setting tool.

The OpenMath Standard Page 9 of 81

Chapter 3

OpenMath Objects

In this chapter we provide a self-contained description of OpenMath objects. We first do so
at an informal level (Section 3.2) and next by means of an abstract grammar description
(Section 3.1).

3.1 Formal Definition of OpenMath Objects

OpenMath represents mathematical objects as terms or as labelled trees that are called
OpenMath objects or OpenMath expressions. The definition of an abstract OpenMath object
is then the following.

3.1.1 Basic OpenMath objects

The Basic OpenMath Objects form the leaves of the OpenMath Object tree. A Basic
OpenMath Object is of one of the following.

(i) Integer.
Integers in the mathematical sense, with no predefined range. They are “infinite
precision” integers (also called “bignums” in computer algebra).
(ii) IEEE floating point number.
Double precision floating-point numbers following the IEEE 754-1985 standard [R].
(iii) Character string.
A Unicode Character string. This also corresponds to ‘characters’ in XML.
(iv) Bytearray.

A sequence of bytes.

Page 10 of 81

ESPRIT project 24969: OpenMath

(v) Symbol.
A Symbol encodes two fields of information, a name and a Content Dictionary. Each
is a sequence of characters matching a regular expression, as described below.

(vi) Variable.

A Variable consists of a name which is a sequence of characters matching a regular
expression, as described below.

3.1.2 Compound OpenMath Objects

OpenMath objects are built recursively as follows.

(i) Basic OpenMath objects are OpenMath objects.
(ii) If Ay, ..., Ay (n > 0) are OpenMath objects, then

application(A4y,..., A,)

is an OpenMath application object.

(iii) If Si,...,S, are OpenMath symbols, and A, A, ..., An, (n > 0) are OpenMath
objects, then
attribution(A, S; A1, ... ,S, Ap)

is an OpenMath attribution object and A is the object stripped of attributions. The
operation of recursively applying stripping to the stripped object is called flattening of
the attribution. When the stripped object after flattening is a variable, the attributed
object is called attributed variable.

(iv) If B and C are OpenMath objects, and vy, ..., v, (n > 0) are OpenMath variables or
attributed variables, then

binding(B, vy, ..., v, C)

is an OpenMath binding object.
(v) If S is an OpenMath symbol and Ay, ..., A, (n > 0) are OpenMath objects, then

error(S, Ay, ..., An)

is an OpenMath error object.

The OpenMath Standard Page 11 of 81

ESPRIT project 24969: OpenMath

3.2 Further Description of OpenMath Objects

Informally, an OpenMath object can be viewed as a tree and is also referred to as a term.
The objects at the leaves of OpenMath trees are called basic objects. The basic objects
supported by OpenMath are:

Integer Arbitrary Precision integers.

Float OpenMath floats are IEEE 754 Double precision floating-point numbers. Other types
of floating point number may be encoded in OpenMath by the use of suitable content
dictionaries.

Character strings are sequences of characters. These characters come from the Unicode
standard [I3].

Bytearrays are sequences of bytes. There is no “byte” in OpenMath as an object of its
own. However, a single byte can of course be represented by a bytearray of length 1.
The difference between strings and bytearrays is the following: a character string is a
sequence of bytes with a fixed interpretation (as characters, Unicode texts may require
several bytes to code one character), whereas a bytearray is an uninterpreted sequence
of bytes with no intrinsic meaning. Bytearrays could be used inside OpenMath errors
to provide information to, for example, a debugger; they could also contain interme-
diate results of calculations, or ‘handles’ into computations or databases.

Symbols are uniquely defined by the Content Dictionary in which they occur and by a
name. In definition in Section 3.1 we have left this information implicit. However, it
should be kept in mind that all symbols appearing in an OpenMath object are defined
in a Content Dictionary. The form of these definitions is explained in Chapter 5.
Each symbol has no more than one definition in a Content Dictionary. Many Content
Dictionaries may define differently a symbol with the same name (e.g., the symbol
union is defined as associative-commutativeset theoretic union in a Content Dictio-
nary setl but another Content Dictionary, multisetl might define a symbol union
as the union of multi-sets. The name of a symbol can only contain alphanumeric
characters and underscores. More precisely, a symbol name matches the following
regular expression:

[A-Za-z] [A-Za-z0-9_]*

Notice that these symbol names are case sensitive. OpenMath recommends that sym-
bol names should be no longer than 100 characters.

Variables are meant to denote parameters, variables or indeterminates (such as bound
variables of function definitions, variables in summations and integrals, independent
variables of derivatives). Plain variable names are restricted to use a subset of the
printable ASCII characters. Formally the names must match the regular expression:

[A-Za-z0-9=+() ,—./: 7! #§)x;=C[1~_‘{I}]+

Page 12 of 81 The OpenMath Standard

ESPRIT project 24969: OpenMath

application hinding
sin x Lamhii= x appHeaton
plus X 2

Figure 3.1: The OpenMath application and binding objects for sin(x) and A\x.z + 2 in
tree-like notation.

The four following constructs can be used to make compound OpenMath objects.

Application constructs an OpenMath object from a sequence of one or more OpenMath
objects. The first argument of application is referred to as “head” while the remaining
objects are called “arguments”. An OpenMath application object can be used to con-
vey the mathematical notion of application of a function to a set of arguments. For
instance, suppose that the OpenMath symbol sin is defined in a Content Dictionary
for trigonometry, then application(sin,z) is the abstract OpenMath object corre-
sponding to sin(x). More generally, an OpenMath application object can be used as
a constructor to convey a mathematical object built from other objects such as a poly-
nomial constructed from a set of monomials. Constructors build inhabitants of some
symbolic type, for instance the type of rational numbers or the type of polynomials.
The rational number, usually denoted as 1/2, is represented by the OpenMath ap-
plication object application(Rational,1,2). The symbol Rational must be defined,
by a Content Dictionary, as a constructor symbol for the rational numbers.

Binding objects are constructed from an OpenMath object, and from a sequence of zero
or more variables followed by another OpenMath object. The first OpenMath object
is the “binder” object. Arguments 2 to n — 1 are always variables to be bound in the
“body” which is the n** argument object. It is allowed to have no bound variables, but
the binder object and the body should be present. Binding can be used to express
functions or logical statements. The function Az.x + 2, in which the variable z is
bound by A, corresponds to a binding object having as binder the OpenMath symbol
lambda:

binding(lambda, x, application(plus, x,2)).

Binding of several variables as in:

binding (B, vi,...,v,,C)

is semantically equivalent to composition of binding of a single variable, namely

binding(B, vi, (binding(B, v, (..., binding(B,v,,C)...).

The OpenMath Standard Page 13 of 81

ESPRIT project 24969: OpenMath

Note that it follows from this that repeated occurrences of the same variable in a
binding operator are allowed. For example the object

binding(lambda, v, v, application(times, v, v))
is semantically equivalent to:
binding(lambda, v, binding(lambda, v, application(times, v,v)))

so that the outermost binding is actually a constant function (v does not occur free
in the body application(times,v,v))).

Phrasebooks are allowed to use a conversion in order to avoid clashes of variable
names. Suppose an object {) contains an occurrence of the object binding(B,v,C).
This object binding(B,v,C) can be replaced in Q by binding(B, z,C’) where z is
a variable not occurring free in C' and C’ is obtained from C' by replacing each free
(i.e., not bound by any intermediate binding construct) occurrence of v by z. This
operation preserves the semantics of the object 2. In the above example, a phrasebook
is thus allowed to transform the object to, e.g.

binding(lambda, v, binding(lambda, z, application(times, z, 2))).

binding(lambda, z, application(plus, z, 2)).

Repeated occurrences of the same variable in a binding operator are allowed. An
OpenMath application should treat a binding with multiple occurrences of the same
variable as equivalent to the binding in which all but the last occurrence of each
variable is replaced by a new variable which does not occur free in the body of the
binding.

binding(lambda, v, v, application(times, v, v))

is semantically equivalent to:
binding(lambda, v ,v, application(times, v,v))

so that the resulting function is actually a constant in its first argument (1,'/ does not
occur free in the body application(times,v,v))).

Attribution decorates an object with a sequence of one or more pairs made up of an
OpenMath symbol, the “attribute”, and an associated OpenMath object, the “value
of the attribute”. The value of the attribute can be an attribution object itself. As
example of this, consider the OpenMath objects representing groups, automorphism
groups, and group dimensions. It is then possible to attribute an OpenMath object
representing a group by its automorphism group, itself attributed by its dimension.

Composition of attributions, as in

attribution(attribution(A, S; A1,...,S Ap), Sh+1 A1, -5 Sn Ap)

Page 14 of 81 The OpenMath Standard

ESPRIT project 24969: OpenMath

is semantically equivalent to a single attribution, that is
attribution(A, S1 A1,...,Sh An, Sha1 Apst, ..., Sn Ap).

The operation that produces an object with a single layer of attribution is called
flattening.

Multiple attributes with the same name are allowed. While the order of the given
attributes does not imply any notion of priority, potentially it could be significant.
For instance, consider the case in which S}, = S, (h < n) in the example above. Then,
the object is to be interpreted as if the value A,, overwrites the value Aj. (OpenMath
however does not mandate that an application preserves the attributes or their order.)

Objects can be decorated in a multitude of ways. In [d], typing of OpenMath objects
is expressed by using an attribution. The object attribution(A, type t) represents
the judgment stating that object A has type t. Note that both A and ¢t are OpenMath
objects.

Attribution can act as either annotation, in the sense of adornment, or as modifier.
In the former case, replacement of the adorned object by the object itself is probably
not harmful (preserves the semantics). In the latter case however, it may very well be.
Therefore, attribution in general should by default be treated as a construct rather
than as adornment. Only when the CD definitions of the attributes make it clear that
they are adornments, can the attributed object be viewed as semantically equivalent
to the stripped object.

Error is made up of an OpenMath symbol and a sequence of zero or more OpenMath

3.3

objects. This object has no direct mathematical meaning. Errors occur as the result
of some treatment on an OpenMath object and are thus of real interest only when
some sort of communication is taking place. Errors may occur inside other objects
and also inside other errors. Error objects might consist only of a symbol as in the
object: error(S).

Summary

OpenMath supports basic objects like integers, symbols, floating-point numbers, char-
acter strings, bytearrays, and variables.

OpenMath compound objects are of four kinds: applications, bindings, errors, and
attributions.

OpenMath objects have the expressive power to cover all areas of computational math-
ematics.

Observe that an OpenMath application object is viewed as a “tree” by software applications
that do not understand Content Dictionaries, whereas a Phrasebook that understands the
semantics of the symbols, as defined in the Content Dictionaries, should interpret the object

The OpenMath Standard Page 15 of 81

ESPRIT project 24969: OpenMath

as functional application, constructor, or binding accordingly. Thus, for example, for some
applications, the OpenMath object corresponding to 2 + 5 may result in a command that

writes 7.

Page 16 of 81 The OpenMath Standard

Chapter 4

OpenMath Encodings

In this chapter, two encodings are defined that map between OpenMath objects and byte
streams. These byte streams constitute a low level representation that can be easily ex-
changed between processes (via almost any communication method) or stored and retrieved
from files.

The first encoding uses ISO 646:1983 characters [d] (also known as AscII characters) and is
an XML application. Although the XML markup of the encoding uses only ASCII characters,
OpenMath strings may use arbitrary Unicode/ISO 10646:1988 characters [[3]. It can be
used, for example, to send OpenMath objects via e-mail, news, cut-and-paste, etc. The
texts produced by this encoding can be part of XML documents.

The second encoding is a binary encoding that is meant to be used when the compactness
of the encoding is important (interprocess communications over a network is an example).

Note that these two encodings are sufficiently different for autodetection to be effective: an
application reading the bytes can very easily determine which encoding is used.

4.1 The xml Encoding
This encoding has been designed with two main goals in mind:

1. to provide an encoding that uses the most common character set (so that it can be
easily included in most documents and transport protocols) and that is both readable
and writable by a human.

2. to provide an encoding that can be included (embedded) in XML documents.

Page 17 of 81

ESPRIT project 24969: OpenMath

4.1.1 A Grammar for the xml Encoding

The XML encoding of an OpenMath object is defined by the DTD given in Figure 4.1 below,
with the following additional rules not implied by the XML DTD.

Comments are permitted only between elements, not within element character data.

e Processing Instructions are only allowed before the OMOBJ element.

The content of an OMB element, is a valid base64-encoded text.

e The character data forming element content and attribute values matches the regular
expressions of Figure 4.2.

In addition, if the XML document encoding the OpenMath object is linearised into the XML
concrete syntax, the following further constraints apply, which ensure thet the encoding
may be read by OpenMath applications that may not include a full XML parser.

The document should use UTF-8 encoding.

Entity and character references should not be used.
e A <!DOCTYPE declaration should not be used.

Character references should not be used. As <!DOCTYPE is not used, the only entity

references that are allowed are the five predefined entity references: ' (), "

(), &1t; (<), > (>), & (&).

e The XML empty element form <. ../> should always be used to encode elements such
as OMF which are specified in the DTD as being EMPTY. It should never be used for
elements that may sometimes be empty, such as OMSTR.

Such a linearisation of an XML encoded OpenMath Object would match the match the
character based grammar given in Figure 4.2.

The notation used in this section and in Figure 4.2 should be quite straightforward (4
meaning “one or more”, ? meaning zero or one, and | meaning “or”). The start symbol of
the grammar is “start”, “space” stands for the space character, “cr” for the carriage return
character, “nl” for the line feed character and “tab” for the horizontal tabulation character.

Page 18 of 81 The OpenMath Standard

ESPRIT project 24969

: OpenMath

<!-- DTD for OM Objects - sb 29.10.98 -->
<!-- sb 3.2.99 -->

<l--
general list of embeddable elements
: excludes OMATP as this is only embeddable in OMATTR
: excludes OMBVAR as this is only embeddable in OMBIND
-=>

<!ENTITY % omel "OMS | OMV | OMI | OMB | OMSTR
| OMF | OMA | OMBIND | OME | OMATTR ">

<!-- things which can be variables -->
<!ENTITY % omvar "OMV | OMATTR" >

<!-- symbol -->
<!ELEMENT OMS EMPTY>
<!ATTLIST OMS name CDATA #REQUIRED cd CDATA #REQUIRED >

<!-- variable -->
<!ELEMENT OMV EMPTY>
<!ATTLIST OMV name CDATA #REQUIRED >

<!-- integer -->
<!ELEMENT OMI (#PCDATA) >

<!-- byte array -->
<!ELEMENT OMB (#PCDATA) >

<!-- string -->
<!ELEMENT OMSTR (#PCDATA) >

<!-- floating point -->
<!ELEMENT OMF EMPTY>
<!ATTLIST OMF dec CDATA #IMPLIED hex CDATA #IMPLIED>

<!-- apply constructor -->
<!ELEMENT OMA (%omel;)+ >

<!-- binding constructor & variable -->
<!ELEMENT OMBIND ((%omel;), OMBVAR, (%omel;)) >
<!ELEMENT OMBVAR (%omvar;)+ >

<l-- error -->
<!ELEMENT OME (OMS, (%omel;)*) >

<!-- attribution comnstructor & attribute pair comnstructor -->
<!ELEMENT OMATTR (OMATP, (%omel;)) >
<!ELEMENT OMATP (OMS, (%omel;))+ >

<!-- OM object constructor -->
<!ELEMENT OMOBJ (omel;) >

Figure 4.1: DTD for the OpenMath XML encoding of objects.

The OpenMath Standard

Page 19 of 81

ESPRIT project 24969: OpenMath

S — (space|tablcr|nl)+
integer — (= 87)7 [0-9]+ (S [0-9]+)* | (- S?)? x S? [0-9A-F]|+ (S [0-9A-F]+)*
cdname — [a-z][a-z0-9_]*
symbname — [A-Za-z][A-Za-z0-9_]*
fpdec — (=7)([0-9]4)7(.[0-9]+)?(e([+-]?)[0-9]+)?
fphex — [0-9ABCDEF|+
varname = — ([A-Za-20-9+=(),-./:?1#$%*Q[]"_{|}])+
base64 — ([A-Za-20-9 +/=] | S)+
char — XML Character Data
symbnameatt — name S? = S7 (" symbname " | ’ symbname ?)
cdnameatt — — cd S? = S? (" cdname " | ’ cdname ?)
varnameatt — — name S? = S? (" varname " | ’ varname ’)
fpdecatt — dec S? = S? (" fpdec " | ’ fpdec ?)
fphexatt — hex S7 = S? (" fphex " | ’ fphex *)
PI — <7 char 7>
comment — <!- char ->
SC — S+ | (comment S)+
start — (SC | PI)* <OMOBJ S?> S? object S? </0OMOBJ S7>
symbol — <0OMS S symbnameatt S cdnameatt S7 />
] <0MS S cdnameatt S symbnameatt S? />
variable — <0MV S varnameatt S? />
] <OMATTR S7> SC? omatp SC? variable SC? </OMATTR S7>
omatp — <OMATP S?7> SC? attrs SC? </OMATP S7>
object — symbol
variable

|
] <OMI S7> S? integer S? </0OMI S7>
| <OMF S fpdecatt S? />
| <OMF S fphexatt S? />
] <0OMSTR S?> char </0OMSTR S7>
| <OMB S?> base64 </0MB S7>
] <OMA S?> SC? object SC? objects SC? </0OMA S7>
| <OMBIND S7> SC? object SC?
<OMBVAR S7> SC? variables SC? </0MBVAR S7>
SC? object SC? </0OMBIND S7>
] <OME S7> SC? symbol SC? objects SC? </0OME S7>
] <OMATTR S7> SC? <OMATP S?> SC? attrs SC? </OMATP S7>
SC? object SC? </0OMATTR S7>

attrs — symbol S? object
| symbol S? object S? attrs
objects — SC?
| object SC? objects
variables — SC?

| variable SC? variables

Figure 4.2: Grammar for the XML encoding of OpenMath objects.

Page 20 of 81 The OpenMath Standard

ESPRIT project 24969: OpenMath

4.1.2 Description of the Grammar

An encoded OpenMath object is placed inside an OMOBJ element. This element can contain
the elements (and integers) as described above.

We briefly discuss the XML encoding for each type of OpenMath object starting from the
basic objects.

Integers are encoded using the OMI element around the sequence of their digits in base
10 or 16 (most significant digit first). White space may be inserted between the
characters of the integer representation, this will be ignored. After ignoring white
space, integers written in base 10 match the regular expression -7 [0-9]+. Integers
written in base 16 match -7x[0-9A-F]+. The integer 10 can be thus encoded as <OMI>
10 </0OMI> or as <OMI> xA </0OMI> but neither <OMI> +10 </0MI> nor <OMI> +xA
</0MI> can be used.

The negative integer —120 can be encoded as either as decimal <OMI> -120 </0MI>
or as hexadecimal <OMI> -x78 </0OMI>.

Symbols are encoded using the OMS element. This element has two XML-attributes cd and
name. The value of cd is the name of the Content Dictionary in which the symbol is
defined and the value of name is the name of the symbol. The name of the Content
Dictionary is compulsory, but a future revision of the OpenMath standard might
introduce a defaulting mechanism. For example, <OMS cd="transc" name="sin"/>
is the encoding of the symbol named sin in the Content Dictionary named transc.

Variables are encoded using the 0MV element, with only one XML-attribute, name, whose
value is the variable name. The variable name is a subset of the printable AScCII set
of characters. In particular, neither spaces nor double-quote " are allowed in variable
names. For instance, the encoding of the object representing the variable x is: <0OMV
name="x"/>

Floating-point numbers are encoded using the OMF element that has either the XML-
attribute dec or the XML-attribute hex. The two XML-attributes cannot be present
simultaneously. The value of dec is the floating-point number expressed in base 10,
using the common syntax:

(=7) ([0-9]+H)?("."[0-9]1+)7(e(-7) [0-9]+) 7.

The value of hex is the digits of the floating-point number expressed in base 16, with
digits 0-9, A-F (mantissa, exponent, and sign from lowest to highest bits) using a least
significant byte ordering. For example, <OMF dec="1.0e-10"/> is a valid floating-
point number.

Character strings are encoded using the OMSTR element. Its content is a Unicode text
(The default encoding is UTF-8]I7], although XML encoded OpenMath may be em-
bedded in a containing XML document that specifies alternative encoding in the XML
declaration. Note that as always in XML the characters < and & need to be represented
by the entity references < and & respectively.

The OpenMath Standard Page 21 of 81

ESPRIT project 24969: OpenMath

Bytearrays are encoded using the OMB element. Its content is a sequence of characters
that is a base64 encoding of the data. The base64 encoding is defined in RFC 1521 [2].
Basically, it represents an arbitrary sequence of octets using 64 “digits” (A through
Z, a through z, 0 through 9, + and /, in order of increasing value). Three octets are
represented as four digits (the = character for padding to the right at the end of the
data). All line breaks and carriage return, space, form feed and horizontal tabulation
characters are ignored. The reader is refered to [2] for more detailed information.

In detail the encoding of an OpenMath object is described below.

Applications are encoded using the OMA element. The application whose root is the
OpenMath object eg and whose arguments are the OpenMath objects eq, ..., e, is
encoded as <OMA> Cy C...C,, </0MA> where C} is the encoding of e;.

For example, application(sin, z) is encoded as:

<0MA>

<0MS cd="transcl" name="sin"/>
<0OMV name="x"/>

</0MA>

provided that the symbol sin is defined to be a function symbol in a Content Dictio-
nary named transcl.

Binding is encoded using the OMBIND element. The binding by the OpenMath object b
of the OpenMath variables z1, x2, ..., T, in the object c is encoded as <OMBIND> B
<OMBVAR> X ... X,, </OMBVAR> C' </OMBIND> where B, C', and X; are the encodings
of b, ¢ and x;, respectively.

For instance the encoding of binding(lambda, x, application(sin, z)) is:

<0MBIND>
<0MS cd="fns1" name="lambda'"/>
<OMBVAR>
<0MV name="x"/>
</0MBVAR>
<0MA>
<0OMS cd="transcl" name="sin"/>
<0MV name="x"/>
</0MA>
</0MBIND>

Binders are defined in Content Dictionaries, in particular, the symbol lambda is de-
fined in the Content Dictionary fns1 for functions over functions.

Page 22 of 81 The OpenMath Standard

ESPRIT project 24969: OpenMath

Attributions are encoded using the OMATTR element. If the OpenMath object e is at-
tributed with (s1, e1), ..., (Sn, en) pairs (where s; are the attributes), it is encoded
as <OMATTR> <OMATP> S C ... S, C,, </OMATP> E </OMATTR> where 5; is the encoding
of the symbol s;, C; of the object e; and F is the encoding of e.

Examples are the use of attribution to decorate a group by its automorphism group:

<OMATTR>
<0OMATP>
<0MS cd="groups" name="automorphism_group" />
[..group-encoding. .]
</0OMATP>
[..group-encoding. .]
</0MATTR>

or to express the type of a variable:

<OMATTR>
<0OMATP>
<OMS cd="ecc" name="type" />
<0MS cd="ecc" name="real" />
</0OMATP>
<0OMV name="x" />
</0OMATTR>

Errors are encoded using the OME element. The error whose symbol is s and whose argu-
ments are the OpenMath objects eq, ..., e, is encoded as <OME> C, C}...C, </0OME>
where Cj is the encoding of s and C; the encoding of e;.

If an aritherror Content Dictionary contained a DivisionByZero symbol, then the
object error(DivisionByZero, application(divide, z,0)) would be encoded as fol-
lows:

<OME>
<OMS cd="aritherror" name="DivisionByZero"/>
<0OMA>
<0MS cd="arithl" name="divide" />
<OMV name="x"/>
<OMI> 0 </0MI>
</0MA>
</0ME>

The OpenMath Standard Page 23 of 81

ESPRIT project 24969: OpenMath

4.1.3 Embedding OpenMath in XML Documents

The above encoding of XML encoded OpenMath specifies the grammar to be used in files
that encode a single OpenMath object, and specifies the character streams that a conforming
OpenMath application should be able to accept or produce.

When embedding XML encoded OpenMath objects into a larger XML document one may
wish, or need, to use other XML features. For example use of extra XML attributes to specify
XML Namespaces [[4] or xml:lang attributes to specify the language used in strings [I5].
Also, the encoding used in the larger document may not be UTF-8.

In particular, if OpenMath is used with applications that use the XML Namespace Rec-
ommendation [[4] then they should ensure that OpenMath elements are in the namespace
http://www.openmath.org/OpenMath This is most conveniently achieved by adding the
namespace declaration

xmlns="http://www.openmath.org/OpenMath"

as an attribute to each OMOBJ element in the document.

If such xML features are used then the XML application controlling the document must,
if passing the OpenMath fragment to an OpenMath application, remove any such extra
attributes and must ensure that the fragment is encoded according to the grammar specified
above.

4.2 The Binary Encoding

The binary encoding was essentially designed to be more compact than the XML encodings,
so that it can be more efficient if large amounts of data are involved. For the current
encoding, we tried to keep the right balance between compactness, speed of encoding and
decoding and simplicity (to allow a simple specification and easy implementations).

4.2.1 A Grammar for the Binary Encoding

Figure 4.3 gives a grammar for the binary encoding. The following conventions are used in
this section: [n| denotes a byte whose value is the integer n (n can range from 0 to 255),
{m} denotes four bytes representing the (unsigned) integer m in network byte order, [_]
denotes an arbitrary byte, {_} denotes an arbitrary sequence of four bytes. name:n denotes
a sequence of n bytes named name. name:2n denotes a sequence of 2n bytes. “start” is the
start symbol of the grammar.

Page 24 of 81 The OpenMath Standard

ESPRIT project 24969: OpenMath

start — [24] object [25]
object — integer

| float

| variable

| symbol

| string

| bytearray

| construct
integer — (1] []

| 1+ 128 {}

| (2] [n] [] digits:n

| [2 + 128] {n} [] digits:n

float — 3 () L}
variable ~— [5] [n] varname:n
| [5 + 128] {n} varname:n
| 5+ 64] [n]
symbol ~— [8] [n] [m] cdname:n symbname:m
| [8 + 128] {n} {m} cdname:n symbname:m
| [8 + 64] [n]
string — [6] [n] chars:n

| [6 + 128] {n} chars:n
| [7] [n] chars:2n

\ [7 + 128] {n} chars:2n
|

[7 + 64] [n]
bytearray — [4] [n] bytes:n
| [4 4+ 128] {n} bytes:n
construct — [16] object objects [17]

| [22] symbol objects [23]
| [18] attrpairs object [19]
| [26] object bvars object [27]

attrpairs — [20] pairs [21]
pairs — symbol object
| symbol object pairs
bvars — [28] vars [29]
vars — attrvar

| attrvar vars
attrvar — variable

| [18] attrpairs attrvar [19]
objects —

| object objects

Figure 4.3: Grammar of the binary encoding of OpenMath objects.

The OpenMath Standard Page 25 of 81

ESPRIT project 24969: OpenMath

4.2.2 Description of the Grammar

An OpenMath object is encoded as a sequence of bytes starting with the begin object tag
(value 24) and ending with the end object tag (value 25). These are similar to the <OMOBJ>
and </0OMOBJ> tags of the XML encoding.

The encoding of each kind of OpenMath object begins with a tag that is a single byte,
holding a token identifier and two flags, the long flag and the shared flag. The identifier is
stored in the first 6 bits (1 to 6). The long flag is the eighth bit and the shared flag is the
seventh bit.

Here is a description of the binary encodings of every kind of OpenMath object:

Integers are encoded depending on how large they are. There are four possible formats.
Integers between -128 and 127 are encoded as the small integer tag (1) followed by
a single byte that is the value of the integer (interpreted as a signed character).
For example 16 is encoded as 0x01 0x10. Integers between —23! (—2147483648) and
231 1 (2147483647) are encoded as the small integer tag with the long flag set followed
by the integer encoded in little endian format on four bytes (network byte order: the
most significant byte comes first). For example, 128 is encoded as 0x81 0x00000080.
The most general encoding begins with the big integer tag (token identifier 2) with
the long flag set if the number of bytes in the encoding of the digits is greater or equal
than 256. It is followed by the length (in bytes) of the sequence of digits, encoded on
one byte (0 to 255, if the long flag was not set) or four bytes (network byte order, if
the long flag was set). It is then followed by a byte describing the sign and the base.
This ’sign/base’ byte is + (0x2B) or - (0x2D) for the sign ored with the base mask
bits that can be 0 for base 10 or 0x40 for base 16. It is followed by the strings of
digits (as characters) in their natural order (as in the XML encoding). For example,
8589934592 (233) is encoded 0x02 0x0A 0x2B 0x38353839393334353932 and xfFfffffl
is encoded as 0x02 0x08 0x6b 0x6666666666666631. Note that it is permitted to
encode a “small” integer in any “bigger” format.

Symbols are encoded as the symbol tag (8) with the long flag set if the maximum of the
length of the Content Dictionary name and the symbol name is greater than or equal
to 256 (note that this should never be the case if the rules on symbols and Content
Dictionary names are applied), then followed by the length of the Content Dictionary
name as a byte (if the long flag was not set) or a four byte integer (in network byte
order) followed by the length of the symbol name as a byte (if the long flag was not
set) or a four byte integer (in network byte order), followed by the characters of the
Content Dictionary name, followed by the characters of the symbol name.

Variables are encoded using the variable tag (5) with the long flag set if the number of
bytes (characters) in the variable name is greater than or equal to 256 (this should
never happen if the rules on variables are followed). Then, there is the number of
characters as a byte (if the long flag was not set) or a four byte integer (in network

Page 26 of 81 The OpenMath Standard

ESPRIT project 24969: OpenMath

byte order), followed by the characters of the name of the variable. For example, the
variable x is encoded as 0x05 0x01 0x78.

Floating-point number are encoded using the floating-point number tag (3) followed by
eight bytes that are the IEEE 754 representation [8], most significant bytes first. For
example, 0.1 is encoded as 0x03 0x000000000000£03f.

Character string are encoded in two ways depending on whether the string contains
UTF-16 characters or not. If the string contains only 8 bit characters, it is encoded
as the one byte character string tag (6) with the long flag set if the number of bytes
(characters) in the string is greater than or equal to 256. Then, there is the number of
characters as a byte (if the length flag was not set) or a four byte integer (in network
byte order), followed by the characters in the string. If the string contains two byte
characters, it is encoded as the two byte character string tag (7) with the long flag
set if the number of characters in the string is greater or equal to 256. Then, there is
the number of characters as a byte (if the long flag was not set) or a four byte integer
(in network byte order), followed by the characters (UTF-16 encoded Unicode).

Bytearrays are encoded using the bytearray tag (4) with the long flag set if the number
of bytes in the number of elements is greater than or equal to 256. Then, there is the
number of elements, as a byte (if the long flag was not set) or a four byte integer (in
network byte order), followed by the elements of the arrays in their normal order.

Applications are encoded using the application tag (16). More precisely, the application
of Ey to Ej...E, is encoded using the application tag (16), the sequence of the
encodings of Ey to E, and the end application tag (17).

Bindings are encoded using the binding tag (26). More precisely, the binding by B of
variables Vj...V,, in C is encoded as the binding tag (26), followed by the encoding
of B, followed by the binding variables tag (28), followed by the encodings of the
variables V7 ...V, followed by the end binding variables tag (29), followed by the
encoding of C, followed by the end binding tag (27).

Attribution are encoded using the attribution tag (18). More precisely, attribution of the
object E with (S, E1), ... (Sn, E,) pairs (where S; are the attributes) is encoded as
the attributed object tag (18), followed by the encoding of the attribute pairs as the
attribute pairs tag (20), followed by the encoding of each symbol and value, followed
by the end attribute pairs tag (21), followed by the encoding of E, followed by the
end attributed object tag (19).

Error are encoded using the error tag (22). More precisely, Sy applied to Ej...E, is

encoded as the error tag (22), the encoding of Sy, the sequence of the encodings of
Ey to E, and the end error tag (23).

4.2.2.1 Sharing

This binary encoding supports the sharing of symbols, variables and strings (up to a certain
length for strings) within one object. That is, sharing between objects is not supported. A
reference to a shared symbol, variable or string is encoded as the corresponding tag with

The OpenMath Standard Page 27 of 81

ESPRIT project 24969: OpenMath

the long flag not set and the shared flag set, followed by a positive integer n coded on one
byte (0 to 255). This integer references the n + 1-th such sharable sub-object (symbol,
variable or string up to 255 characters) in the current OpenMath object (counted in the
order they are generated by the encoding). For example, 0x48 0x01 references a symbol
that is identical to the second symbol that was found in the current object. Strings with 8
bit characters and strings with 16 bit characters are two different kinds of objects for this
sharing. Only strings containing less than 256 characters can be shared (i.e. only strings
up to 255 characters).

4.2.3 Implementation Note

A typical implementation of the binary encoding uses four tables, each of 256 entries, for
symbol, variables, 8 bit character strings whose lengths are less than 256 characters and 16
bit character strings whose lengths are less than 256 characters. When an object is read,
all the tables are first flushed. Each time a sharable sub-object is read, it is entered in the
corresponding table if it is not full. When a reference to the shared i-th object of a given
type is read, it stands for the i-th entry in the corresponding table. It is an encoding error
if the i-th position in the table has not already been assigned (i.e. forward references are
not allowed). Sharing is not mandatory, there may be duplicate entries in the tables (if the
application that wrote the object chose not to share optimally).

Writing an object is simple. The tables are first flushed. Each time a sharable sub-object
is encountered (in the natural order of output given by the encoding), it is either entered
in the corresponding table (if it is not full) and output in the normal way or replaced by
the right reference if it is already present in the table.

4.2.4 Example of Binary Encoding

As an example of this binary encoding, we can consider the OpenMath object whose XML
encoding is

<0OMOBJ>
<0OMA>
<0MS name="times" cd="arithil"/>
<0MA>
<0OMS name="plus" cd="arithl"/>
<0MV name="x"/>
<OMV name="y"/>
</0MA>
<0OMA>
<0MS name="plus" cd="arithl"/>
<0MV name="x"/>
<OMV name="z"/>

Page 28 of 81 The OpenMath Standard

ESPRIT project 24969: OpenMath

</0OMA>
</0MA>
</0MOBJ>

It is binary encoded as the sequence of bytes given by the following table.

Hex Meaning Hex Meaning

18 begin object tag 68 h.)

10 begin application tag 31 1.)

08 symbol tag 70 p (symbol name begin

06 cd length 6¢ 1.

05 name length 75 u.

61 a (cd name begin 73 s.)

72 r. 05 variable tag

69 i. 01 name length

74 t. 78 x (name)

68 h. 05 variable tag

31 1.) 01 name length

74t (symbol name begin 79 y (variable name)

69 i. 11 end application tag

6d m . 10 begin application tag

65 e. 48 symbol tag (with share bit on)
73 s.) 01 reference to second symbol seen (arithl:plus)
10 begin application tag 45 variable tag (with share bit on)
08 symbol tag 00 reference to first variable seen (x)
06 cd length 05 variable tag

04 name length 01 name length

61 a (cd name begin Ta z (variable name)

72 T. 11 end application tag

69 i. 11 end application tag

74 t. 19 end object tag

4.3 Summary
The key points of this chapter are:

e The XML encoding for OpenMath objects uses most common character sets.

e The XML encoding is readable, writable and can be embedded in most documents and
transport protocols.

e The binary encoding for OpenMath objects should be used when efficiency is a key
issue. It is compact yet simple enough to allow fast encoding and decoding of objects.

The OpenMath Standard Page 29 of 81

Chapter 5

Content Dictionaries

In this chapter we give a brief overview of Content Dictionaries before explicitly stating
their functionality and encoding.

5.1 Introduction

Content Dictionaries (CDs) are central to the OpenMath philosophy of transmitting math-
ematical information. It is the OpenMath Content Dictionaries which actually hold the
meanings of the objects being transmitted.

For example if application A is talking to application B, and sends, say, an equation involv-
ing multiplication of matrices, then A and B must agree on what a matrix is, and on what
matrix multiplication is, and even on what constitutes an equation. All this information is
held within some Content Dictionaries which both applications agree upon.

A Content Dictionary holds the meanings of (various) mathematical “words”. These words
are OpenMath basic objects referred to as symbols in Section 3.1.

With a set of symbol definitions (perhaps from several content Dictionaries), A and B can
now talk in a common “language”.

It is important to stress that it is not Content Dictionaries themselves which are being
passed, but some “mathematics” whose definitions are held within the Content Dictionaries.
This means that the applications must have already agreed on a set of Content Dictionaries
which they “understand” (i.e., can cope with to some degree).

In many cases, the Content Dictionaries that an application understands will be constant,
and be intrinsic to the application’s mathematical use. However the above approach can also
be used for applications which can handle every Content Dictionary (such as an OpenMath
parser, or perhaps a typesetting system), or alternatively for applications which understand
a changeable number of Content Dictionaries (perhaps after being sent Content Dictionaries

Page 30 of 81

ESPRIT project 24969: OpenMath

in some way).

The primary use of Content Dictionaries is thought to be for designers of Phrasebooks,the
programs which translate between the OpenMath mathematical object and the correspond-
ing (often internal) structure of the particular application in question. For such a use
the Content Dictionaries have themselves been designed to be as readable and precise as
possible.

Another possible use for OpenMath Content Dictionaries could rely on their automatic
comprehension by a machine (e.g., when given definitions of objects defined in terms of
previously understood ones), in which case Content Dictionaries may have to be passed
as data. Towards this end, a Content Dictionary has been written which contains a set
of symbols sufficient to represent any other Content Dictionary. This means that Content
Dictionaries may be passed in the same way as other (OpenMath) mathematical data.

Finally, the syntax of the Content Dictionaries has been designed to be relatively easy to
learn and to write, and also free from the need for any specialist software. This is be-
cause it is acknowledged that there is an enormous amount of mathematical information to
represent, and so most of the Content Dictionaries will be written by “ordinary” mathemati-
cians, encoding their particular fields of expertise. A further reason is that the mathematics
conveyed by a specific Content Dictionary should be understandable independently of any
application.

The key points from this section are:

e Content Dictionaries should be readable and precise to help Phrasebook designers,
e Content Dictionaries should be readily write-able to encourage widespread use,

e It ought to be possible for a machine to understand a Content Dictionary to some
degree.

5.2 Content Dictionaries

In this section we define the overall structure of Content Dictionaries.

Other than Content Dictionary comments (which have no real semantics), Content Dic-
tionaries have been designed to hold two types of information: that which is pertinent to
the whole Content Dictionary, and that which is restricted to a particular symbol defini-
tion. Specific information pertaining to the symbols like the signature and the defining
mathematical properties is conveyed in additional files associated to Content Dictionaries.

Information that is pertinent to the whole Content Dictionary includes:

e The name of the Content Dictionary.

e A description of the Content Dictionary.

The OpenMath Standard Page 31 of 81

ESPRIT project 24969: OpenMath

A date when the Content Dictionary is next planned to be reviewed.

A date on which the Content Dictionary was last edited.

The current version and revision numbers of the Content Dictionary.

The status of the Content Dictionary.
An optional URL for this Content Dictionary.

An optional list of Content Dictionaries on which this Content Dictionary depends.
That is, those named in Examples and FMP in this Content Dictionary.

An optional comment, possibly containing the author’s name.

Information that is restricted to a particular symbol includes:

The name of the symbol.

A description of this symbol.

An optional comment.

Optional properties that this symbol should obey.

Optional examples of the use of this symbol.

As mentioned earlier, certain kinds of data pertaining to symbols may be conveyed in files
other than a Content Dictionary. In particular, information on signatures according to a
type system may be described in Signature Files whose format is given in Section 5.4.1.
Other information such as presentation forms, extra defining mathematical properties may
be associated with Content Dictionaries using files whose format is not specified by this
standard. It is expected that a common method of defining the presentation for OpenMath
symbols is via XSL [16] stylesheets giving transformations to MathML.

Content Dictionaries may be grouped into CD Groups. These groups allow applications to
easily refer to collections of Content Dictionaries. One particular CDGroup of interest is the
“MathML CDGroup”. This group expresses the collection of the core Content Dictionaries
that is designed to have the same semantic scope as the content elements of MathML 2 [IT].
OpenMath objects built from symbols that come from Content Dictionaries in this CDGroup
may be expected to be eaily transformed between OpenMath and MathML encodings. The
detailed structure of a CDGroup is described in section Section 5.4.2 below.

5.3 The XML Encoding for Content Dictionaries

Content Dictionaries are XML documents. A valid Content Dictionary document should

e be valid according to the DTD given in Figure 5.1,

e adhere to the extra conditions on the content of the elements given in Section 5.3.2.

Page 32 of 81 The OpenMath Standard

ESPRIT project 24969: OpenMath

An example of a complete Content Dictionary is given in Appendix Appendix A.1, which is
the Meta Content Dictionary for describing Content Dictionaries themselves. A more typical
Content Dictionary is given in Appendix Appendix A.2, the arithl Content Dictionary for
basic arithmetic functions.

5.3.1 The DTD Specification of Content Dictionaries

The XML DTD for Content Dictionaries is given in Figure 5.1. The allowed elements are
further described in the following section.

5.3.2 Further Requirements of an OpenMath Content Dictionary

The notion of being a valid Content Dictionary is stronger than merely being successfully
parsed by the DTD. This is because the content of the elements, referred to in Figure 5.1
as PCDATA and CDATA, must actually make sense to, say, a Phrasebook designer. In this
section we define exactly the format of the elements used in Content Dictionaries.

CDName The text occurring in the CDName element corresponds to the name of Content
Dictionary, and is of the form specified in Chapter 4.

Description The text occurring in the Description element is used to give a description
of the enclosing element, which could be a symbol or the entire Content Dictionary.
The content of this element can be any XML text.

CDReviewDate The text occurring in the CDReviewDate element corresponds to the earliest
possible revision date of the Content Dictionary. The date formats should be ISO-
compliant in the form YYYY-MM-DD, e.g. 1953-09-26.

CDDate The text occurring in the CDDate element corresponds to the date of this version
of the Content Dictionary. The date formats should be ISO-compliant in the form
YYYY-MM-DD, e.g. 1953-09-26.

CDVersion The text occurring in the CDVersion element corresponds to the version number
of the current version of a Content Dictionary. It should be a non negative integer.

In CDs that do not have status experimental, CD version numbering should adhere
to the following. The version number should be a positive integer.

No changes can be introduced that invalidate objects built with previous versions.
Any change that influences phrasebook compliance, like adding a new symbol to a
Content Dictionary, is considered a major change. and should be reflected by an
increase in this version number. Other changes, like adding an example or correcting
a description, are considered minor changes. For minor changes the version number
is not changed, but an increas should be made to the revision number, as described
below. A change such as removing a symbol should not be made, instead a new CD,
with a different name should be produced, so as not to invalidate existing objects.

The OpenMath Standard Page 33 of 81

ESPRIT project 24969: OpenMath

<!-- omcd.dtd -->

V== sskokoksiokokokoskskokskoskokokskokokok sk sk skok sk skskokskok ok skskskokokskokokkokokok - ——>
<l-- -—>
<!-- DTD for OpenMath CD -=>
<!-- (c) EP24969 the ESPRIT OpenMath Consortium -—>
<!-- date = 28.aug.1998 -=>
<!-- author = s.buswell sb@stilo.demon.co.uk -=>
<l-- -—>
<!-- edited by n.howgrave-graham 30.aug.98 -=>
<!-- edited by sb 4.sep.98 -=>
<!-- edited by nh-g 4.sep.98 -=>
<l-- edited by sb 1.nov.98 -—>
<!-- edited by sb 1.nov.98 -=>
<!-- edited by dpc 1999-04-13 -—>

<l-- edited by dpc 1999-05-11 CDDate & CDVersion -->
<!-- edited by dpc 1999-06-21 Delete Signature & Presentation -->

<!-- Force Name to be first child of -->
<l-- CDDefinition -->

<l-- -—>
<1-- ->
K== skokokokokokokokokokok ok ok ok ok ok ok ok kKoK oK KKKk kR ok ok kokok ok kR ok ——>
<!ELEMENT CDComment (#PCDATA) >

<!ELEMENT CDName (#PCDATA) >

<!ELEMENT CDURL (#PCDATA) >

<!ELEMENT CDUses (CDName) * >

<!ENTITY % inhel " (#PCDATA)" >

<!ENTITY % inhel2 " (#PCDATA | OMOBJ)*" >
<!ELEMENT CDReviewDate %inhel; >

<!ELEMENT CDDate %inhel; >

<!ELEMENT CDVersion %inhel; >

<!ELEMENT CDRevision %inhel; >

<!ELEMENT CDStatus %inhel; >

<!ELEMENT Description %inhel; >

<!ELEMENT Name %inhel; >

<!ELEMENT CMP %inhel; >

<!-- include dtd for OM objects -->
<IENTITY % omobjectdtd SYSTEM "omobj.dtd" >

%omobjectdtd;
<!ELEMENT FMP (OMOBJ) > <!-- embedded OM -->
<!ELEMENT Example %inhel2; >

<!ELEMENT CDDefinition (Name, Description,
(CDComment | Example | FMP | CMP)*) >
<!ELEMENT CD (CDComment | CDName | Description |
CDReviewDate | CDDate |CDVersion |CDRevision |
CDStatus | CDURL | CDUses | CDDefinition |
Example) * >
<!-- end of DID for OM CD —-->

Figure 5.1: DTD Specification of Content Dictionaries

Page 34 of 81 The OpenMath Standard

ESPRIT project 24969: OpenMath

As detailed in chapter Chapter 6, OpenMath compliant applications state which ver-
sions of which CDs they support.

Experimental CDs may expect to have changes such as adding or removing symbols
as they are developed, without requiring the name of the CD to be changed.

CDRevision The text occurring in the CDRevision element corresponds to the revision, or
‘minor version number’ of the current version of a Content Dictionary. It should be
a non negative integer.

Minor changes to a CD that do not warrant the release of a CD with an increased
version number should be marked by increasing the revision number specified in this
field. When the Cd Version number is increased, the Revision number is normally
reset to zero.

CDStatus The text occurring in the CDStatus element corresponds to the status of Content
Dictionary, and can be either official (approved by the OpenMath Society according
to the procedure outlined in Section 5.5), experimental (currently being tested),
private (used by a private group of OpenMath users) or obsolete (an obsolete
Content Dictionary kept only for archival purposes).

CDURL The text occurring in the CDURL element should be a valid URL where the source file
for the Content Dictionary encoding can be found (if it exists). The filename should
conform to ISO 9660 [12].

CDUses The content of this element should be a series of CDName elements, each naming a
Content Dictionary used in the Example and FMPs of the current Content Dictionary.

CDComment The content of this element should be text that does not convey any crucial
information concerning the current Content Dictionary. It can be used in the Content
Dictionary header to report the author of the Content Dictionary and to log change
information. In the body of the Content Dictionary, it can be used to attach extra
remarks to certain symbols.

Example The text occurring in the Example element is used to give examples of the enclosing
symbol, and can be any XML text. In addition to text the element may contain
examples as XML encoded OpenMath, inside OMOBJ elements. Note that Examples
must be with respect to some symbol and cannot be “loose” in the Content Dictionary.

Name The text occurring in the Name element corresponds to the name of the symbol, and
is specified as in Chapter 4.

CMP The text occurring in the CMP element corresponds to a property of the symbol. An ap-
plication which says it understands a Content Dictionary symbol need not understand
a commented property of the symbol.

FMP The content of the FMP element also corresponds to a propertyf] of the symbol, however
the content of this element must be a valid OpenMath object in the XML encoding.
An application which says it understands a Content Dictionary symbol need not
understand a formal property of the symbol.

Tt corresponds to a theorem of a theory in some formal system.

The OpenMath Standard Page 35 of 81

ESPRIT project 24969: OpenMath

5.4 Additional Information

Content Dictionaries contain just one part of the information that can be associated to a
symbol in order to stepwise define its meaning and its functionality. OpenMath Signature
files, CDGroups, and possibly files of extra mathematical properties, are used to convey the
different aspects that as a whole make up a mathematical definition.

5.4.1 Signature Files

OpenMath may be used with any type system. One just needs to produce a Content Dic-
tionary which gives the constructors of the type system, and then one may build OpenMath
objects representing types in the given type system. These are typically associated with
OpenMath objects via the OpenMath attribution constructor.

A Small Type System, called STS, has been designed to give semi-formal signatures to
OpenMath symbols and is documented in [[4]. The signature file given in Appendix A.3 is
based on this formalism. Using the same mechanism, [5] shows how pure type systems can
also be employed to assign types to OpenMath symbols.

5.4.1.1 The DTD Specification of Signature Files

Signature Files are XML documents, hence a valid Signature File should

e be valid according to the DTD given in Figure 5.2,

e adhere to the extra conditions on the content of the elements given in Section 5.4.1.2.

Signature files have a header which specifies the Content Dictionary and determines the
type system being used, and the Content Dictionary which contains the symbols for which
the signatures are being given. Each signature takes the form of an XML encoded OpenMath
object.

5.4.1.2 Further Requirements of a Signature File

The notion of being a valid Signature File is stronger than merely being successfully parsed
by the DTD in Figure 5.2. In this section we define exactly the format of the elements
used in Signature Files. Several of the requirements are the same as those on elements of
Contents Dictionaries.

CDSignatures The outermost element of the Signature File is characterized by two required
attributes that identify the type system and the Content Dictionary whose signatures
are defined. The value of the XML attribute type is the name of the Content Dictionary

Page 36 of 81 The OpenMath Standard

ESPRIT project 24969:

OpenMath

<!-- omcdsig.dtd -->

<l —= sokokskokokokokokkokokkokokok o skokokkokok sk skokok ok skok o skokokkskok ok kokokkokok ok ——>
<l-- -—>
<!-- DTD for OpenMath CD Signatures -=>
<!-- (c) EP24969 the ESPRIT OpenMath Consortium -—>
<!-- David Carlisle 1999-04-13 -=>
<!-- David Carlisle 1999-05-21 -=>
<!-- David Carlisle 1999-06-22 -=>
<!-- -—>
<l-- -—>
<l —— sokokskokokskokokokokokkokokok ok skokokskokok ok skokok ok skok ok skokokkskok ok kokokkokok ok ——>
<!-- include dtd for OM objects —-—>

<!ENTITY 9% omobjectdtd SYSTEM "omobj.dtd" >
%omobjectdtd;

<!ELEMENT CDSComment (#PCDATA) >

<IELEMENT CDSReviewDate (#PCDATA) >
<!ELEMENT CDSStatus (#PCDATA) >

<!ELEMENT CDSignatures (CDComment |CDSComment | CDSReviewDate |
CDSStatus | Signature)* >

<IATTLIST CDSignatures cd CDATA #REQUIRED
type CDATA #REQUIRED >

<!ELEMENT Signature (OMOBJ?) >
<IATTLIST Signature name CDATA #REQUIRED >

<!-- end of DTD for OM CD Signatures -—>

Figure 5.2: DTD Specification of Signature Files

The OpenMath Standard

Page 37 of 81

ESPRIT project 24969: OpenMath

or of the CDGroup (cfg. Section 5.4.2) that represents the type system. The value
of the XML attribute cd is the name of the Content Dictionary whose symbols are
assigned signatures in this Signature File. Both values are of the form specified in
Chapter 4.

CDSComment See CDComment in Section 5.3.2.

CDSreviewDate The text occurring in the CDSReviewDate element corresponds to the ear-
liest possible revision date of the Signature File. The date formats should be ISO-
compliant in the form YYYY-MM-DD, e.g. 2000-02-29.

CDSStatus The text occurring in the CDSStatus element corresponds to the status of the
Signature File, and can be either official (approved by the OpenMath Society ac-
cording to the procedure outlined in Section 5.5), experimental (currently being
tested), private (used by a private group of OpenMath users) or obsolete (an ob-
solete Signature File kept only for archival purposes).

Signature The content of the Signature element has to be a valid OpenMath object in
XML encoding as specified in Chapter 4. Additionally, the object must represent a
valid type in the type system identified by the XML attribute type of the CDSignature
element. See Section 5.4.1.3 for examples.

5.4.1.3 Examples

An example of a signature file for the type system STS and the arithl Content Dictionary
is given in Appendix A.3. Each signature entry is similar to the following one for the
OpenMath symbol <OMS cd="arithl" name="plus"/>:

<Signature name="plus">
<0MOBJ>
<0OMA>
<OMS name="mapsto" cd="sts"/>
<0OMA>
<0MS name="nassoc" cd="sts"/>
<OMV name="AbelianSemiGroup"/>
</0MA>
<0OMV name="AbelianSemiGroup"/>
</0MA>
</0MOBJ>
</Signature>

5.4.2 CDGroups

The CD Group mechanism is a convenience mechanism for identifying collections of CDs.
A CD Group file is an XML document used in the (static or dynamic) negotiation phase

Page 38 of 81 The OpenMath Standard

ESPRIT project 24969: OpenMath

where communicating applications declare and agree on the Content Dictionaries which
they process. It is a complement, or an alternative, to the individual declaration of Con-
tent Dictionaries understood by an application. Note that CD Groups do not affect the
OpenMath objects themselves. Symbols in an object always refer to content dictionaries,
not groups.

For an application to declare that it “understands CDGroup G” is exactly equivalent to,
and interchangable with, the declaration that it “understands Content Dictionaries x1, x2,
...xTy”", where x1, ...z, are the members of CDGroup G.

5.4.2.1 The DTD Specification of CDGroups

CDGroups are XML documents, hence a valid CDGroup should

e be valid according to the DTD given in Figure 5.3,

e adhere to the extra conditions on the content of the elements given in Section 5.4.2.2.

Apart from some header information such as CDGroupName and CDGroup version, a CDGroup
is simply an unordered list of CDs, identified by name and optionally version number and
URL.

5.4.2.2 Further Requirements of a CDGroup

The notion of being a valid CDGroup implies that the following requirements on the content
of the elements described by the DTD in Figure 5.2 are also met.

CDGroup The XML element CDGroup is the outermost element in a CDGroup document.

CDGroupName The text occurring in the CDGroupName element corresponds to the name of
the CDGroup. For the syntactical requirements, see CDName in Section 5.3.2.

CDGroupURL The text occurring in the CDGroupURL element identifies the location of the
CDGroup file, not necessarily of the member Content Dictionaries. For the syntactical
requirements, see CDURL in Section 5.3.2.

CDGroupDescription The text occurring in the CDGroupDescription element describes
the mathematical area of the CDGroup.

CDGroupMember The XML element CDGroupMember encloses the data identifying each mem-
ber of the CDGroup.

CDName The text occurring in the CDName element corresponds to the name of a Content
Dictionary in the CDGroup. For the syntactical requirements, see CDName in Sec-
tion 5.3.2.

The OpenMath Standard Page 39 of 81

ESPRIT project 24969: OpenMath

<!-- CDgroup.dtd -->

K== ook skokokok ok skokokosk ok skoskokok ok skskok ok sk skoskoskok ok skokok ok ok ok ——>
<l-- -=>
<!-- DTD for OpenMath CD group -—>
<!-- (c) EP24969 the ESPRIT OpenMath Consortium -—>
<!-- date = 18.Feb.1999 -—>
<!-- author = s.buswell sb@stilo.demon.co.uk -—>
<= -—>
<l—- -—>
<!-- available at -=>
<!-- http://www.nag.co.uk/ something here David~ -->
<1-- -
K== sokokskorokoskokokskokokokokokskokokosk ok skoskokok ok skskok ks skoskoskokskokskokok ok ok ok ——>
<!-- info on the CD group itself -—>

<!ELEMENT CDGroupName (#PCDATA) >

<!ELEMENT CDGroupVersion (#PCDATA) >

<!ELEMENT CDGroupRevision (#PCDATA) >

<!ELEMENT CDGroupURL (#PCDATA) >

<!ELEMENT CDGroupDescription (#PCDATA) >
<!-- info on the CDs in the group -->
<!ELEMENT CDComment (#PCDATA) >

<!ELEMENT CDGroupMember (CDComment?,CDName, CDVersion?, CDURL?) >
<!ELEMENT CDName (#PCDATA) >

<!ELEMENT CDVersion (#PCDATA) >
<!ELEMENT CDURL (#PCDATA) >
<!-- structure of the group -->

<!ELEMENT CDGroup
(CDGroupName, CDGroupVersion, CDGroupRevision?,
CDGroupURL, CDGroupDescription,
(CDGroupMember | CDComment)*) >

<!-- end of DID for OM CDGroup -—>

Figure 5.3: DTD Specification of CDGroups

Page 40 of 81 The OpenMath Standard

ESPRIT project 24969: OpenMath

CDVersion The text occurring in the CDVersion element identifies which version of the
Content Dictionary isto be taken as member of the CDGroup. This element is op-
tional. In case it is missing, the latest version is the one included in the CDGroup.
For the syntactical requirements, see CDVersion in Section 5.3.2.

CDURL The text occurring in the CDURL element identifies the location of the Content Dic-
tionary to be taken as member of the CDGroup. This element is optional. In case
it is missing, the location of the CDGroup identified by the element CDGroupURL is
assumed. For the syntactical requirements, see CDURL in Section 5.3.2.

CDComment See CDComment in Section 5.3.2.

5.5 Content Dictionaries Reviewing Process

The OpenMath Society is responsible for implementing a review and referee process to
assess the accuracy of the mathematical content of Content Dictionaries. The status (see
CDStatus) and/or the version number (see CDVersion) of a Content Dictionary may change
as a result of this review process.

The OpenMath Standard Page 41 of 81

Chapter 6

OpenMath Compliance

Applications that meet the requirements specified in this chapter may label themselves as
OpenMath compliant. OpenMath compliancy is defined so as to maximize the potential for
interoperability amongst OpenMath applications.

6.1 Encoding

This standard defines two reference encodings for OpenMath, the binary encoding and XML
encoding, defined in chapter Chapter 4.

As a minimum, an OpenMath compliant application, which accepts or generates OpenMath
objects, must be capable of doing so using the XML encoding. The ability to use other
encodings is optional.

6.2 Content Dictionaries

An OpenMath compliant application must be able to support the error Content Dictionary
defined in Appendix A.5.

A compliant application must declare the names and version numbers of the Content Dic-
tionaries that it supports. Equivalently it may declare the Content Dictionary Group (or
groups) and major version number (not revision number), rather than listing individual
Content Dictionaries. Applications that support all Content Dictionaries (e.g. renderers)
should refer to the implicit CD Group all.

If a compliant application supports a Content Dictionary then it must explicitly declare any
symbols in the Content Dictionaries that are not supported. Phrasebooks are encouraged
to support every symbol in the Content Dictionaries.

Page 42 of 81

ESPRIT project 24969: OpenMath

Symbols which are not listed as unsupported are supported by the application. The meaning
of supported will depend on the application domain. For example an OpenMath renderer
should provide a default display for any OpenMath object that only references supported
symbols, whereas a Computer Algebra System will be expected to map such an object to a
suitable internal representation, in this system, of this mathematical object. It is expected
that the application’s phrasebooks for supported Content Dictionaries will be constructed
such that propertes of the symbol expressed in the Content Dictionary are respected as
far as possible for the given application domain. However OpenMath compliance does not
imply any guarantee by the OpenMath Society on the accuracy of these representations.

Content Dictionaries available from the official OpenMath repository at www.openmath.org
need only be referenced by name, other Content Dictionaries should be referenced by the
URL declared in the CDURL field of the Dictionary. This URL may be used to retrieve the
Content Dictionary.

When receiving an OpenMath symbol, e.g. s, that is not supported from a supported
Content Dictionary, a compliant application will act as if it had received the OpenMath
object

error(Unhandled_Symbol, s)

where Unhandled_Symbol is the symbol from the error Content Dictionary.

Similarly if it receives a symbol, e.g. s, from an unsupported Content Dictionary, it will
act as if it had received the OpenMath object

error(Unsupported_CD, s)

Finally if the compliant application receives a symbol from a supported Content Dictionary
but with an unknown name, then this must either be an incorrect object, or possibly the
object has been built using a later version of the Content Dictionary. In either case, the
application will act as if it had received the OpenMath object

error(Unexpected_Symbol, s)

6.3 Lexical Errors

The previous section defines the behaviour of a compliant application upon receiving well
formed OpenMath objects containing unexpected symbols. This standard does not specify
any behaviour for an application upon receiving ill-formed objects.

The OpenMath Standard Page 43 of 81

Chapter 7

Conclusion

The goal of this document is to define the OpenMath standard. The things are addressed
by the OpenMath standard are:

e Informal and formal definition of the OpenMath objects.

e Informal and formal definition of the notion of Content Dictionaries.

To do this, OpenMath objects are precisely defined and two encodings are described to
represent these objects using XML and binary code. Furthermore, the Document Type
Definition for validating Content Dictionaries and OpenMath objects is given.

Page 44 of 81

Appendix A

CD Files

Page 45 of 81

ESPRIT project 24969: OpenMath

A.1 The meta Content Dictionary

<CD>
<CDName> meta </CDName>
<Description>

This is a content dictionary to represent content dictionaries, so
that they may be passed between OpenMath compliant application in a
similar way to mathematical objects. It is acknowledged that this is
not the only way to do this, but it seems a natural way.

This can be viewed as updating the previous Meta-CD.

The information written here is taken from "The OpenMath Standard".
This document is a slightly stronger statement than "the following
symbols are defined as in the DID at
http://www.nag.co.uk/projects/OpenMath/omstd/dtds/cd.dtd", since the
DTD often only says that the information inside the elements is PCDATA
without saying what this actually corresponds to. However this is the
only way this document is better than the DTD, and thus this is the
only extra information we give here.

Author: N. Howgrave-Graham
</Description>

<CDReviewDate> 1998-10-01 </CDReviewDate>
<CDStatus> experimental </CDStatus>
<CDURL> http://www.nag.co.uk/projects/OpenMath/omstd/cds/meta.ocd </CDURL>

<CDComment>
This is how one uses comments.

This whole document must be valid XML which means that we cannot have
sub-elements inside elements where we are expecting PCDATA. For this
reason it is suggested that one use the unicode characters when
clashes occur. For example < and > for less than and more than.
</CDComment>

<CDDefinition>
<Name> CD </Name>
<Description>

Page 46 of 81 The OpenMath Standard

ESPRIT project 24969: OpenMath

The DTD fully specifies the use of the CD tag
</Description>
</CDDefinition>

<CDDefinition>

<Name> CDDescription </Name>

<Description>

The DTD fully specifies the use of the CDDescription tag
</Description>

</CDDefinition>

<CDComment>
For those that do not have access to the DTD, the tagged entries
are the following (in no particular order):

&1t ;CD>

&1t ;CDName> </CDName>

&1t ;Description> </Description>
&1t ;CDReviewDate> &1lt;/CDReviewDate>
&1t ;CDStatus> &1lt;/CDStatus>

&1t ;CDURL>? </CDURL>

&1t ;CDUses>? &1t ;CDUses>

&1t ;CDDefinition>*

&1t ;Name> </Name>
&1t;Description> &1t;/Description>
&1t;Signature>? </Signature>

&1t ;Example>* </Example>

&1t ;FMP>* </FMP>

&1t ;CMP>* &1t;/CMP>
&1t;Presentation>? </Presentation>
&1t;/CDDefinition>

where an asterisk (7) denotes it can repeated O or 1 times, and a star
(*) denotes 0 or more times.
</CDComment >

<CDDefinition>

<Name> CDName </Name>

<Description>

A tag which contains PCDATA corresponding to the name of the CD.
</Description>

</CDDefinition>

<CDDefinition>

The OpenMath Standard Page 47 of 81

ESPRIT project 24969: OpenMath

<Name> CDURL </Name>

<Description>

An optional tag which contains PCDATA corresponding to the URL where
the CD is stored.

</Description>

</CDDefinition>

<CDDefinition>

<Name> Example </Name>

<Description>

A tag which contains PCDATA to give an example of the
enclosing symbol definition.

</Description>

</CDDefinition>

<CDDefinition>

<Name> CDReviewDate </Name>

<Description>

A tag which contains PCDATA to give an expiry date of

the CD. It should be in the form of IS0-8601, i.e. YYYY-MM-DD
</Description>

</CDDefinition>

<CDDefinition>

<Name> CDStatus </Name>

<Description>

A tag which contains PCDATA to give information on the

status of the CD. This can be either official (approved by the
OpenMath steering committee), experimental (currently being tested),
private (used by a private group of OpenMath users) or obsolete

(an obsolete CD kept only for archival purposes).

</Description>

</CDDefinition>

<CDDefinition>

<Name> CDUses </Name>

<Description>

A tag which contains zero or more CDNames which correspond

to the CD’s that this CD depends on. This makes an inheritance
structure for CD’s. If the CD is dependent on any other CD’s they must
be present here.

</Description>

</CDDefinition>

Page 48 of 81 The OpenMath Standard

ESPRIT project 24969: OpenMath

<CDDefinition>

<Name> CDTypeUses </Name>

<Description>

A tag which contains zero or more CDNames which correspond

to the CD’s that hold type information that this CD depends on. This
makes an inheritance type structure for CD’s. If the CD types are
dependent on any other CD’s they must be present here. For application
that do not respect types, this symbol can be ignored.

</Description>

</CDDefinition>

<CDDefinition>

<Name> Description </Name>

<Description>

A tag which contains PCDATA corresponding to the

description of either the CD or the symbol (depending on which is the
enclosing element) .

</Description>

</CDDefinition>

<CDDefinition>

<Name> Name </Name>

<Description>

A tag which contains PCDATA corresponding to the name of
the symbol being defined.

</Description>

</CDDefinition>

<CDDefinition>

<Name> Signature </Name>

<Description>

An optional tag which contains PCDATA corresponding to

the type of the symbol being defined. This type information will be

an OpenMath type object as defined in chapter 5 of "First Draft of the
OpenMath Standard".

</Description>

</CDDefinition>

<CDDefinition>

<Name> Presentation </Name>

<Description>

An optional tag (which may be repeated many times) which contains
PCDATA corresponding to a way of presenting the symbol being defined.
</Description>

The OpenMath Standard Page 49 of 81

ESPRIT project 24969: OpenMath

</CDDefinition>

<CDDefinition>

<Name> CMP </Name>

<Description>

An optional tag (which may be repeated many times) which contains
PCDATA corresponding to a property of the symbol being

defined.

</Description>

</CDDefinition>

<CDDefinition>

<Name> FMP </Name>

<Description>

An optional tag (which may be repeated many times) which contains
PCDATA corresponding to a property of the symbol being

defined. This property must be a valid OpenMath object.
</Description>

</CDDefinition>

</CD>

Page 50 of 81 The OpenMath Standard

ESPRIT project 24969: OpenMath

A.2 The arithl Content Dictionary File

<CD>
<CDName> arithl </CDName>
<CDURL> http://www.openmath.org/cd/arithl.ocd </CDURL>
<CDReviewDate> 2003-04-01 </CDReviewDate>
<CDStatus> official </CDStatus>
<CDDate> 2001-03-12 </CDDate>
<CDVersion> 2 </CDVersion>
<CDRevision> 0 </CDRevision>
<CDUses>
<CDName>alg1</CDName>
<CDName>fns1</CDName>
<CDName>integer1</CDName>
<CDName>intervali</CDName>
<CDName>1inalg2</CDName>
<CDName>logic1</CDName>
<CDName>quant1</CDName>
<CDName>relationi</CDName>
<CDName>set1</CDName>
<CDName>setname1</CDName>
<CDName>transc1</CDName>
</CDUses>

<Description>
This CD defines symbols for common arithmetic functions.
</Description>

<CDDefinition>

<Name> lcm </Name>

<Description>

The symbol to represent the n-ary function to return the least common
multiple of its arguments.

</Description>

<CMP> lcm(a,b) = ax*b/gcd(a,b) </CMP>

<FMP>
<0MOBJ>
<OMA>
<0OMS cd="relationl" name="eq"/>
<0OMA>
<0MS cd="arithl" name="lcm"/>

The OpenMath Standard Page 51 of 81

ESPRIT project 24969: OpenMath

<OMV name="a"/>
<0OMV name="b"/>
</0MA>
<0MA>
<0MS cd="arithl" name="divide"/>
<0MA>
<0MS cd="arithl" name="times"/>
<0OMV name="a"/>
<0OMV name="b"/>
</0MA>
<0OMA>
<OMS cd="arithl" name="gcd"/>
<OMV name="a"/>
<OMV name="b"/>
</0MA>
</0MA>
</0MA>
</0MOBJ>
</FMP>
<CMP>
for all integers a,b |
There does not exist a c>0 such that c/a is an Integer and c/b is an
Integer and lcm(a,b) > c.
</CMP>

<FMP>
<0MOBJ>
<0OMBIND>
<OMS cd="quantl" name="forall"/>
<0OMBVAR>
<0MV name="a"/>
<0OMV name="b"/>
</0MBVAR>
<0OMA>
<OMS cd="logicl" name="implies"/>
<0MA>
<0MS cd="logicl" name="and"/>
<0OMA>
<OMS cd="setl1" name="in"/>
<OMV name="a"/>
<0MS cd="setnamel" name="Z"/>
</0MA>
<0MA>
<0OMS cd="setl1" name="in"/>

Page 52 of 81 The OpenMath Standard

ESPRIT project 24969

: OpenMath

<0MV name="b"/>
<0OMS cd="setnamel" name="Z"/>
</0MA>
</0MA>
<0OMA>
<0MS cd="logicl" name="not"/>
<0MBIND>
<OMS cd="quantl" name="exists"/>
<OMBVAR>
<0MV name="c"/>
</0MBVAR>
<0MA>
<0MS cd="logicl" name="and"/>
<0OMA>
<0MS cd="relationl" name="gt"/>
<OMV name="c"/>
<0MI>0</0MI>
</0MA>
<0MA>
<OMS cd="integerl" name="factorof"/>
<0MV name="a"/>
<OMV name="c"/>
</0MA>
<0MA>
<OMS cd="integerl" name="factorof"/>
<0OMV name="b"/>
<OMV name="c"/>
</0MA>
<0MA>
<0MS cd="relationl" name="1t"/>
<0OMV name="c"/>
<0MA>
<0MS cd="arithl" name="lcm"/>
<0MV name="a"/>
<OMV name="b"/>
</0MA>
</0MA>
</0MA>
</0OMBIND>
</0MA>
</0MA>
</0MBIND>
</0M0OBJ>
</FVMP>

The OpenMath Standard

Page 53 of 81

ESPRIT project 24969: OpenMath

</CDDefinition>

<CDDefinition>
<Name> gcd </Name>
<Description>

The symbol to represent the n-ary function to return the gcd (greatest

common divisor) of its arguments.
</Description>

<CMP>
for all integers a,b |

There does not exist a c such that a/c is an Integer and b/c is an

Integer and c > gcd(a,b).

Note that this implies that gcd(a,b) > 0

</CMP>

<FMP>
<0MOBJ>
<0OMBIND>
<0MS cd="quantl" name="forall"/>
<0OMBVAR>
<0MV name="a"/>
<0OMV name="b"/>
</0MBVAR>
<0MA>
<OMS cd="logicl" name="implies"/>
<0OMA>
<OMS cd="logicl" name="and"/>
<0OMA>
<0OMS cd="setl1" name="in"/>
<0MV name="a"/>
<0OMS cd="setnamel" name="Z"/>
</0MA>
<0OMA>
<OMS cd="setl1" name="in"/>
<0OMV name="b"/>
<0MS cd="setnamel" name="Z"/>
</0MA>
</0MA>
<0OMA>
<0OMS cd="logicl" name="not"/>
<OMBIND>

<0MS cd="quantl" name="exists"/>

Page 54 of 81

The OpenMath Standard

ESPRIT project 24969

: OpenMath

<OMBVAR>
<0OMV name="c"/>
</0OMBVAR>
<0OMA>
<OMS cd="logicl" name="and"/>
<0OMA>
<OMS cd="setl1" name="in"/>
<0OMA>
<0MS cd="arithl" name="divide"/>
<0MV name="a"/>
<OMV name="c"/>
</0MA>
<0OMS cd="setnamel" name="Z"/>
</0MA>
<0OMA>
<OMS cd="setl1" name="in"/>
<0OMA>
<0MS cd="arithl" name="divide"/>
<0MV name="b"/>
<OMV name="c"/>
</0MA>
<0OMS cd="setnamel" name="Z"/>
</0MA>
<0OMA>
<OMS cd="relationl" name="gt"/>
<OMV name="c"/>
<0MA>
<OMS cd="arithl" name="gcd"/>
<OMV name="a"/>
<0OMV name="b"/>
</0MA>
</0MA>
</0MA>
</0OMBIND>
</0MA>
</0MA>
</0OMBIND>
</0MOBJ>
</FMP>

<Example>

gcd(6,9) = 3

<0MOBJ>
<OMA>

The OpenMath Standard

Page 55 of 81

ESPRIT project 24969: OpenMath

<OMS cd="relationl" name="eq"/>
<0OMA>
<0MS cd="arithl" name="gcd"/>
<OMI> 6 </0OMI>
<OMI> 9 </0OMI>
</0MA>
<OMI> 3 </0MI>
</0MA>
</0MOBJ>
</Example>
</CDDefinition>

<CDDefinition>
<Name> plus </Name>
<Description>
The symbol representing an n-ary commutative function plus.
</Description>
<CMP> for all a,b | a + b =Db + a </CMP>
<FMP>
<0OMOBJ>
<OMBIND>
<0OMS cd="quantl1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</0MBVAR>
<OMA>
<0OMS cd="relationl" name="eq"/>
<0OMA>
<OMS cd="arithl" name="plus"/>
<OMV name="a"/>
<OMV name="b"/>
</0MA>
<0MA>
<0MS cd="arithl" name="plus"/>
<OMV name="b"/>
<OMV name="a"/>
</0MA>
</0MA>
</0OMBIND>
</0MOBJ>
</FMP>
</CDDefinition>

Page 56 of 81 The OpenMath Standard

ESPRIT project 24969: OpenMath

<CDDefinition>
<Name> unary_minus </Name>
<Description>
This symbol denotes unary minus, i.e. the additive inverse.
</Description>
<CMP> for all a | a + (-a) = 0 </CMP>
<FMP>
<0OMOBJ>
<OMBIND>
<0MS cd="quantl" name="forall"/>
<OMBVAR>
<OMV name="a"/>
</0MBVAR>
<0MA>
<0OMS cd="relationl" name="eq"/>
<OMA>
<0OMS cd="arithl" name="plus"/>
<OMV name="a"/>
<0OMA>
<OMS cd="arithl" name="unary_minus"/>
<OMV name="a"/>
</0MA>
</0MA>
<0MS cd="algl" name="zero"/>
</0MA>
</0MBIND>
</0MOBJ>
</FMP>
</CDDefinition>

<CDDefinition>
<Name> minus </Name>
<Description>
The symbol representing a binary minus function. This is equivalent to
adding the additive inverse.
</Description>
<CMP> for all a,b | a - b =a + (-b) </CMP>
<FMP>
<0M0BJ>
<OMBIND>
<0MS cd="quantl" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>

The OpenMath Standard Page 57 of 81

ESPRIT project 24969: OpenMath

</0MBVAR>
<0OMA>
<0OMS cd="relationl" name="eq"/>
<0OMA>
<OMS cd="arith1" name="minus"/>
<OMV name="a"/>
<0OMV name="b"/>
</0MA>
<0MA>
<OMS cd="arithl" name="plus"/>
<OMV name="a"/>
<0OMA>
<0MS cd="arithl" name="unary_minus"/>
<0MV name="b"/>
</0MA>
</0MA>
</0MA>
</0MBIND>
</0MOBJ>
</FMP>
</CDDefinition>

<CDDefinition>
<Name> times </Name>
<Description>
The symbol representing an n-ary multiplication function.
</Description>
<Example>
<0OMOBJ>
<0OMA>
<0OMS cd="relationl" name="eq"/>
<0OMA>
<0OMS cd="arithl" name="times"/>
<0OMA>
<0OMS cd="linalg2" name="matrix"/>
<OMA>
<OMS cd="linalg2" name="matrixrow"/>
<OMI> 1 </0OMI>
<OMI> 2 </0MI>
</0MA>
<0OMA>
<OMS cd="linalg2" name="matrixrow"/>
<OMI> 3 </0MI>
<OMI> 4 </0MI>

Page 58 of 81 The OpenMath Standard

ESPRIT project 24969

: OpenMath

</0MA>
</0MA>
<0MA>
<OMS cd="linalg2" name="matrix"/>
<OMA>
<0MS cd="1linalg2" name="matrixrow"/>
<OMI> 5 </0MI>
<OMI> 6 </0MI>
</0MA>
<0MA>
<0OMS cd="1linalg2" name="matrixrow"/>
<OMI> 7 </0OMI>
<OMI> 8 </OMI>
</0MA>
</0MA>
</0MA>
<0OMA>
<0OMS cd="linalg2" name="matrix"/>
<0OMA>
<0OMS cd="linalg2" name="matrixrow"/>
<OMI> 19 </0MI>
<OMI> 20 </0OMI>
</0MA>
<0OMA>
<OMS cd="linalg2" name="matrixrow"/>
<OMI> 43 </0MI>
<OMI> 50 </0OMI>
</0MA>
</0MA>
</0MA>
</0MOBJ>
</Example>
<CMP> for all a,b | a* 0 =0and a *b=a* (b - 1) + a </CMP>

<FMP><0OMOBJ>
<OMBIND>
<0OMS cd="quantl" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</0MBVAR>
<0OMA>
<0MS cd="logicl" name="and"/>
<0OMA>

The OpenMath Standard

Page 59 of 81

ESPRIT project 24969: OpenMath

<OMS cd="relationl" name="eq"/>
<0OMA>
<OMS cd="arith1" name="times"/>
<OMV name="a"/>
<0MS cd="algl" name="zero"/>
</0MA>
<0OMS cd="algl" name="zero"/>
</0MA>
<0OMA>
<OMS cd="relationl" name="eq"/>
<0OMA>
<0OMS cd="arith1" name="times"/>
<OMV name="a"/>
<0MV name="b"/>
</0MA>
<0OMA>
<OMS cd="arithl" name="plus"/>
<0OMA>
<0MS cd="arithl" name="times"/>
<0OMV name="a"/>
<0MA>
<0MS cd="arithl1" name="minus"/>
<0MV name="b"/>
<0MS cd="algl" name="one"/>
</0MA>
</0MA>
<0MV name="a"/>
</0MA>
</0MA>
</0MA>
</0MBIND>
</0M0OBJ></FMP>

<CMP> for all a,b,c | a*(b+c) = a*b + axc </CMP>
<FMP><(0MOBJ>
<OMBIND>
<0OMS cd="quantl" name="forall"/>
<0MBVAR>
<0MV name="a"/>
<0MV name="b"/>
<0OMV name="c"/>
</0MBVAR>
<0OMA>
<0OMS cd="relationl" name="eq"/>

Page 60 of 81 The OpenMath Standard

ESPRIT project 24969: OpenMath

<0OMA>
<0OMS cd="arithl1" name="times"/>
<0OMV name="a"/>
<0OMA>
<OMS cd="arithl" name="plus"/>
<OMV name="b"/>
<0OMV name="c"/>
</0MA>
</0MA>
<0OMA>
<OMS cd="arithl" name="plus"/>
<0OMA>
<0MS cd="arithl" name="times"/>
<0MV name="a"/>
<OMV name="b"/>
</0MA>
<0OMA>
<0MS cd="arithl" name="times"/>
<0MV name="a"/>
<0OMV name="c"/>
</0OMA>
</0MA>
</0MA>
</0OMBIND>
</0MOBJ></FMP>
</CDDefinition>

<CDDefinition>
<Name> divide </Name>
<Description>
This symbol represents a (binary) division function denoting the first argument
right-divided by the second, i.e. divide(a,b)=axinverse(b). It is the
inverse of the multiplication function defined by the symbol times in this CD.
</Description>
<CMP> whenever not(a=0) then a/a = 1 </CMP>
<FMP>
<0MOBJ>
<OMBIND>
<0OMS cd="quantl" name="forall"/>
<OMBVAR>
<OMV name="a"/>
</0OMBVAR>
<0OMA>
<0OMS cd="logicl" name="implies"/>

The OpenMath Standard Page 61 of 81

ESPRIT project 24969: OpenMath

<0MA>
<OMS cd="relationl" name="neq"/>
<0OMV name="a'"/>
<OMS cd="algl" name="zero"/>
</0MA>
<0OMA>
<0OMS cd="relationl" name="eq"/>
<0MA>
<0MS cd="arithl" name="divide"/>
<0MV name="a"/>
<OMV name="a"/>
</0MA>
<0MS cd="algl" name="one"/>
</0MA>
</0MA>
</0MBIND>
</0MOBJ>
</FMP>
</CDDefinition>

<CDDefinition>
<Name> power </Name>
<Description>

This symbol represents a power function. The first argument is raised
to the power of the second argument. When the second argument is not
an integer, powering is defined in terms of exponentials and

logarithms for the complex and real numbers.
This operator can represent general powering.

</Description>

<CMP>
x\in C implies x"a = exp(a 1ln x)
</CMP>

<FMP>
<0MOBJ>
<0OMA>
<OMS cd="logicl" name="implies"/>
<0OMA>
<0MS cd="setl1" name="in"/>
<0MV name="x"/>
<0MS cd="setnamel" name="C"/>
</0MA>
<0OMA>

Page 62 of 81

The OpenMath Standard

ESPRIT project 24969

: OpenMath

<0MS cd="relationl" name="eq"/>
<0MA>
<OMS name="power" cd="arithi"/>
<0MV name="x"/>
<0MV name="a"/>
</0MA>
<0MA>
<0MS name="exp" cd="transcl"/>
<0MA>
<0MS name="times" cd="arithl"/>
<OMV name="a"/>
<0MA>
<0OMS name="1ln" cd="transcl"/>
<0OMV name="x"/>
</0MA>
</0MA>
</0MA>
</0MA>
</0MA>
</0MOBJ>
</FMP>

<CMP>
if n is an integer then
x"0 =1,
Xx"n = x * x"(n-1)
</CMP>
<FMP>
<0MOBJ>
<0MA>
<0MS cd="logicl" name="implies"/>
<0MA>
<0OMS cd="setl" name="in"/>
<OMV name="n"/>
<0OMS cd="setnamel" name="Z"/>
</0MA>
<0MA>
<OMS cd="logicl" name="and"/>
<0MA>
<OMS cd="relationl" name="eq"/>
<0MA>
<0OMS cd="arithl" name="power"/>
<OMV name="x"/>
<0OMI>0</0MI>

The OpenMath Standard

Page 63 of 81

ESPRIT project 24969: OpenMath

</0MA>
<0OMS cd="algl" name="one"/>
</0MA>
<0OMA>
<OMS cd="relationl" name="eq"/>
<0OMA>
<0OMS cd="arithl" name="power"/>
<OMV name="x"/>
<OMV name="n"/>
</0MA>
<0OMA>
<OMS cd="arithl" name="times"/>
<OMV name="x"/>
<0MA>
<0MS cd="arithl" name="power"/>
<OMV name="x"/>
<0OMA>
<0MS cd="arithl" name="minus"/>
<OMV name="n"/>
<OMI>1</0MI>
</0MA>
</0MA>
</0MA>
</0MA>
</0MA>
</0MA>
</0MOBJ>
</FMP>
<Example>
<0OMOBJ>
<0OMA>
<OMS cd="relationl" name="eq"/>
<OMA>
<OMS cd="arithl" name="power"/>
<0OMA>
<0OMS cd="linalg2" name="matrix"/>
<0OMA>
<OMS cd="linalg2" name="matrixrow"/>
<OMI> 1 </0MI>
<OMI> 2 </0MI>
</0MA>
<0OMA>
<0OMS cd="linalg2" name="matrixrow"/>
<OMI> 3 </0MI>

Page 64 of 81

The OpenMath Standard

ESPRIT project 24969:

OpenMath

<OMI> 4 </0OMI>
</0MA>
</0MA>
<OMI>3</0MI>
</0MA>
<0OMA>
<OMS cd="linalg2" name="matrix"/>
<0OMA>
<OMS cd="linalg2" name="matrixrow"/>
<OMI> 37 </0MI>
<OMI> 54 </0OMI>
</0MA>
<0OMA>
<OMS cd="linalg2" name="matrixrow"/>
<OMI> 81 </OMI>
<OMI> 118 </OMI>
</0MA>
</0MA>
</0MA>
</0MOBJ>
</Example>
<Example>
<0MOBJ>
<0OMA>
<OMS cd="relationl" name="eq"/>
<OMA>
<0OMS cd="arithl" name="power"/>
<0MS cd="nums1" name="e"/>
<0OMA>
<0OMS cd="arithl" name="times"/>
<0MS cd="nums1" name="i"/>
<OMS cd="numsl1" name="pi"/>
</0MA>
</0MA>
<OMA>
<0MS cd="arithl" name="unary_minus"/>
<0MS cd="algl" name="one"/>
</0MA>
</0MA>
</0MOBJ>
</Example>
</CDDefinition>

<CDDefinition>

The OpenMath Standard

Page 65 of 81

ESPRIT project 24969: OpenMath

<Name> abs </Name>
<Description>

A unary operator which represents the absolute value of its

argument. The argument should be numerically valued.

In the complex case this is often referred to as the modulus.

</Description>
<CMP> for all x,y | abs(x) + abs(y) >= abs(x+y) </CMP>
<FMP>
<0MOBJ>
<OMBIND>
<0OMS cd="quantl1" name="forall"/>
<OMBVAR>
<OMV name="x"/>
<OMV name="y"/>
</0MBVAR>
<OMA>
<0MS cd="relationl" name="geq"/>
<0OMA>
<OMS cd="arithl" name="plus"/>
<0OMA>
<OMS cd="arithl" name="abs"/>
<OMV name="x"/>
<OMV name="y"/>
</0MA>
<0MA>
<0MS cd="arithl" name="abs"/>
<OMV name="x"/>
<OMV name="y"/>
</0MA>
</0MA>
<0OMA>
<OMS cd="arithl" name="abs"/>
<0OMA>
<0OMS cd="arithl" name="plus"/>
<OMV name="x"/>
<OMV name="y"/>
</0MA>
</0MA>
</0MA>
</0OMBIND>
</0MOBJ>
</FMP>
</CDDefinition>

Page 66 of 81

The OpenMath Standard

ESPRIT project 24969: OpenMath

<CDDefinition>

<Name> root </Name>

<Description>

A binary operator which represents its first argument "lowered" to its

n’th root where n is the second argument. This is the inverse of the operation
represented by the power symbol defined in this CD.

Care should be taken as to the precise meaning of this operator, in
particular which root is represented, however it is here to represent
the general notion of taking n’th roots. As inferred by the signature
relevant to this symbol, the function represented by this symbol is
the single valued function, the specific root returned is the one
indicated by the first CMP. Note also that the converse of the second
CMP is not valid in general.

</Description>

<CMP> x\in C implies root(x,n) = exp(ln(x)/n) </CMP>
<FMP>
<0MOBJ>
<0OMA>
<0MS cd="logicl" name="implies"/>
<0MA>
<OMS cd="setl1" name="in"/>
<0MV name="x"/>
<0MS cd="setnamel" name="C"/>
</0MA>
<0OMA>
<0OMS cd="relationl" name="eq"/>
<0OMA>
<0MS cd="arithl" name="root"/>
<OMV name="x"/>
<0MV name="n"/>
</0MA>
<0MA>
<0MS name="exp" cd="transcl"/>
<0MA>
<0OMS name="divide" cd="arithl"/>
<0MA>
<0MS name="1ln" cd="transcl"/>
<OMV name="x"/>
</0MA>
<0OMV name="n"/>
</0MA>
</0MA>

The OpenMath Standard Page 67 of 81

ESPRIT project 24969: OpenMath

</0MA>
</0MA>
</0MOBJ>
</FMP>

<CMP> for all a,n | power(root(a,n),n) = a (if the root exists!) </CMP>
<FMP>
<0M0OBJ>
<OMBIND>
<0MS cd="quantl" name="forall"/>
<0OMBVAR>
<0OMV name="a"/>
<0MV name="n"/>
</0MBVAR>
<0OMA>
<OMS cd="relationl" name="eq"/>
<0OMA>
<0OMS cd="arithl" name="power"/>
<OMA>
<0OMS cd="arith1" name="root"/>
<0MV name="a"/>
<OMV name="n"/>
</0MA>
<0MV name="n"/>
</0MA>
<OMV name="a"/>
</0MA>
</0OMBIND>
</0MOBJ>
</FMP>
</CDDefinition>

<CDDefinition>
<Name> sum </Name>
<Description>
An operator taking two arguments, the first being the range of summation,
e.g. an integral interval, the second being the function to be
summed. Note that the sum may be over an infinite interval.
</Description>
<Example>
This represents the summation of the reciprocals of all the integers between

Page 68 of 81 The OpenMath Standard

ESPRIT project 24969: OpenMath

1 and 10 inclusive.

<0MOBJ>
<0OMA>
<0MS cd="arithl" name="sum"/>
<0MA>
<0OMS cd="intervall" name="integer_interval"/>
<0OMI> 1 </0OMI>
<0MI> 10 </0OMI>
</0MA>
<0OMBIND>
<0OMS cd="fns1" name="lambda"/>
<0OMBVAR>
<0MV name="x"/>
</0OMBVAR>
<0MA>
<0MS cd="arith1" name="divide"/>
<0MI> 1 </0OMI>
<OMV name="x"/>
</0MA>
</0MBIND>
</0MA>
</0MOBJ>
</Example>
</CDDefinition>
<CDDefinition>
<Name> product </Name>
<Description>

An operator taking two arguments, the first being the range of multiplication
e.g. an integral interval, the second being the function to
be multiplied. Note that the product may be over an infinite interval.
</Description>
<Example>
This represents the statement that the factorial of n is equal to the product
of all the integers between 1 and n inclusive.
<0MOBJ>
<0OMA>
<0MS cd="relationl" name="eq"/>
<0OMA>
<OMS cd="integerl" name="factorial'/>
<OMV name="n" />
</0MA>
<0OMA>
<0OMS cd="arithl" name="product"/>

The OpenMath Standard Page 69 of 81

ESPRIT project 24969: OpenMath

<0OMA>
<0MS cd="intervall" name="integer_interval"/>
<0OMI> 1 </0OMI>
<0MV name="n"/>
</0MA>
<0OMBIND>
<OMS cd="fns1" name="lambda"/>
<0OMBVAR>
<0OMV name="i"/>
</0MBVAR>
<0MV name="i"/>
</0OMBIND>
</0MA>
</0MA>
</0MOBJ>
</Example>
</CDDefinition>

</CD>

Page 70 of 81 The OpenMath Standard

ESPRIT project 24969

: OpenMath

A.3 The arithl STS Signature File

<CDSignatures type="sts" cd="arithl">

<CDSComment>

Date: 1999-11-26
Author: David Carlisle
</CDSComment>

<Signature name="lcm" >
<0MOBJ>
<0OMA>
<0MS name="mapsto" cd="sts" />
<0OMA>
<0OMS name="nassoc" cd="sts"/>
<0OMV name="SemiGroup"/>
</0MA>
<OMV name="SemiGroup" />
</0MA>
</0MOBJ>
</Signature>

<Signature name="gcd" >
<0OMOBJ>
<0OMA>
<0MS name="mapsto" cd="sts" />
<0OMA>
<0MS name="nassoc" cd="sts"/>
<OMV name="SemiGroup"/>
</0MA>
<OMV name="SemiGroup" />
</0MA>
</0MOBJ>
</Signature>

<Signature name="plus">

<0OMOBJ>

<0OMA>
<0MS name="mapsto" cd="sts"/>
<0OMA>
<0OMS name="nassoc" cd="sts"/>
<0OMV name="AbelianSemiGroup"/>
</0MA>

The OpenMath Standard

Page 71 of 81

ESPRIT project 24969: OpenMath

<OMV name="AbelianSemiGroup"/>

</0MA>
</0MOBJ>
</Signature>

<Signature name="unary_minus">
<0OMOBJ>
<0OMA>
<0OMS name="mapsto" cd="sts"/>
<OMV name="AbelianGroup"/>
<0OMV name="AbelianGroup"/>
</0MA>
</0MOBJ>
</Signature>

<Signature name="minus">

<0MOBJ>

<0MA>
<0OMS name="mapsto" cd="sts"/>
<0OMV name="AbelianGroup"/>
<OMV name="AbelianGroup"/>
<0OMV name="AbelianGroup"/>
</0MA>

</0MOBJ>

</Signature>

<Signature name="times">
<OMOBJ>
<0OMA>
<OMS name="mapsto" cd="sts"/>
<0OMA>

<0MS name="nassoc" cd="sts"/>

<0OMV name="SemiGroup"/>
</0MA>
<OMV name="SemiGroup"/>
</0MA>
</0MOBJ>
</Signature>

<Signature name="divide">
<0OMOBJ>
<0MA>
<0MS name="mapsto" cd="sts"/>
<0OMV name="AbelianGroup"/>

Page 72 of 81

The OpenMath Standard

ESPRIT project 24969: OpenMath

<0OMV name="AbelianGroup"/>
<OMV name="AbelianGroup"/>
</0MA>
</0MOBJ>
</Signature>

<Signature name="power">

<0MOBJ>

<0MA>
<0MS name="mapsto" cd="sts"/>
<0OMS name="NumericalValue" cd="sts"/>
<0OMS name="NumericalValue" cd="sts"/>
<OMS name="NumericalValue" cd="sts"/>
</0MA>

</0MOBJ>

</Signature>

<Signature name="abs">

<0OMOBJ>

<0MA>
<0OMS name="mapsto" cd="sts"/>
<OMS name="C" cd="setnamel"/>
<0MS name="R" cd="setnamel"/>
</0MA>

</0MOBJ>

</Signature>

<Signature name="root">

<0M0BJ>

<0MA>
<0MS name="mapsto" cd="sts"/>
<0MS name="NumericalValue" cd="sts"/>
<0OMS name="NumericalValue" cd="sts"/>
<0OMS name="NumericalValue" cd="sts"/>
</0MA>

</0OMOBJ>

</Signature>

<Signature name="sum" >

<OMOBJ>

<OMA>
<0MS name="mapsto" cd="sts" />
<OMV name="IntegerRange" />

The OpenMath Standard

Page 73 of 81

ESPRIT project 24969: OpenMath

<0OMA>
<0OMS name="mapsto" cd="sts" />
<0OMS name="Z" cd="setnamel" />
<0OMV name="AbelianMonoid" />
</0MA>
<0MV name="AbelianMonoid" />
</0MA>
</0MOBJ>
</Signature>

<Signature name="product" >
<0MOBJ>
<0MA>
<OMS name="mapsto" cd="sts" />
<OMV name="IntegerRange" />
<0OMA>
<0OMS name="mapsto" cd="sts" />
<0OMS name="Z" cd="setnamel" />
<OMV name="AbelianMonoid" />
</0MA>
<OMV name="AbelianMonoid" />
</0MA>
</0OMOBJ>
</Signature>

</CDSignatures>

Page 74 of 81

The OpenMath Standard

ESPRIT project 24969: OpenMath

A.4 The MathML CDGroup

<CDGroup>

<CDGroupName>mathml</CDGroupName>

<CDGroupVersion> 2 </CDGroupVersion>

<CDGroupRevision> 0 </CDGroupRevision>

<CDGroupURL>
http://www.openmath.org/cdfiles/cdgroups/mathml . ocd</CDGroupURL>
<CDGroupDescription> MathML compatibility CD Group </CDGroupDescription>
<CDComment>This is the first version of the Core CD group.

It was created by D Carlisle based on MathML CD Group.</CDComment>
<CDComment>Algebra</CDComment>

<CDGroupMember>

<CDName>algl</CDName>
<CDURL>http://www.openmath.org/cd/algl.ocd</CDURL></CDGroupMember>
<CDComment>Arithmetic</CDComment>

<CDGroupMember>

<CDName>arith1</CDName>
<CDURL>http://www.openmath.org/cd/arithl.ocd</CDURL></CDGroupMember>
<CDComment>Constructor for Floating Point Numbers</CDComment>
<CDGroupMember>

<CDName>bigfloat1</CDName>
<CDURL>http://www.openmath.org/cd/bigfloatl.ocd</CDURL></CDGroupMember>
<CDComment>Calculus</CDComment>

<CDGroupMember>

<CDName>calculus1</CDName>
<CDURL>http://www.openmath.org/cd/calculusl.ocd</CDURL></CDGroupMember>
<CDComment>0perations on and constructors for complex numbers</CDComment>
<CDGroupMember>

<CDName>complex1</CDName>
<CDURL>http://www.openmath.org/cd/complexl.ocd</CDURL></CDGroupMember>
<CDComment>Functions on functions</CDComment>

<CDGroupMember>

<CDName>fns1</CDName>
<CDURL>http://www.openmath.org/cd/fns1.ocd</CDURL></CDGroupMember>
<CDComment>Integer arithmetic</CDComment>

<CDGroupMember>

<CDName>integer1</CDName>
<CDURL>http://www.openmath.org/cd/integerl.ocd</CDURL></CDGroupMember>
<CDComment>Intervals</CDComment>

<CDGroupMember>

<CDName>intervall</CDName>
<CDURL>http://www.openmath.org/cd/intervall.ocd</CDURL></CDGroupMember>

The OpenMath Standard Page 75 of 81

ESPRIT project 24969: OpenMath

<CDComment>Linear Algebra - vector & matrix constructors, those symbols which are
dependant of orientation, but in MathML</CDComment>

<CDGroupMember>

<CDName>linalgl</CDName>
<CDURL>http://www.openmath.org/cd/linalgl.ocd</CDURL></CDGroupMember>
<CDComment>Linear Algebra - vector & matrix constructors, those symbols which are
pendant of orientation, and in MathML</CDComment>

<CDGroupMember>

<CDName>1linalg2</CDName>
<CDURL>http://www.openmath.org/cd/linalg2.ocd</CDURL></CDGroupMember>
<CDComment>Limits of unary functions</CDComment>

<CDGroupMember>

<CDName>1imit1</CDName>
<CDURL>http://www.openmath.org/cd/1limitl.ocd</CDURL></CDGroupMember>
<CDComment>List constructors</CDComment>

<CDGroupMember>

<CDName>1ist1</CDName>
<CDURL>http://www.openmath.org/cd/listl.ocd</CDURL></CDGroupMember>
<CDComment>Basic logical operators</CDComment>

<CDGroupMember>

<CDName>logic1</CDName>
<CDURL>http://www.openmath.org/cd/logicl.ocd</CDURL></CDGroupMember>
<CDComment>

MathML Numerical Types

</CDComment>

<CDGroupMember>

<CDName>mathmltypes</CDName>
<CDURL>http://www.openmath.org/cd/mathmltypes.ocd</CDURL>
</CDGroupMember>

<CDComment>Minima and maxima</CDComment>

<CDGroupMember>

<CDName>minmax1</CDName>
<CDURL>http://www.openmath.org/cd/minmax1.ocd</CDURL></CDGroupMember>
<CDComment>Multset-theoretic operators and constructors</CDComment>
<CDGroupMember>

<CDName>multiset1</CDName>
<CDURL>http://www.openmath.org/cd/multisetl.ocd</CDURL></CDGroupMember>
<CDComment>Symbols for creating numbers, including some defined constants
(which can be seen as nullary constructors)</CDComment>
<CDGroupMember>

<CDName>nums1</CDName>
<CDURL>http://www.openmath.org/cd/nums1.ocd</CDURL></CDGroupMember>
<CDComment>Symbols for creating piecewise definitions</CDComment>
<CDGroupMember>

Page 76 of 81 The OpenMath Standard

ESPRIT project 24969: OpenMath

<CDName>piecel</CDName>
<CDURL>http://www.openmath.org/cd/piecel.ocd</CDURL></CDGroupMember>
<CDComment>The basic quantifiers forall and exists.</CDComment>
<CDGroupMember>

<CDName>quant1</CDName>
<CDURL>http://www.openmath.org/cd/quantl.ocd</CDURL></CDGroupMember>
<CDComment>Common arithmetic relations</CDComment>

<CDGroupMember>

<CDName>relation1</CDName>
<CDURL>http://www.openmath.org/cd/relationl.ocd</CDURL></CDGroupMember>
<CDComment>Number sets</CDComment>

<CDGroupMember>

<CDName>setname1</CDName>
<CDURL>http://www.openmath.org/cd/setnamel.ocd</CDURL></CDGroupMember>
<CDComment>Rounding</CDComment>

<CDGroupMember>

<CDName>rounding1</CDName>
<CDURL>http://www.openmath.org/cd/roundingl.ocd</CDURL></CDGroupMember>
<CDComment>Set-theoretic operators and constructors</CDComment>
<CDGroupMember>

<CDName>set1</CDName>
<CDURL>http://www.openmath.org/cd/setl.ocd</CDURL></CDGroupMember>
<CDComment>Basic data orientated statistical operators</CDComment>
<CDGroupMember>

<CDName>s_datal</CDName>
<CDURL>http://www.openmath.org/cd/s_datal.ocd</CDURL></CDGroupMember>
<CDComment>Basic random variable orientated statistical operators</CDComment>
<CDGroupMember>

<CDName>s_dist1</CDName>
<CDURL>http://www.openmath.org/cd/s_distl.ocd</CDURL></CDGroupMember>
<CDComment>Basic transcendental functions</CDComment>

<CDGroupMember>

<CDName>transc1</CDName>
<CDURL>http://www.openmath.org/cd/transcl.ocd</CDURL></CDGroupMember>
<CDComment>Vector calculus functions</CDComment>

<CDGroupMember>

<CDName>veccalc1</CDName>
<CDURL>http://www.openmath.org/cd/veccalcl.ocd</CDURL></CDGroupMember>
<CDComment>Alternative encoding symbols for compatibility with the MathML
Semantic mapping constructs.</CDComment>

<CDGroupMember>

<CDName>altenc</CDName>
<CDURL>http://www.openmath.org/cd/altenc.ocd</CDURL></CDGroupMember>
</CDGroup>

The OpenMath Standard Page 77 of 81

ESPRIT project 24969: OpenMath

A.5 The error Content Dictionary

<CD>

<CDName> error </CDName>

<CDURL> http://www.openmath.org/cd/error.ocd </CDURL>
<CDReviewDate> 2003-04-01 </CDReviewDate>
<CDStatus> official </CDStatus>

<CDDate> 2001-03-12 </CDDate>

<CDVersion> 2 </CDVersion>

<CDRevision> 0 </CDRevision>

<CDUses>

<CDName> arith1l </CDName>

<CDName> specfunl </CDName>

</CDUses>

<CDDefinition>

<Name> unhandled_symbol </Name>

<Description>

This symbol represents the error which is raised when an application
reads a symbol which is present in the mentioned content

dictionary, but which it has not implemented.

When receiving such a symbol, the application should act as if it had
received the OpenMath error object constructed from unhandled_symbol
and the unhandled symbol as in the example below.

</Description>

<Example>
The application does not implement the Complex numbers:
<0MOBJ>
<OME>
<0MS cd="error" name="unhandled_symbol"/>
<0MS cd="setnamel" name="C"/>
</0ME>
</0MOBJ>
</Example>
</CDDefinition>

<CDDefinition>

<Name> unexpected_symbol </Name>

<Description>

This symbol represents the error which is raised when an application
reads a symbol which is not present in the mentioned content dictionary.

Page 78 of 81 The OpenMath Standard

ESPRIT project 24969: OpenMath

When receiving such a symbol, the application should act as if it had
received the OpenMath error object constructed from unexpected_symbol
and the unexpected symbol as in the example below.
</Description>
<Example>
The application received a mistyped symbol
<0MOBJ>
<OME>
<0MS cd="error" name="unexpected_symbol"/>
<0OMS cd="arithl" name="plurse"/>
</0OME>
</0MOBJ>
</Example>
</CDDefinition>

<CDDefinition>

<Name> unsupported_CD </Name>

<Description>

This symbol represents the error which is raised when an application
reads a symbol where the mentioned content dictionary is not
present.

When receiving such a symbol, the application should act as if it had
received the OpenMath error object constructed from unsupported_CD and
the symbol from the unsupported Content Dictionary as in the example
below.
</Description>
<Example>
The application does not know about the CD specfunl
<0OMOBJ>
<OME>
<0MS cd="error" name="unsupported_CD"/>
<0MS cd="specfunl" name="BesselJ"/>
</0ME>
</0MOBJ>
</Example>
</CDDefinition>

</CD>

The OpenMath Standard Page 79 of 81

Bibliography

[1] John A. Abbott, André van Leeuwen and A. Strotmann OpenMath: Communicating
Mathematical Information between Co-operating Agents in a Knowledge Network.

[2] N. Borenstein and N Freed MIME (Multipurpose Internet Mail Extensions) Part One:
Mechanism for Specifying and Describing the Format of Internet Message Bodies

[3] Stephen Buswell, Stan Devitt, Angel Diaz, Nico Poppelier, Bruce Smith, Neil Soif-
fer, Robert Sutor and Stephen Watt Mathematical Markup Language (MathML) 1.0
Specification

[4] O. Caprotti and A. M. Cohen A Type System for OpenMath
[5] Olga Caprotti and Arjeh M. Cohen A Type System for OpenMath
[6] S. Dalmas, M. Gaétano and S. Watt An OpenMath 1.0 Implementation
[7] J. Davenport A Small OpenMath Type System
[8] IEEE Standard for binary Floating-Point Arithmetic
[9] ISO T7-bit coded character set for information interchange
[10] OpenMath Consortium OpenMath Version 1 - Draft

[11] Nico Poppelier, Robert Miner, Patrick Ion, David Carlisle, Ron Ausbrooks, Stephen
Buswell, Stéphane Dalmas, Stan Devitt, Angel Diaz, Roger Hunter, Bruce Smith, Neil
Soiffer, Robert Sutor and Stephen Watt Mathematical Markup Language (MathML)
2.0 Specification

[12] Technical committee / subcommittee: JTC 1 ISO 9660:1988 Information processing
—Volume and File Structure of CDROM for Information Interchange

[13] Unicode Consortium The Unicode Standard: Version 2.0
[14] W3C Namespaces in XML

[15] W3C Extensible Markup Language XML 1.0

[16] W3C Extensible Stylesheet Language (XSL) Specification

Page 80 of 81

ESPRIT project 24969: OpenMath

[17] F. Yergeau UTF-8, a transformation format of ISO 10646

The OpenMath Standard Page 81 of 81

	OpenMath Movement
	History
	OpenMath Society

	Introduction to OpenMath
	OpenMath Architecture
	OpenMath Objects and Encodings
	Content Dictionaries
	Additional Files
	Phrasebooks

	OpenMath Objects
	Formal Definition of OpenMath Objects
	Basic OpenMath objects
	Compound OpenMath Objects

	Further Description of OpenMath Objects
	Summary

	OpenMath Encodings
	The xml Encoding
	A Grammar for the xml Encoding
	Description of the Grammar
	Embedding OpenMath in XML Documents

	The Binary Encoding
	A Grammar for the Binary Encoding
	Description of the Grammar
	Sharing

	Implementation Note
	Example of Binary Encoding

	Summary

	Content Dictionaries
	Introduction
	Content Dictionaries
	The XML Encoding for Content Dictionaries
	The DTD Specification of Content Dictionaries
	Further Requirements of an OpenMath Content Dictionary

	Additional Information
	Signature Files
	The DTD Specification of Signature Files
	Further Requirements of a Signature File
	Examples

	CDGroups
	The DTD Specification of CDGroups
	Further Requirements of a CDGroup

	Content Dictionaries Reviewing Process

	OpenMath Compliance
	Encoding
	Content Dictionaries
	Lexical Errors

	Conclusion
	CD Files
	The meta Content Dictionary
	The arith1 Content Dictionary File
	The arith1 STS Signature File
	The MathML CDGroup
	The error Content Dictionary

