
The OpenMath Society

Editors’ Draft: Built 2019-08-03
Source Repository: https://github.com/OpenMath/OMSTD
This Version: https://openmath.github.io/standard/om20-editors-draft
Normative version: https://openmath.github.io/standard/om20-2017-07-22/

The OpenMath Standard 1

https://github.com/OpenMath/OMSTD
https://openmath.github.io/standard/om20-editors-draft
https://openmath.github.io/standard/om20-2017-07-22/

Version: 2.0r2
Date: July 2019

The OpenMath Standard

The OpenMath Society

Editors

S.Buswell, O.Caprotti, D.P.Carlisle, M.C.Dewar, M.Gaëtano,
M.Kohlhase, J.H.Davenport (revision 1), P.D.F.Ion (revision

1) and T.Wiesing (revision 2)

Editors’ Draft: Built 2019-08-03
Source Repository: https://github.com/OpenMath/OMSTD
This Version: https://openmath.github.io/standard/om20-editors-draft
Normative version: https://openmath.github.io/standard/om20-2017-07-22/

c© 2017 The OpenMath Society

https://github.com/OpenMath/OMSTD
https://openmath.github.io/standard/om20-editors-draft
https://openmath.github.io/standard/om20-2017-07-22/

The OpenMath Society

Abstract

This document describes version 2 revision 2 of OpenMath: a standard for the
representation and communication of mathematical objects. This revision clari-
fies the first OpenMath 2.0 [13]. OpenMath allows the meaning of an object to be
encoded rather than just a visual representation. It is designed to allow the free
exchange of mathematical objects between software systems and human beings.
On the worldwide web it is designed to allow mathematical expressions embed-
ded in web pages to be manipulated and used in computations in a meaningful
and correct way. It is designed to be machine-generatable and machine-readable,
rather than written by hand.
The OpenMath Standard is the official reference for the OpenMath language and
has been approved by the OpenMath Society. It is not intended as an introduc-
tory document or a user’s guide, for the latest available material of this nature,
and the latest version of the standard, please consult the OpenMath web-site at
http://www.openmath.org.
This document includes an overview of the OpenMath architecture, an abstract
description of OpenMath objects and two mechanisms for producing concrete
encodings of such objects. The first, in XML (either innate or Strict Content
MathML), is designed primarily for use on the web, in documents, and for appli-
cations which want to mix OpenMath as a content representation with MathML
as a presentation format. The second, a binary format, is designed for applica-
tions which wish to exchange very large objects, or a lot of data as efficiently as
possible. This document also includes a description of Content Dictionaries - the
mechanism by which the meaning of a symbol in the OpenMath language is en-
coded, as well as an XML encoding for them. Finally it includes guidelines for the
development of OpenMath-compliant applications. Further background on Open-
Math and guidelines for its use in applications may be found in the accompanying
Primer [14].

The OpenMath Standard iii

http://www.openmath.org

Contents

1 Introduction to OpenMath 5
1.1 OpenMath Architecture . 5
1.2 OpenMath Objects and Encodings . 5
1.3 Content Dictionaries . 7
1.4 Additional Files . 7
1.5 Phrasebooks . 7

2 OpenMath Objects 9
2.1 Formal Definition of OpenMath Objects . 9

2.1.1 Basic OpenMath objects . 9
2.1.2 Derived OpenMath Objects . 10
2.1.3 OpenMath Objects . 10
2.1.4 OpenMath Symbol Roles . 11

2.2 Further Description of OpenMath Objects . 12
2.3 Names . 15
2.4 Summary . 17

3 OpenMath Encodings 18
3.1 The XML Encoding . 18

3.1.1 A Schema for the XML Encoding . 19
3.1.2 Informal description of the XML Encoding 21
3.1.3 Some Notes on References . 26

3.1.3.1 An Acyclicity Constraint . 27
3.1.3.2 Sharing and Bound Variables 28

3.1.4 Embedding OpenMath in XML Documents 28
3.2 The Binary Encoding . 29

3.2.1 A Grammar for the Binary Encoding . 29
3.2.2 Description of the Grammar . 29
3.2.3 Example of Binary Encoding . 34
3.2.4 Sharing . 34

3.2.4.1 Sharing in Objects beginning with the identifier [24] 34
3.2.4.2 Sharing with References (beginning with [24+64]) 35

3.2.5 Implementation Note . 36

Page 1 of 135

The OpenMath Society

3.2.6 Relation to the OpenMath 1 binary encoding 37
3.3 The JSON encoding . 37

3.3.1 General Structure . 38
3.3.2 The Object Constructor . 38
3.3.3 OpenMath Symbols . 39
3.3.4 Variables . 39
3.3.5 Integers . 40

3.3.5.1 JSON Integers . 40
3.3.5.2 Decimal Integers . 40
3.3.5.3 Hexadecimal Integers . 41

3.3.6 Floats . 41
3.3.6.1 JSON Floats . 41
3.3.6.2 Decimal Floating Point Numbers 42
3.3.6.3 Hexadecimal Floats . 42

3.3.7 Bytes . 42
3.3.7.1 JSON Byte Arrays . 42
3.3.7.2 Base64-encoded bytes . 43

3.3.8 Strings . 43
3.3.9 Applications . 44
3.3.10 Attribution . 44
3.3.11 Binding . 45
3.3.12 Errors . 46
3.3.13 References and Structure Sharing . 47
3.3.14 Foreign Objects . 49

3.4 Summary . 49

4 Content Dictionaries 50
4.1 Introduction . 50
4.2 Abstract Content Dictionaries . 51

4.2.1 Content Dictionary Status . 52
4.2.2 Content Dictionary Version Numbers . 53

4.3 The Reference Encoding for Content Dictionaries 53
4.3.1 The Relax NG Schema for Content Dictionaries 53
4.3.2 Further Description of the CD Schema . 54

4.4 Additional Information . 56
4.4.1 Signature Dictionaries . 56

4.4.1.1 Abstract Specification of a Signature Dictionary 56
4.4.1.2 A Relax NG Schema for a Signature Dictionary 56
4.4.1.3 Examples . 58

4.4.2 CDGroups . 58
4.4.2.1 The Specification of CDGroups 58
4.4.2.2 Further Requirements of a CDGroup 60

4.5 Content Dictionaries Reviewing Process . 61

Page 2 of 135 The OpenMath Standard

The OpenMath Society

5 OpenMath Compliance 62
5.1 Encodings . 62

5.1.1 The XML Encoding . 62
5.1.1.1 Generating Valid XML . 62
5.1.1.2 Decimal versus Hexadecimal Float Representation 62

5.2 OpenMath Foreign Objects . 63
5.3 Content Dictionaries . 64
5.4 Lexical Errors . 66
5.5 OpenMath 1 Objects . 66

A CD Files 67
A.1 The meta Content Dictionary . 68
A.2 The arith1 Content Dictionary File . 74
A.3 The arith1 STS Signature File . 93
A.4 The MathML CDGroup . 97
A.5 The error Content Dictionary . 102

B OpenMath Schema in Relax NG XML Syntax (Normative) 105

C Restricting the OpenMath Schema (Non-Normative) 111

D OpenMath Schema in XSD Syntax (Non-Normative) 113

E OpenMath DTD (Non-Normative) 118

F OpenMath .d.ts (Normative) 122

G OpenMath .json Schema (Non-Normative) 124

H Changes between OpenMath 1.1 and OpenMath 2 (Non-Normative) 125
H.1 Changes to the Formal Definition of Objects . 126
H.2 Changes to the encodings . 127
H.3 Changes to Content Dictionaries . 128

I Revisions to OpenMath 2 (Non-Normative) 129
I.1 Changes in 2.0 Revision 1 (July 2017) . 130
I.2 Changes in 2.0 Revision 2 (August 2018) . 131
I.3 Changes in 2.0 Revision 3 (July 2019) . 132

J Bibliography 133

The OpenMath Standard Page 3 of 135

List of Figures

1.1 The OpenMath Architecture . 6

2.1 The OpenMath application and binding objects for sin(x) and λx.x+ 2 in tree-like
notation. 13

3.1 Shared vs. unshared representations . 26
3.2 Sharing between OpenMath objects (A cycle of order 2). 27
3.3 Grammar of the binary encoding of OpenMath objects. 30
3.4 Streaming a large Integer in the Binary Encoding. 32
3.5 A Simple example of the OpenMath binary encoding. 35
3.6 A binary encoding of the OpenMath object from Figure 3.1. 36

4.1 Relax NG Specification of CDGroups . 59

Page 4 of 135

Chapter 1

Introduction to OpenMath

This chapter briefly introduces OpenMath concepts and notions that are referred to in the rest of
this document.

1.1 OpenMath Architecture

The architecture of OpenMath is described in Figure 1.1 and summarizes the interactions among the
different OpenMath components. There are three layers of representation of a mathematical object.
The first is a private layer that is the internal representation used by an application. The second
is an abstract layer that is the representation as an OpenMath object. Note that these two layers
may, in some cases, be the same. The third is a communication layer that translates the OpenMath
object representation into a stream of bytes. An application dependent program manipulates the
mathematical objects using its internal representation, it can convert them to OpenMath objects and
communicate them by using the byte stream representation of OpenMath objects.

This standard does not describe the mechanisms by which software systems may offer, or make
use of, computational services. The currently-suggested mechanism is the Symbolic Computation
Software Composability Protocol (SCSCP) [8].

1.2 OpenMath Objects and Encodings

OpenMath objects are representations of mathematical entities that can be communicated among
various software applications in a meaningful way, that is, preserving their “semantics”.

OpenMath objects and encodings are described in detail in Chapter 2 and Chapter 3.

The standard endorses two encodings in XML (an innate one described here, and one in Strict
Content MathML), a binary format and a JSON encoding. At the time of writing, these are the
encodings supported by most existing OpenMath tools and applications, however they are not the

Page 5 of 135

The OpenMath Society

Figure 1.1: The OpenMath Architecture

Page 6 of 135 The OpenMath Standard

The OpenMath Society

only possible encodings of OpenMath objects. Users who wish to define their own encoding, are
free to do so provided that there is a well-defined correspondence between the new encoding and
the abstract model defined in Chapter 2.

1.3 Content Dictionaries

Content Dictionaries (CDs) are used to assign informal and formal semantics to all symbols used
in the OpenMath objects. They define the symbols used to represent concepts arising in a particular
area of mathematics.

The Content Dictionaries are public, they represent the actual common knowledge among Open-
Math applications. Content Dictionaries fix the “meaning” of objects independently of the appli-
cation. The application receiving the object may then recognize whether or not, according to the
semantics of the symbols defined in the Content Dictionaries, the object can be transformed to the
corresponding internal representation used by the application.

1.4 Additional Files

Several additional files are related to Content Dictionaries. Signature Dictionaries contain the sig-
natures of symbols defined in some OpenMath Content Dictionary and their format is endorsed by
this standard.

Furthermore, the standard fixes how to define a specific set of Content Dictionaries as a CDGroup.

Auxiliary files that define presentation and rendering or that are used for manipulating and process-
ing Content Dictionaries are not discussed by the standard.

1.5 Phrasebooks

The conversion of an OpenMath object to/from the internal representation in a software application
is performed by an interface program called a Phrasebook. The translation is governed by the Con-
tent Dictionaries and the specifics of the application. It is envisioned that a software application
dealing with a specific area of mathematics declares which Content Dictionaries it understands.
As a consequence, it is expected that the Phrasebook of the application is able to translate Open-
Math objects built using symbols from these Content Dictionaries to/from the internal mathematical
objects of the application.

OpenMath objects do not specify any computational behaviour, they merely represent mathematical
expressions. Part of the OpenMath philosophy is to leave it to the application to decide what it
does with an object once it has received it. OpenMath is not a query or programming language.
Because of this, OpenMath does not prescribe a way of forcing “evaluation” or “simplification” of

The OpenMath Standard Page 7 of 135

The OpenMath Society

objects like 2+ 3 or sin(π). Thus, the same object 2+ 3 could be transformed to 5 by a computer
algebra system, or displayed as 2+3 by a typesetting tool. For such a query/programming language,
the OpenMath Society recommends the Symbolic Computation Software Composability Protocol
(SCSCP) [8].

Page 8 of 135 The OpenMath Standard

Chapter 2

OpenMath Objects

In this chapter we provide a self-contained description of OpenMath objects. We first do so by
means of an abstract grammar description (Section 2.1) and then give a more informal description
(Section 2.2).

2.1 Formal Definition of OpenMath Objects

OpenMath represents mathematical objects as terms or as labelled trees that are called OpenMath
objects or OpenMath expressions. The definition of an abstract OpenMath object is then the fol-
lowing.

2.1.1 Basic OpenMath objects

The Basic OpenMath Objects form the leaves of the OpenMath Object tree. A Basic OpenMath
Object is of one of the following.

• (i) Integer.

Integers in the mathematical sense, with no predefined range. They are “infinite precision”
integers (also called “bignums” in computer algebra).
• (ii) IEEE floating point number.

Double precision floating-point numbers following the IEEE 754-1985 standard [26].
• (iii) Character string.

A Unicode Character string. This also corresponds to “characters” in XML.
• (iv) Bytearray.

A sequence of bytes.

Page 9 of 135

The OpenMath Society

• (v) Symbol.

A Symbol encodes three fields of information, a symbol name, a Content Dictionary name,
and (optionally) a Content Dictionary base URI, The name of a symbol is a sequence of
characters matching the regular expression described in Section 2.3. The Content Dictionary
is the location of the definition of the symbol, consisting of a name (a sequence of characters
matching the regular expression described in Section 2.3) and, optionally, a unique prefix
called a cdbase which is used to disambiguate multiple Content Dictionaries of the same
name. There are other properties of the symbol that are not explicit in these fields but whose
values may be obtained by inspecting the Content Dictionary specified. These include the
symbol definition, formal properties and examples and, optionally, a role which is a restriction
on where the symbol may appear in an OpenMath object. The possible roles are described in
Section 2.1.4.
• (vi) Variable.

A Variable must have a name which is a sequence of characters matching a regular expression,
as described in Section 2.3.

2.1.2 Derived OpenMath Objects

Derived OpenMath objects are currently used as a way by which non-OpenMath data is embedded
inside an OpenMath object. A derived OpenMath object is built as follows:

• (i) If A is not an OpenMath object, then foreign(A) is an OpenMath foreign object. An
OpenMath foreign object may optionally have an encoding field which describes how its
contents should be interpreted.

2.1.3 OpenMath Objects

OpenMath objects are built recursively as follows.

• (i) Basic OpenMath objects are OpenMath objects. (Note that derived OpenMath objects are
not OpenMath objects, but are used to construct OpenMath objects as described below.)
• (ii) If A1, . . . , An (n > 0) are OpenMath objects, then

application(A1, . . . ,An)

is an OpenMath application object. We call A1 the function and A2 to A1 the arguments.
• (iii) If S1, . . . ,Sn are OpenMath symbols, and A is an OpenMath object, and A1, . . . , An (n> 0)

are OpenMath objects or derived OpenMath objects, then

attribution(A,S1 A1, . . . ,Sn An)

Page 10 of 135 The OpenMath Standard

The OpenMath Society

is an OpenMath attribution object. We call A the attributed object, the Si the keys, and the Ai

the attribute values.

If the attributed object is a variable, the original attribution is called an attributed variable.
• (iv) If B and C are OpenMath objects, and v1, . . ., vn (n ≥ 0) are OpenMath variables or

attributed variables, then
binding(B,v1, . . . ,vn,C)

is an OpenMath binding object. B is called the binder, v1, . . ., vn are called variable bindings,
and C is called the body of the binding object above. To distinguish the two different ways
how variable objects are used, any variable object that is not a variable binding is called a
variable reference.
• (v) If S is an OpenMath symbol and A1, . . . , An (n ≥ 0) are OpenMath objects or derived

OpenMath objects, then
error(S,A1, . . . ,An)

is an OpenMath error object.

OpenMath objects that are constructed via rules (ii) to (v) are jointly called compound OpenMath
objects.

2.1.4 OpenMath Symbol Roles

We say that an OpenMath symbol is used to construct an OpenMath object if it is the first child
of an OpenMath application object, binding object or error object, or an even-indexed child of an
OpenMath attribution object (i.e. the keys in a (key, value) pair). The role of an OpenMath symbol
is a restriction on how it may be used to construct a compound OpenMath object and, in the case
of the key in an attribution object, a clarification of how that attribution should be interpreted. The
possible roles are:

(i) binder The symbol may appear as the first child of an OpenMath binding object.
(ii) attribution The symbol may be used as key in an OpenMath attribution object, i.e. as the first

element of a (key, value) pair, or in an equivalent context (for example to refer to the value of
an attribution). This form of attribution may be ignored by an application, so should be used
for information which does not change the meaning of the attributed OpenMath object.

(iii) semantic-attribution This is the same as attribution except that it modifies the meaning of the
attributed OpenMath object and thus cannot be ignored by an application, without changing
the meaning.

(iv) error The symbol may appear as the first child of an OpenMath error object.
(v) application The symbol may appear as the first child of an OpenMath OpenMath application

object.
(vi) constant The symbol cannot be used to construct an compound OpenMath object.

The OpenMath Standard Page 11 of 135

The OpenMath Society

A symbol cannot have more than one role and cannot be used to construct a compound OpenMath
object in a way which requires a different role (using the definition of construct given earlier in this
section). This means that one cannot use a symbol which binds some variables to construct, say, an
OpenMath application object. However it does not prevent the use of that symbol as an argument
in an OpenMath application object.

If no role is indicated then the symbol can be used anywhere. Note that this is not the same as
saying that the symbol’s role is constant.

2.2 Further Description of OpenMath Objects

Informally, an OpenMath object can be viewed as a tree and is also referred to as a term. The
objects at the leaves of OpenMath trees are called basic objects. The basic objects supported by
OpenMath are:

Integer Arbitrary Precision integers.
Float OpenMath floats are IEEE 754 Double precision floating-point numbers. Other types of float-

ing point number may be encoded in OpenMath by the use of suitable content dictionaries.
Character strings are sequences of characters. These characters come from the Unicode stan-

dard [16].
Bytearrays are sequences of bytes. There is no “byte” in OpenMath as an object of its own. How-

ever, a single byte can of course be represented by a bytearray of length 1. The difference
between strings and bytearrays is the following: a character string is a sequence of bytes
with a fixed interpretation (as characters, Unicode texts may require several bytes to code
one character), whereas a bytearray is an uninterpreted sequence of bytes with no intrinsic
meaning. Bytearrays could be used inside OpenMath errors to provide information to, for ex-
ample, a debugger; they could also contain intermediate results of calculations, or “handles”
into computations or databases.

Symbols are uniquely defined by the Content Dictionary in which they occur and by a name.
The form of these definitions is explained in Chapter 4. Each symbol has no more than
one definition in a Content Dictionary. Many Content Dictionaries may define differently a
symbol with the same name (e.g. the symbol union is defined as associative-commutative
set theoretic union in a Content Dictionary set1 but another Content Dictionary, multiset1
might define a symbol union as the union of multi-sets).

Variables are meant to denote parameters, variables or indeterminates (such as bound variables of
function definitions, variables in summations and integrals, independent variables of deriva-
tives).

Although foreign objects can come with a standarized encoding field, their interpretation is an
issue beyond the OpenMath standard. In particular, a foreign object is primarily data that has
been encoded in some format, and there is no promise that foreign objects encountered within one
encoding of OpenMath can be faithfully represented in another.

Page 12 of 135 The OpenMath Standard

The OpenMath Society

Figure 2.1: The OpenMath application and binding objects for sin(x) and λx.x + 2 in tree-like
notation.

Derived OpenMath objects are constructed from non-OpenMath data. They differ from bytearrays
in that they can have any structure. Currently there is only one way of making a derived OpenMath
object.

Foreign is used to import a non-OpenMath object into an OpenMath attribution. Examples of its
use could be to annotate a formula with a visual or aural rendering, an animation, etc. They
may also appear in OpenMath error objects, for example to allow an application to report an
error in processing such an object.

The four following constructs can be used to make compound OpenMath object out of basic or
derived OpenMath objects.

Application constructs an OpenMath object from a sequence of one or more OpenMath objects.
The first child of an application is referred to as its “head” while the remaining objects are
called its “arguments”. An OpenMath OpenMath application object can be used to convey
the mathematical notion of application of a function to a set of argument. For instance,
suppose that the OpenMath symbol sin is defined in a suitable Content Dictionary, then
application(sin,x) is the abstract OpenMath object corresponding to sin(x). More gener-
ally, an OpenMath OpenMath application object can be used as a constructor to convey a
mathematical object built from other objects such as a polynomial constructed from a set of
monomials. Constructors build inhabitants of some symbolic type, for instance the type of
rational numbers or the type of polynomials. The rational number, usually denoted as 1/2, is
represented by the OpenMath OpenMath application object application(Rational,1,2). The
symbol Rational must be defined, by a Content Dictionary, as a constructor symbol for the
rational numbers.

Binding objects are of the form binding(B,v1, . . . ,vn,C). The scope of a variable binding vi (1 ≤
i ≤ n) is constituted by the body C together with the attribute values of subsequent variable
bindings v j with i < j ≤ n. A variable reference R is “bound” by the variable binding B, if B
is the closest variable binding for the same name that has R in its scope. A variable reference
that is not bound by any variable binding is called a “free variable”. Note that the binder itself
is not part of the scope of any of its bound variables. In particular, no variable references in

The OpenMath Standard Page 13 of 135

The OpenMath Society

B can be bound by any of the variable bindings vi. Binding objects are allowed to have no
bound variables, but the binder object and the body should be present.

Binding can be used to express functions or logical statements. The function λx.x+ 2, in
which the variable x is bound by λ, corresponds to a binding object having as binder the
OpenMath symbol lambda:

binding(lambda,x,application(plus,x,2)).

Phrasebooks are allowed to use α-conversion (also called alphabetic renaming) in order to
avoid clashes of variable names: the variable in a variable binding can be replaced by a new
variable, i.e. one that does not occur anywhere in the scope of the binding, if all variable
references it binds are replaced accordingly: Suppose Ω contains an occurrence of the ob-
ject binding(B,~v,x,~w,C) where ~v and ~w are (possibly empty) sequences of bound, possibly
attributed variables and x is a variable. This object binding(B,~v,x,~w,C) can be replaced in
Ω by binding(B,~v,y, ~w′,C′) where y is a new variable, i.e. one that does not occur anywhere
in ~w or C and ~w′ and C′ are obtained from ~w and C, by replacing each free occurrence of x
by y. If instead of x in Ω, we have an attributed variable attribution(x,~a), then instead of y
we must have attribution(y,~a) This operation preserves the semantics of the object Ω. In the
above example, a phrasebook is thus allowed to transform the object to, e.g.

binding(lambda,z,application(plus,z,2)).

Note that repeated variable bindings of the same variable in a binding object are allowed,
but make little sense semantically and are therefore discouraged: the first binding binds only
references in the subsequent bindings up to and including the next binding for the same name.
Therefore, an OpenMath application may choose to α-convert all but the last binding to new
variables. Concretely, the following replacement is carried out until there are no more bound
variable duplications:

binding(B,~u,x,~v,y,~w,C)−→ binding(B,~u,x′,~v′,y′,~w,C)

where x and y are (possibly attributed) variables with the same head z, the heads of bound
(attributed) variables in~u are all different from z, and x′, y′, and ~v′ are obtained from x, y, and
~v by replacing z with a variable z′ that does not occur in x, y,~u,~v, ~w, and C.

Attribution decorates an object (called the “syntactic head” of the attribution) with a sequence
of one or more pairs made up of an OpenMath symbol, the “attribute”, and an associated
object, the “value of the attribute”. The value of the attribute can be an OpenMath attribution
object itself. As an example of this, consider the OpenMath objects representing groups,
automorphism groups, and group dimensions. It is then possible to attribute an OpenMath
object representing a group by its automorphism group, itself attributed by its dimension.

OpenMath objects can be attributed with OpenMath foreign object, which are containers for
non-OpenMath structures. For example a mathematical expression could be attributed with
its spoken or visual rendering.

Page 14 of 135 The OpenMath Standard

The OpenMath Society

Composition of attributions, as in

attribution(attribution(A,S1 A1, . . . ,Sh Ah),Sh+1 Ah+1, . . . ,Sn An)

is semantically equivalent to a single attribution, that is

attribution(A,S1 A1, . . . ,Sh Ah,Sh+1 Ah+1, . . . ,Sn An).

The operation that produces an object with a single layer of attribution is called flattening.
The “head” of an attribution is the syntactic head of the fully (recursively) flattened version.

Multiple attributes with the same name are allowed. While the order of the given attributes
does not imply any notion of priority, potentially it could be significant. For instance, consider
the case in which Sh = Sn (h < n) in the example above. Then, the object is to be interpreted
as if the value An overwrites the value Ah. (OpenMath however does not mandate that an
application preserves the attributes or their order.)

Attribution acts as either adornment annotation or as semantical annotation. When the key has
role attribution, then replacement of the attributed object by the object itself is not harmful and
preserves the semantics. When the key has role semantic-attribution then the attributed object
is modified by the attribution and cannot be viewed as semantically equivalent to the stripped
object. If the attribute lacks the role specification then attribution is acting as adornment
annotation.

Objects can be decorated in a multitude of ways. An example of the use of an adornment
attribution would be to indicate the colour in which an OpenMath object should be displayed,
for example attribution(A,colour red). Note that both A and red are arbitrary OpenMath
objects whereas colour is a symbol. An example of the use of a semantic attribution would
be to indicate the type of an object. For example the object attribution(A, type t) represents
the judgment stating that object A has type t. Note that both A and t are arbitrary OpenMath
objects whereas type is a symbol.

Error is made up of an OpenMath symbol and a sequence of zero or more OpenMath objects. This
object has no direct mathematical meaning. Errors occur as the result of some treatment on
an OpenMath object and are thus of real interest only when some sort of communication is
taking place. Errors may occur inside other objects and also inside other errors. error objects
might consist only of a symbol as in the object: error(S).

2.3 Names

The names of symbols, variables and content dictionaries must conform to the production Name
specified in the following grammar (which is identical to that for XML names in XML 1.1, [21]).
Informally speaking, a name is a sequence of Unicode [16] characters which begins with a letter
and cannot contain certain punctuation and combining characters. The notation #x... represents
the hexadecimal value of the encoding of a Unicode character. Some of the character values or

The OpenMath Standard Page 15 of 135

The OpenMath Society

code points in the following productions are currently unassigned, but this is likely to change in the
future as Unicode evolves1.

Name −→ NameStartChar (NameChar)*
NameStartChar −→ ":" | [A-Z] | "_" | [a-z] | [#xC0-#xD6] | [#xD8-#xF6] |

[#xF8-#x2FF] | [#x370-#x37D] | [#x37F-#x1FFF] |
[#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF] |
[#x3001-#xD7FF] | [#xF900-#xFDCF] | [#xFDF0-#xFFFD] |
[#x10000-#xEFFFF]

NameChar −→ NameStartChar | "-" | "." | [0-9] | #xB7 | [#x0300-#x036F] |
[#x203F-#x2040]

CD Base A cdbase is interpreted as an IRI [10], which specifies how strings are encoded and
interpreted as URL. Applications should ignore any white space surrounding the URL.

Note on content dictionary names It is a common convention to store a Content Dictionary in
a file of the same name, which can cause difficulties on many file systems. If this convention is
to be followed then OpenMath recommends that the name be restricted to the subset of the above
grammar which is a legal POSIX [9] filename, namely:

Name −→ (PosixLetter | ’_’) (Char)*
Char −→ PosixLetter | Digit | ’.’ | ’-’ | ’_’
PosixLetter −→ ’a’ | ’b’ | ... | ’z’ | ’A’ | ’B’ | ... | ’Z’
Digit −→ ’0’ | ’1’ | ... | ’9’

Canonical URIs for Symbols To facilitate the use of OpenMath within a URI-based framework
(such as RDF [25] or OWL [24]), we provide the following scheme for constructing a canonical
URI for an OpenMath Symbol:

URI = cdbase-value + ’/’ + cd-value + ’#’ + name-value

So for example the URI for the symbol with cdbase http://www.openmath.org/cd, cd transc1
and name sin is:

http://www.openmath.org/cd/transc1#sin

In particular, this now allows us to refer uniquely to an OpenMath symbol from a MathML-2
document [22] (see [23] section 4.2.3 for MathML-3):

1We note that in XML 1 the name production explicitly listed the characters that were allowed, so all the characters
added in versions of Unicode after 2.0 (which amounted to tens of thousands of characters) were not allowed in names.

Page 16 of 135 The OpenMath Standard

http://www.openmath.org/cd
http://www.openmath.org/cd/transc1#sin

The OpenMath Society

<mathml:csymbol xmlns:mathml="http://www.w3.org/1998/Math/MathML/"
definitionURL="http://www.openmath.org/cd/transc1#sin">

<mo> sin </mo>
</mathml:csymbol>

2.4 Summary

• OpenMath supports basic objects like integers, symbols, floating-point numbers, character
strings, bytearrays, and variables.
• compound OpenMath objects are of four kinds: applications, bindings, errors, and attribu-

tions.
• OpenMath objects may be attributed with non-OpenMath objects via the use of foreign Open-

Math objects.
• OpenMath objects have the expressive power to cover all areas of computational mathemat-

ics.

Observe that an OpenMath OpenMath application object is viewed as a “tree” by software appli-
cations that do not understand Content Dictionaries, whereas a Phrasebook that understands the
semantics of the symbols, as defined in the Content Dictionaries, should interpret the object as
function application, constructor, or binding accordingly. Thus, for example, for some applications,
the OpenMath object corresponding to 2+5 may result in a command that writes 7.

The OpenMath Standard Page 17 of 135

Chapter 3

OpenMath Encodings

In this chapter, two encodings are defined that map between OpenMath objects and byte streams.
These byte streams constitute a low level representation that can be easily exchanged between
processes (via almost any communication method) or stored and retrieved from files. In addition,
OpenMath can be represented in Strict Content MathML, as described in Section 4.1.3 of [23].

The first encoding is the innate character-based encoding in XML format. In previous versions of
the OpenMath Standard this encoding was a restricted subset of the full legal XML syntax. In this
version, however, we have removed all these restrictions so that the earlier encoding is a strict subset
of the existing one. The XML encoding can be used, for example, to send OpenMath objects via e-
mail, cut-and-paste, etc. and to embed OpenMath objects in XML documents or to have OpenMath
objects processed by XML-aware applications.

The second encoding is a binary encoding that is meant to be used when the compactness of the
encoding is important (inter-process communications over a network is an example).

Note that these two encodings are sufficiently different for auto-detection to be effective: an ap-
plication reading the bytes can very easily determine which encoding is used. In the case of the
MathML encoding, the reading application should already be expecting MathML.

3.1 The XML Encoding

This encoding has been designed with two main goals in mind:

1. to provide an encoding that uses common character sets (so that it can easily be included in
most documents and transport protocols) and that is both readable and writable by a human.

2. to provide an encoding that can be included (embedded) in XML documents or processed by
XML-aware applications.

Page 18 of 135

The OpenMath Society

3.1.1 A Schema for the XML Encoding

The XML encoding of an OpenMath object is defined by the Relax NG schema [12] given below.
Relax NG has a number of advantages over the older XSD Schema format [17], in particular it
allows for tighter control of attributes and has a modular, extensible structure. Although we have
made the XML form, which is given in Appendix B, normative, it is generated from the compact
syntax given below. It is also very easy to restrict the schema to allow a limited set of OpenMath
symbols as described in Appendix C.

Standard tools exist for generating a DTD or an XSD schema from a Relax NG Schema. Examples
of such documents are given in Appendix E and Appendix D, respectively.

RELAX NG Schema for OpenMath 2
Revision 2: Corrected regex for OMI to match the documented standard and allow hex

default namespace om = "http://www.openmath.org/OpenMath"

start = OMOBJ

OpenMath object constructor
OMOBJ = element OMOBJ { compound.attributes,

attribute version { xsd:string }?,
attribute cdgroup { xsd:anyURI}?,

omel }

Elements which can appear inside an OpenMath object
omel =

OMS | OMV | OMI | OMB | OMSTR | OMF | OMA | OMBIND | OME | OMATTR |OMR

things which can be variables
omvar = OMV | attvar

attvar = element OMATTR { common.attributes,(OMATP , (OMV | attvar))}

cdbase = attribute cdbase { xsd:anyURI}?

attributes common to all elements
common.attributes = (attribute id { xsd:ID })?

attributes common to all elements that construct compount OM objects.
compound.attributes = common.attributes,cdbase

symbol
OMS = element OMS { common.attributes,

attribute name { xsd:NCName},
attribute cd { xsd:NCName},

The OpenMath Standard Page 19 of 135

The OpenMath Society

cdbase }

variable
OMV = element OMV { common.attributes,

attribute name { xsd:NCName} }

integer
OMI = element OMI { common.attributes,

xsd:string {pattern = "\s*-?((\s*[0-9])+|x(\s*[0-9A-F])+)\s*"}}
byte array
OMB = element OMB { common.attributes, xsd:base64Binary }

string
OMSTR = element OMSTR { common.attributes, text }

IEEE floating point number
OMF = element OMF { common.attributes,

(attribute dec { xsd:double } |
attribute hex { xsd:string {pattern = "[0-9A-F]+"}}) }

apply constructor
OMA = element OMA { compound.attributes, omel+ }

binding constructor
OMBIND = element OMBIND { compound.attributes, omel, OMBVAR, omel }

variables used in binding constructor
OMBVAR = element OMBVAR { common.attributes, omvar+ }

error constructor
OME = element OME { compound.attributes, OMS, (omel|OMFOREIGN)* }

attribution constructor and attribute pair constructor
OMATTR = element OMATTR { compound.attributes, OMATP, omel }

OMATP = element OMATP { compound.attributes, (OMS, (omel | OMFOREIGN))+ }

foreign constructor
OMFOREIGN = element OMFOREIGN {

compound.attributes, attribute encoding {xsd:string}?,
(omel|notom)* }

Any elements not in the om namespace
(valid om is allowed as a descendant)
notom =

(element * - om:* {attribute * { text }*,(omel|notom)*}
| text)

reference constructor

Page 20 of 135 The OpenMath Standard

The OpenMath Society

OMR = element OMR { common.attributes,
attribute href { xsd:anyURI }

}

Note: In the original edition of OpenMath 2.0 as published, names are specified as being of the
xsd:NCName type. When the original edition of OpenMath 2.0 was published, W3C Schema types
were defined in terms of XML 1 [19]. This limited the characters allowed in a name to a subset
of the characters available in Unicode 2.0, which was far more restrictive than the definition for
an OpenMath name given in Section 2.3. The situation has changed with the appearance of XML
1.0 5th edition, and more specifically erratum NE17 in [20], and there is no known contradiction
remaining.

3.1.2 Informal description of the XML Encoding

An encoded OpenMath object is placed inside an OMOBJ element. This element can contain the
elements (and integers) described above. It can take an optional version (XML) attribute which
indicates to which version of the OpenMath standard it conforms. In previous versions of this stan-
dard this attribute did not exist, so any OpenMath object without such an attribute must conform to
version 1 (or equivalently 1.1) of the OpenMath standard. Objects which conform to the description
given in this document should have version="2.0". If the version attribute is not present, the
document format embedding the OMOBJ may provide a method for determining version information
(the XML encoding for OpenMath content dictionaries does, for instance). The OMOBJ element can
also take an optional cdgroup attribute, which specifies a CD group file that acts as a catalogue
of CD bases for locating OpenMath content dictionaries of OMS elements in this OMOBJ element.
When no cdgroup attribute is explicitly specified, the document format embedding this OMOBJ el-
ement may provide a method for determining CD bases. Otherwise the system must determine a
CD base; in the absence of specific information http://www.openmath.org/cd is assumed as the CD
base for all OMS elements.

We briefly discuss the XML encoding for each type of OpenMath object starting from the basic
objects.

Integers are encoded using the OMI element around the sequence of their digits in base 10 or 16
(most significant digit first). White space may be inserted between the characters of the inte-
ger representation, this will be ignored. After ignoring white space, integers written in base 10
match the regular expression -?[0-9]+. Integers written in base 16 match -?x[0-9A-F]+.
The integer 10 can be thus encoded as <OMI> 10 </OMI> or as <OMI> xA </OMI> but
neither <OMI> +10 </OMI> nor <OMI> +xA </OMI> can be used.

The negative integer −120 can be encoded as either as decimal <OMI> -120 </OMI> or as
hexadecimal <OMI> -x78 </OMI>.

Symbols are encoded using the OMS element. This element has three (XML) attributes cd, name,
and cdbase. The value of cd is the name of the Content Dictionary in which the symbol
is defined and the value of name is the name of the symbol. The optional cdbase attribute

The OpenMath Standard Page 21 of 135

http://www.openmath.org/cd

The OpenMath Society

is a URI that can be used to disambiguate between two content dictionaries with the same
name. If a symbol does not have an explicit cdbase attribute, then it inherits its cdbase
from the first ancestor in the XML tree with one, should such an element exist. If no CD
base can be determined in this way, then it is determined by the catalog induced by the
CD group determined for the OMOBJ. Should this be impossible, the CD base defaults to
http://www.openmath.org/cd. In this document we have tended to omit the cdbase for
clarity. For example:

<OMS cdbase="http://www.openmath.org/cd" cd="transc1" name="sin"/>

is the encoding of the symbol named sin in the Content Dictionary named transc1, which
is part of the collection maintained by the OpenMath Society.

As described in Section 2.3, the three attributes of the OMS can be used to build a URI refer-
ence for the symbol, for use in contexts where URI-based referencing mechanisms are used.
For example the URI for the above symbol is http://www.openmath.org/cd/transc1#
sin.

Note that the role attribute described in Section 2.1.4 is contained in the Content Dictionary
and is not part of the encoding of a symbol, also the cdbase attribute need not be explicit on
each OMS as it is inherited from any ancestor element.

Variables are encoded using the OMV element, with only one (XML) attribute, name, whose value
is the variable name. For instance, the encoding of the object representing the variable x is:
<OMV name="x"/>

Floating-point numbers are encoded using the OMF element that has either the (XML) attribute dec
or the (XML) attribute hex. The two (XML) attributes cannot be present simultaneously. The
value of dec is the floating-point number expressed in base 10, using the common syntax:

(-?)([0-9]+)?("."[0-9]+)?([eE](-?)[0-9]+)?.
or one of the special values: INF, -INF or NaN.

The value of hex is a base 16 representation of the 64 bits of the IEEE Double. Thus the
number represents mantissa, exponent, and sign in network byte order. This consists of a
string of 16 digits 0-9, A-F.

For example, both <OMF dec="1.0e-10"/> and <OMF hex="3DDB7CDFD9D7BDBB"/> are
valid representations of the floating point number 1×10−10.

The symbols INF, -INF and NaN represent positive and negative infinity, and not a number
as defined in [26]. Note that while infinities have a unique representation, it is possible for
NaNs to contain extra information about how they were generated and if this informations
is to be preserved then the hexadecimal representation must be used. For example <OMF
hex="FFF8000000000000"/> and <OMF hex="FFF8000000000001"/> are both hexadeci-
mal representations of NaNs.

Character strings are encoded using the OMSTR element. Its content is a Unicode text. Note that
as always in XML the characters < and & need to be represented by the entity references <
and & respectively.

Page 22 of 135 The OpenMath Standard

http://www.openmath.org/cd
http://www.openmath.org/cd/transc1#sin
http://www.openmath.org/cd/transc1#sin

The OpenMath Society

Bytearrays are encoded using the OMB element. Its content is a sequence of characters that is a
base64 encoding of the data. The base64 encoding is defined in RFC 2045 [4]. Basically,
it represents an arbitrary sequence of octets using 64 “digits” (A through Z, a through z, 0
through 9, + and /, in order of increasing value). Three octets are represented as four digits
(the = character is used for padding at the end of the data). All line breaks and carriage return,
space, form feed and horizontal tabulation characters are ignored. The reader is referred to
[4] for more detailed information.

Applications are encoded using the OMA element. The application whose head is the OpenMath
object e0 and whose arguments are the OpenMath objects e1, . . . , en is encoded as <OMA> C0
C1. . .Cn </OMA> where Ci is the encoding of ei.

For example, application(sin,x) is encoded as:

<OMA>
<OMS cd="transc1" name="sin"/>
<OMV name="x"/>

</OMA>

provided that the symbol sin is defined to be a function symbol in a Content Dictionary
named transc1.

Binding is encoded using the OMBIND element. The binding by the OpenMath object b of the
OpenMath variables x1, x2, . . ., xn in the object c is encoded as <OMBIND> B <OMBVAR> X1 . . .
Xn </OMBVAR>C </OMBIND> where B, C, and Xi are the encodings of b, c and xi, respectively.

For instance the encoding of binding(lambda,x,application(sin,x)) is:

<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR><OMV name="x"/></OMBVAR>
<OMA>
<OMS cd="transc1" name="sin"/>
<OMV name="x"/>

</OMA>
</OMBIND>

Binders are defined in Content Dictionaries, in particular, the symbol lambda is defined in
the Content Dictionary fns1 for functions over functions.

Attributions are encoded using the OMATTR element. If the OpenMath object e is attributed with
(s1, e1), . . . , (sn, en) pairs (where si are the attributes), it is encoded as <OMATTR> <OMATP>
S1 C1 . . . Sn Cn </OMATP> E </OMATTR> where Si is the encoding of the symbol si, Ci of the
object ei and E is the encoding of e.

Examples are the use of attribution to decorate a group by its automorphism group:

<OMATTR>
<OMATP>

<OMS cd="groups" name="automorphism_group" />
[..group-encoding..]

The OpenMath Standard Page 23 of 135

The OpenMath Society

</OMATP>
[..group-encoding..]

</OMATTR>

or to express the type of a variable:

<OMATTR>
<OMATP>

<OMS cd="ecc" name="type" />
<OMS cd="ecc" name="real" />

</OMATP>
<OMV name="x" />

</OMATTR>

Foreign Objects A special use of attributions is to associate non-OpenMath data with an Open-
Math object. This is done using the OMFOREIGN element. The children of this element must
be well-formed XML. For example the attribution of the OpenMath object sin(x) with its
representation in Presentation MathML is:

<OMATTR>
<OMATP>

<OMS cd="annotations1" name="presentation-form"/>
<OMFOREIGN encoding="MathML-Presentation">

<math xmlns="http://www.w3.org/1998/Math/MathML">
<mi>sin</mi><mfenced><mi>x</mi></mfenced>

</math>
</OMFOREIGN>

</OMATP>
<OMA>
<OMS cd="transc1" name="sin"/>
<OMV name="x"/>

</OMA>
</OMATTR>

Of course not everything has a natural XML encoding in this way and often the contents of a
OMFOREIGN will just be data or some kind of encoded string. For example the attribution of
the previous object with its LATEXrepresentation could be achieved as follows:

<OMATTR>
<OMATP>

<OMS cd="annotations1" name="presentation-form"/>
<OMFOREIGN encoding="text/x-latex">\sin(x)</OMFOREIGN>

</OMATP>
<OMA>

<OMS cd="transc1" name="sin"/>
<OMV name="x"/>

</OMA>
</OMATTR>

For a discussion on the use of the encoding attribute see Section 5.2.

Page 24 of 135 The OpenMath Standard

The OpenMath Society

Errors are encoded using the OME element. The error whose symbol is s and whose arguments are
the OpenMath objects or derived OpenMath object e1, . . . , en is encoded as <OME>Cs C1. . .Cn

</OME> where Cs is the encoding of s and Ci the encoding of ei.

If an aritherror Content Dictionary contained a DivisionByZero symbol, then the object
error(DivisionByZero,application(divide,x,0)) would be encoded as follows:

<OME>
<OMS cd="aritherror" name="DivisionByZero"/>
<OMA>
<OMS cd="arith1" name="divide" />
<OMV name="x"/>
<OMI> 0 </OMI>

</OMA>
</OME>

If a mathml Content Dictionary contained an unhandled_csymbol symbol, then an Open-
Math to MathML translator might return an error such as:

<OME>
<OMS cd="mathml" name="unhandled_csymbol"/>
<OMFOREIGN encoding="MathML-Content">
<mathml:csymbol xmlns:mathml="http://www.w3.org/1998/Math/MathML/"

definitionURL="http://www.nag.co.uk/Airy#A">
<mathml:mo>Ai</mathml:mo>

</mathml:csymbol>
</OMFOREIGN>

</OME>

Note that it is possible to embed fragments of valid OpenMath inside an OMFOREIGN element
but that it cannot contain invalid OpenMath. In addition, the arguments to an OMERROR must
be well-formed XML. If an application wishes to signal that the OpenMath it has received
is invalid or is not well-formed then the offending data must be encoded as a string. For
example:

<OME>
<OMS cd="parser" name="invalid_XML"/>
<OMSTR>
<OMA> <OMS name="cos" cd="transc1">

<OMV name="v"> </OMA>
</OMSTR>

</OME>

Note that the “<” and “>” characters have been escaped as is usual in an XML document.
References OpenMath integers, symbols, variables, floating point numbers, character strings, bytear-

rays, applications, binding, attributions, error, and foreign objects can also be encoded as an
empty OMR element with an href attribute whose value is the value of a URI referencing an
id attribute of an OpenMath object of that type. The OpenMath element represented by this
OMR reference is a copy of the OpenMath element referenced href attribute. Note that this
copy is structurally equal, but not identical to the element referenced. These URI references

The OpenMath Standard Page 25 of 135

The OpenMath Society

<OMOBJ version="2.0"> <OMOBJ version="2.0">
<OMA> <OMA>

<OMV name="f"/> <OMV name="f"/>
<OMA> <OMA id="t1">
<OMV name="f"/> <OMV name="f"/>
<OMA> <OMA id="t11">

<OMV name="f"/> <OMV name="f"/>
<OMV name="a"/> <OMV name="a"/>
<OMV name="a"/> <OMV name="a"/>

</OMA> </OMA>
<OMA> <OMR href="#t11"/>

<OMV name="f"/>
<OMV name="a"/>
<OMV name="a"/>

</OMA>
</OMA> </OMA>
<OMA> <OMR href="#t1"/>

<OMV name="f"/>
<OMA>

<OMV name="f"/>
<OMV name="a"/>
<OMV name="a"/>

</OMA>
<OMA>

<OMV name="f"/>
<OMV name="a"/>
<OMV name="a"/>

</OMA>
</OMA>

</OMA> </OMA>
</OMOBJ> </OMOBJ>

Figure 3.1: Shared vs. unshared representations

will often be relative, in which case they are resolved using the base URI of the document
containing the OpenMath.

For instance, the OpenMath object

application(f ,application(f ,application(f ,a,a),application(f ,a,a)),application(f ,
application(f ,a,a),application(f ,a,a)))

can be encoded in the XML encoding as either one of the XML encodings given in Figure 3.1
(and some intermediate versions as well).

3.1.3 Some Notes on References

We say that an OpenMath element dominates all its children and all elements they dominate. An

Page 26 of 135 The OpenMath Standard

The OpenMath Society

<OMOBJ version="2.0"> <OMOBJ version="2.0">
<OMA id="bar"> <OMA id="baz">

<OMS cd="arith1" name="plus"/> <OMS cd="arith1" name="plus"/>
<OMI>1</OMI> <OMI>1</OMI>
<OMR href="#baz"/> <OMR href="#bar"/>

</OMA> </OMA>
</OMOBJ> </OMOBJ>

Figure 3.2: Sharing between OpenMath objects (A cycle of order 2).

OMR element dominates its target, i.e. the element that carries the id attribute pointed to by the href
attribute. For instance in the representation in Figure 3.1, the OMA element with id="t1" and also
the second OMR dominate the OMA element with id="t11".

3.1.3.1 An Acyclicity Constraint

The occurrences of the OMR element must obey the following global acyclicity constraint: An Open-
Math element may not dominate itself.

Consider for instance the following (illegal) XML representation

<OMOBJ version="2.0">
<OMA id="foo">

<OMS cd="arith1" name="divide"/>
<OMI>1</OMI>
<OMA>

<OMS cd="arith1" name="plus"/>
<OMI>1</OMI>
<OMR href="#foo"/>

</OMA>
</OMA>

</OMOBJ>

Here, the OMA element with id="foo" dominates its third child, which dominates the OMR element,
which dominates its target: the element with id="foo". So by transitivity, this element dominates
itself, and by the acyclicity constraint, it is not the XML representation of an OpenMath element.
Even though it could be given the interpretation of the continued fraction

1
1+ 1

1+ 1
...

this would correspond to an infinite tree of applications, which is not admitted by the structure of
OpenMath objects described in Chapter 2.

Note that the acyclicity constraints is not restricted to such simple cases, as the example in Fig-
ure 3.2 shows.

The OpenMath Standard Page 27 of 135

The OpenMath Society

Here, the OMA with id="bar" dominates its third child, the OMR with href="#baz", which domi-
nates its target OMAwith id="baz", which in turn dominates its third child, the OMRwith href="#bar",
this finally dominates its target, the original OMA element with id="bar". So this pair of OpenMath
objects violates the acyclicity constraint and is not the XML representation of an OpenMath object.

3.1.3.2 Sharing and Bound Variables

Note that the OMR element is a syntactic referencing mechanism: an OMR element stands for the
exact XML element it points to. In particular, referencing does not interact with binding in a seman-
tically intuitive way, since it allows for variable capture. Consider for instance the following XML
representation:

<OMBIND id="outer">
<OMS cd="fns1" name="lambda"/>
<OMBVAR><OMV name="X"/></OMBVAR>
<OMA>

<OMV name="f"/>
<OMBIND id="inner">

<OMS cd="fns1" name="lambda"/>
<OMBVAR><OMV name="X"/></OMBVAR>
<OMR id="copy" href="#orig"/>

</OMBIND>
<OMA id="orig"><OMV name="g"/><OMV name="X"/></OMA>

</OMA>
</OMBIND>

it represents the OpenMath object

binding(λ,X ,application(f ,binding(λ,X ,application(g,X)),application(g,X))

which has two sub-terms of the form application(g,X), one with id="orig" (the one explicitly
represented) and one with id="copy", represented by the OMR element. In the original, the variable
X is bound by the outer OMBIND element, and in the copy, the variable X is bound by the inner
OMBIND element. We say that the inner OMBIND has captured the variable X .

It is well-known that variable capture does not conserve semantics. For instance, we could use
α-conversion to rename the inner occurrence of X into, say, Y arriving at the (same) object

binding(λ,X ,application(f ,binding(λ,Y,application(g,Y)),application(g,X)))

Using references that capture variables in this way can easily lead to representation errors, and is
not recommended.

3.1.4 Embedding OpenMath in XML Documents

The above encoding of XML encoded OpenMath specifies the grammar to be used in files that
encode a single OpenMath object, and specifies the character streams that a conforming OpenMath
application should be able to accept or produce.

Page 28 of 135 The OpenMath Standard

The OpenMath Society

When embedding XML encoded OpenMath objects into a larger XML document one may wish, or
need, to use other XML features. For example use of extra XML attributes to specify XML Names-
paces [18] or xml:lang attributes to specify the language used in strings [21].

If such XML features are used then the XML application controlling the document must, if passing
the OpenMath fragment to an OpenMath application, remove any such extra attributes and must
ensure that the fragment is encoded according to the schema specified above.

3.2 The Binary Encoding

The binary encoding was essentially designed to be more compact than the XML encodings, so that
it can be more efficient if large amounts of data are involved. For the current encoding, we tried
to keep the right balance between compactness, speed of encoding and decoding and simplicity (to
allow a simple specification and easy implementations).

3.2.1 A Grammar for the Binary Encoding

Figure 3.3 gives a grammar for the binary encoding (“start” is the start symbol).

The following conventions are used in this section: [n] denotes a byte whose value is the integer
n (n can range from 0 to 255), {m} denotes four bytes representing the (unsigned) integer m in
network byte order, [_] denotes an arbitrary byte, {_} denotes an arbitrary sequence of four bytes.
Finally, empty stands for the empty list of tokens.

xxxx:n, where xxxx is one of symbname, cdname, varname, uri, id, digits, or bytes denotes a se-
quence of n bytes that conforms to the constraints on xxxx strings. For instance, for symbname,
varname, or cdname this is the regular expression described in Section 2.3, for uri it is the grammar
for IRIs in [10].

3.2.2 Description of the Grammar

An OpenMath object is encoded as a sequence of bytes starting with the begin object tag (values
24 and 88) and ending with the end object tag (value 25). These are similar to the <OMOBJ> and
</OMOBJ> tags of the XML encoding. Objects with start token [88] have two additional bytes m and
n that characterize the version (m.n) of the encoding directly after the start token. This is similar to
<OMOBJ version="m.n">

The encoding of each kind of OpenMath object begins with a tag that is a single byte, holding a
token identifier that describes the kind of object, two flags, and a status bit. The identifier is stored
in the first five bits (1 to 5). Bit 6 is used as a status bit which is currently only used for managing
streaming of some basic objects. Bits 7 and 8 are the sharing flag and the long flag. The sharing
flag indicates that the encoded object may be shared in another (part of an) object somewhere else
(see Section 3.2.4.2). Note that if the sharing flag is set (in the right column of the grammar in

The OpenMath Standard Page 29 of 135

The OpenMath Society

start −→ [24] object [25] | [24+64] [m] [n] object [25]
object −→ basic

| compound
| cdbase
| foreign
| reference

basic −→ integer
| float
| variable
| symbol
| string
| bytearray

integer −→ [1] [_] | [1+64] [n] id:n [_]
| [1+32] [_]
| [1+128] {_} | [1+64+128] {n} id:n {_}
| [1+32+128] {_}
| [2] [n] [_] digits:n | [2+64] [n] [m] [_] digits:n id:m
| [2+32] [n] [_] digits:n
| [2+128] {n} [_] digits:n | [2+64+128] {n} {n} [_] digits:n id:n
| [2+32+128] {n} [_] digits:n

float −→ [3] {_}{_} | [3+64] [n] id:n {_}{_}
| [3+64+128] {n} id:n {_}{_}

variable −→ [5] [n] varname:n | [5+64] [n] [m] varname:n id:m
| [5+128] {n} varname:n | [5+64+128] {n} {m} varname:n id:m

symbol −→ [8] [n] [m] cdname:n symbname:m | [8+64] [n] [m] [k] cdname:n symbname:m id:k
| [8+128] {n} {m} cdname:n symbname:m | [8+64+128] {n} {m} {k} cdname:n symbname:m id:k

string −→ [6] [n] bytes:n | [6+64] [n] bytes:n
| [6+32] [n] bytes:n
| [6+128] {n} bytes:n | [6+64+128] {n} {m} bytes:n id:m
| [6+32+128] {n} bytes:n
| [7] [n] bytes:2n | [7+64] [n] [m] bytes:n id:m
| [7+32] [n] bytes:2n
| [7+128] {n} bytes:2n | [7+64+128] {n} {m} bytes:2n id:m
| [7+32+128] {n} bytes:2n

bytearray −→ [4] [n] bytes:n | [4+64] [n] [m] bytes:n id:m
| [4+32] [n] bytes:n
| [4+128] {n} bytes:n | [4+64+128] {n} {m} bytes:n id:m
| [4+32+128] {n} bytes:n

cdbase −→ [9] [n] uri:n object
| [9+128] {n} uri:n object

foreign −→ [12] [n] [m] bytes:n bytes:m | [12+64] [n] [m] [k] bytes:n bytes:m id:k
| [12+32] [n] [m] bytes:n bytes:m
| [12+128] {n} {m} bytes:n bytes:m | [12+64+128] {n} {m} {k} bytes:n bytes:m id:k
| [12+32+128] {n} {m} bytes:n bytes:m

compound −→ application
| binding
| attribution
| error

application −→ [16] object objects [17] | [16+64] [m] id:m object objects [17]
| [16+64+128] {m} id:m object objects [17]

binding −→ [26] object bvars object [27] | [26+64] [m] id:m object bvars object [27]
| [26+64+128] {m} id:m object bvars object [27]

attribution −→ [18] attrpairs object [19] | [18+64] [m] id:m attrpairs object [19]
| [18+64+128] {m} id:m attrpairs object [19]

error −→ [22] symbol objects [23] | [22+64] [m] id:m symbol objects [23]
| [22+64+128] {m} id:m symbol objects [23]

attrpairs −→ [20] pairs [21] | [20+64] [m] id:m pairs [21]
| [20+64+128] {m} id:m pairs [21]

pairs −→ symbol object
| symbol object pairs

bvars −→ [28] vars [29] | [28+64] [m] id:m vars [29]
| [28+64+128] {m} id:m vars [29]

vars −→ empty
| attrvar vars

attrvar −→ variable
| [18] attrpairs attrvar [19] | [18+64] [m] id:m attrpairs attrvar [19]

| [18+64+128] {m} id:m attrpairs attrvar [19]
objects −→ empty

| object objects
reference −→ internal_reference

| external_reference
internal_reference −→ [30] [_]

| [30+128] {_}
external_reference −→ [31] [n] uri:n

| [31+128] {n} uri:n

Figure 3.3: Grammar of the binary encoding of OpenMath objects.

Page 30 of 135 The OpenMath Standard

The OpenMath Society

Figure 3.3, then the encoding includes a representation of an identifier that serves as the target of a
reference (internal with token identifier 30 or external with token identifier 31). If the long flag is
set, this signifies that the names, strings, and data fields in the encoded OpenMath object are longer
than 255 bytes or characters.

The concept of structure sharing in OpenMath encodings and in particular the sharing bit in the
binary encoding has been introduced in OpenMath 2 (see section Section 3.2.4.2 for details). The
binary encoding in OpenMath 2 leaves the tokens with sharing flag 0 unchanged to ensure Open-
Math 1 compatibility. To make use of functionality like the version attribute on the OpenMath
object introduced in OpenMath 2, the tokens with sharing flag 1 should be used.

To facilitate the streaming of OpenMath objects, some basic objects (integers, strings, bytearrays,
and foreign objects) have variant token identifiers with the fifth bit set. The idea behind this is that
these basic objects can be split into packets. If the fifth bit is not set, this packet is the final packet
of the basic object. If the bit is set, then more packets of the basic object will follow directly after
this one. Note that all packets making up a basic object must have the same token identifier (up to
the fifth bit). In Figure 3.4 we have represented an integer that is split up into three packets.

Here is a description of the binary encodings of every kind of OpenMath object:

Integers are encoded depending on how large they are. There are four possible formats. Integers
between -128 and 127 are encoded as the small integer tags (token identifier 1) followed by a
single byte that is the value of the integer (interpreted as a signed character). For example 16
is encoded as 0x01 0x10. Integers between−231 (−2147483648) and 231−1 (2147483647)
are encoded as the small integer tag with the long flag set followed by the integer encoded
in four bytes (network byte order: the most significant byte comes first). For example, 128
is encoded as 0x81 0x00000080. The most general encoding begins with the big integer tag
(token identifier 2) with the long flag set if the number of bytes in the encoding of the digits
is greater or equal than 256. It is followed by the length (in bytes) of the sequence of digits,
encoded on one byte (0 to 255, if the long flag was not set) or four bytes (network byte order,
if the long flag was set). It is then followed by a byte describing the sign and the base. This
’sign/base’ byte is + (0x2B) or - (0x2D) for the sign or-ed with the base mask bits that can
be 0 for base 10 or 0x40 for base 16 or 0x80 for “base 256”. It is followed by the sequence
of digits (as characters for bases 10 and 16 as in the XML encoding, and as bytes for base
256) in their natural order. For example, the decimal number 8589934592 (233) is encoded
as 0x02 0x0A 0x2B 0x38 0x35 0x38 0x39 0x39 0x33 0x34 0x35 0x39 0x32 and the
hexadecimal number xfffffff1 is encoded as 0x02 0x08 0x6b 0x66 0x66 0x66 0x66
0x66 0x66 0x66 0x31 in the base 16 character encoding and as 0x02 0x04 0xab 0xFF
0xFF 0xFF 0xF1 in the byte encoding (base 256).

Note that it is permitted to encode a “small” integer in any “bigger” format.

To splice sequences of integer packets into integers, we have to consider three cases: In the
case of token identifiers 1, 33, and 65 the sequence of packets is treated as a sequence of
integer digits to the base of 27 (most significant first). The case of token identifiers 129,
161, and 193 is analogous with digits of base 231. In the case of token identifiers 2, 34, 66,
130, 162, and 194 the integer is assembled by concatenating the string of decimal digits in

The OpenMath Standard Page 31 of 135

The OpenMath Society

Byte Hex Meaning Byte Hex Meaning
1 22 begin streamed big integer tag 7 2B sign + (disregarded)
2 FF 255 digits in packet 8 ... the 255 digits as characters
3 2B sign + 9 2 begin final big integer tag
4 ... the 255 digits as characters 10 42 68 digits in packet
5 22 begin streamed big integer tag 11 2B sign + (disregarded)
6 FF 255 digits in packet 12 ... the 68 digits as characters

Figure 3.4: Streaming a large Integer in the Binary Encoding.

the packets in sequence order (which corresponds to most significant first). Note that in all
cases only the sequence-initial packet may contain a signed integer. The sign of this packet
determines the sign of the overall integer.

Symbols are encoded as the symbol tags (token identifier 8) with the long flag set if the maximum
of the length in bytes in the UTF-8 encoding of the Content Dictionary name or the symbol
name is greater than or equal to 256. The symbol tag is followed by the length in bytes in the
UTF-8 encoding of the Content Dictionary name, the symbol name, and the id (if the shared
bit was set) as a byte (if the long flag was not set) or a four byte integer (in network byte
order). These are followed by the bytes of the UTF-8 encoding of the Content Dictionary
name, the symbol name, and the id.

Variables are encoded using the variable tags (token identifiers 5) with the long flag set if the
number of bytes in the UTF-8 encoding of the variable name is greater than or equal to 256.
Then, there is the number of characters as a byte (if the long flag was not set) or a four byte
integer (in network byte order), followed by the characters of the name of the variable. For
example, the variable x is encoded as 0x05 0x01 0x78.

Floating-point number are encoded using the floating-point number tags (token identifier 3) fol-
lowed by eight bytes that are the IEEE 754 representation [26], most significant bytes first.
For example, 1×10−10 is encoded as 0x03 3ddb7cdfd9d7bdbb.

Character string are encoded in two ways depending on whether the string is encoded in UTF-16
or ISO-8859-1 (LATIN-1). In the case of LATIN-1 it is encoded as the one byte character
string tags (token identifier 6) with the long flag set if the number of bytes (characters) in
the string is greater than or equal to 256. Then, there is the number of characters as a byte
(if the length flag was not set) or a four byte integer (in network byte order), followed by
the characters in the string. If the string is encoded in UTF-16, it is encoded as the UTF-16
character string tags (token identifier 7) with the long flag set if the number of characters in
the string is greater or equal to 256. Then, there is the number of UTF-16 units, which will
be the number of characters unless characters in the higher planes of Unicode are used, as a
byte (if the long flag was not set) or a four byte integer (in network byte order), followed by
the characters (UTF-16 encoded Unicode).

Sequences of string packets are assumed to have the same encoding for every packet. They
are assembled into strings by concatenating the strings in the packets in sequence order.

Page 32 of 135 The OpenMath Standard

The OpenMath Society

Bytearrays are encoded using the bytearray tags (token identifier 4) with the long flag set if the
number of elements is greater than or equal to 256. Then, there is the number of elements, as
a byte (if the long flag was not set) or a four byte integer (in network byte order), followed
by the elements of the arrays in their normal order.

Sequences of bytearray packets are assembled into byte arrays by concatenating the bytear-
rays in the packets in sequence order.

Foreign Objects are encoded using the foreign object tags (token identifier 12) with the long flag
set if the number of bytes is greater than or equal to 256 and the streaming bit set for dividing
it up into packets. Then, there is the number n of bytes used to encode the encoding, and
the number m of bytes used to encode the foreign object. n and m are represented as a byte
(if the long flag was not set) or a four byte integer (in network byte order). These numbers
are followed by an n-byte representation of the encoding attribute and an m byte sequence of
bytes encoding the foreign object in their normal order (we call these the payload bytes). The
encoding attribute is encoded in UTF-8.

Sequences of foreign object packets are assembled into foreign objects by concatenating the
payload bytes in the packets in sequence order.

Note that the foreign object is encoded as a stream of bytes, not a stream of characters.
Character based formats (including XML based formats) should be encoded in UTF-8 to
produce a stream of bytes to use as the payload of the foreign object.

cdbase scopes are encoded using the token identifier 9. The purpose of these scoping devices is
to associate a cdbase with an object. The start token [9] (or [137] if the long flag is set) is
followed by a single-byte (or 4-byte- if the long flag is set) number n and then by a sequence
of n bytes that represent the value of the cdbase attribute (a URI) in UTF-8 encoding. This
is then followed by the binary encoding of a single object: the object over which this cdbase
attribute has scope.

Applications are encoded using the application tags (token identifiers 16 and 17). More precisely,
the application of E0 to E1. . . En is encoded using the application tags (token identifier 16),
the sequence of the encodings of E0 to En and the end application tags (token identifier 17).

Bindings are encoded using the binding tags (token identifiers 26 and 27). More precisely, the
binding by B of variables V1. . .Vn in C is encoded as the binding tag (token identifier 26),
followed by the encoding of B, followed by the binding variables tags (token identifier 28),
followed by the encodings of the variables V1 . . .Vn, followed by the end binding variables
tags (token identifier 29), followed by the encoding of C, followed by the end binding tags
(token identifier 27).

Attributions are encoded using the attribution tags (token identifiers 18 and 19). More precisely,
attribution of the object E with (S1, E1), . . . (Sn, En) pairs (where Si are the attributes) is
encoded as the attributed object tag (token identifier 18), followed by the encoding of the
attribute pairs as the attribute pairs tags (token identifier 20), followed by the encoding of
each symbol and value, followed by the end attribute pairs tag (token identifier 21), followed
by the encoding of E, followed by the end attributed object tag (token identifier 19).

The OpenMath Standard Page 33 of 135

The OpenMath Society

Errors are encoded using the error tags (token identifiers 22 and 23). More precisely, S0 applied
to E1. . . En is encoded as the error tag (token identifier 22), the encoding of S0, the sequence
of the encodings of E0 to En and the end error tag (token identifier 23).

Internal References are encoded using the internal reference tags [30] and [30+128] (the sharing
flag cannot be set on this tag, since chains of references are not allowed in the OpenMath
binary encoding) with long flag set if the number of OpenMath sub-objects in the encoded
OpenMath is greater than or equal to 256. Then, there is the ordinal number of the referenced
OpenMath object as a byte (if the long flag was not set) or a four byte integer (in network
byte order).

External References are encoded using the external reference tags [31] and [31+128] (the sharing
flag cannot be set on this tag, since chains of references are not allowed in the OpenMath
binary encoding) with the long flag set if the number of bytes in the reference URI is greater
than or equal to 256. Then, there is the number of bytes in the URI used for the external
reference as a byte (if the long flag was not set) or a four byte integer (in network byte order),
followed by the URI.

3.2.3 Example of Binary Encoding

As a simple example of the binary encoding, we can consider the OpenMath object

application(times,application(plus,x,y),application(plus,x,z))

It is binary encoded as the sequence of bytes given in Figure 3.5.

3.2.4 Sharing

OpenMath 2 introduced a new sharing mechanism, described below. First however we describe the
original OpenMath 1 mechanism.

3.2.4.1 Sharing in Objects beginning with the identifier [24]

This form of sharing is deprecated but included for backwards compatibility with OpenMath 1. It
supports the sharing of symbols, variables and strings (up to a certain length for strings) within one
object. That is, sharing between objects is not supported. A reference to a shared symbol, variable or
string is encoded as the corresponding tag with the long flag not set and the shared flag set, followed
by a positive integer n encoded as one byte (0 to 255). This integer references the n+ 1-th such
sharable sub-object (symbol, variable or string up to 255 characters) in the current OpenMath object
(counted in the order they are generated by the encoding). For example, 0x48 0x01 references a
symbol that is identical to the second symbol that was found in the current object. Strings with 8 bit
characters and strings with 16 bit characters are two different kinds of objects for this sharing. Only
strings containing less than 256 characters can be shared (i.e. only strings up to 255 characters).

Page 34 of 135 The OpenMath Standard

The OpenMath Society

Byte Hex Meaning Byte Hex Meaning Byte Hex Meaning
1 58 begin object tag 19 10 begin application tag 40 10 begin application tag
2 2 version 2.0 (major) 20 08 symbol tag 41 48 symbol tag (with share bit on)
3 0 version 2.0 (minor) 21 06 cd length 42 01 reference to second symbol seen (arith1:plus)
4 10 begin application tag 22 04 name length 43 45 variable tag (with share bit on)
5 08 symbol tag 23 61 a (cd name begin 44 00 reference to first variable seen (x)
6 06 cd length 24 72 r . 45 05 variable tag
7 05 name length 25 69 i . 46 01 name length
8 61 a (cd name begin 26 74 t . 47 7a z (variable name)
9 72 r . 27 68 h . 48 11 end application tag
10 69 i . 28 31 1 .) 49 11 end application tag
11 74 t . 29 70 p (symbol name begin 50 19 end object tag
12 68 h . 30 6c l .
13 31 1 .) 31 75 u .
14 74 t (symbol name begin 32 73 s .)
15 69 i . 33 05 variable tag
16 6d m . 34 01 name length
17 65 e . 35 78 x (name)
18 73 s .) 36 05 variable tag

37 01 name length
38 79 y (variable name)
39 11 end application tag

Figure 3.5: A Simple example of the OpenMath binary encoding.

3.2.4.2 Sharing with References (beginning with [24+64])

In the binary encoding specified in the last section (which we keep for compatibility reasons, but
deprecate in favor of the more efficient binary encoding specified in this section) only symbols,
variables, and short strings could be shared. In this section, we will present a second binary encod-
ing, which shares most of the identifiers with the one in the last one, but handles sharing differently.
This encoding is signaled by the shared object tag [88].

The main difference is the interpretation of the sharing flag (bit 7), which can be set on all objects
that allow it. Instead of encoding a reference to a previous occurrence of an object of the same
type, it indicates whether an object will be referenced later in the encoding. This corresponds to
the information, whether an id attribute is set in the XML encoding. On the object identifier (where
sharing does not make sense), the shared flag signifies the encoding described here ([88]=[24+64]).

Otherwise integers, floats, variables, symbols, strings, bytearrays, and constructs are treated exactly
as in the binary encoding described in the last section.

The binary encoding with references uses the additional reference tags [30] for (short) internal
references, [30+128] for long internal references, [31] for (short) external references, [31+128] for
long external references. Internal references are used to share sub-objects in the encoded object
(see Figure 3.6 for an example) by referencing their position; external references allow to reference
OpenMath objects in other documents by a URI.

Identifiers [30+64] and [30+64+128] are not used, since they would encode references that are
shared themselves. Chains of references are redundant, and decrease both space and time efficiency,

The OpenMath Standard Page 35 of 135

The OpenMath Society

Byte Hex Meaning Byte Hex Meaning Byte Hex Meaning
1 58 begin object tag 12 50 begin application tag (shared) 23 1E short reference
2 2 version 2.0 (major) 13 05 variable tag 24 00 to the first shared object
3 0 version 2.0 (minor) 14 01 variable length 25 11 end application tag
4 10 begin application tag 15 66 f (variable name) 26 1E short reference
5 05 variable tag 16 05 variable tag 27 00 to the second shared object
6 01 variable length 17 01 variable length 28 11 end application tag
7 66 f (variable name) 18 61 a (variable name)
8 50 begin application tag (shared) 19 05 variable tag
9 05 variable tag 20 01 variable length
10 01 variable length 21 61 a (variable name)
11 66 f (variable name) 22 11 end application tag

Figure 3.6: A binary encoding of the OpenMath object from Figure 3.1.

therefore they are not allowed in the OpenMath binary encoding.

References consist of the identifier [30] ([30+128] for long references) followed by a positive in-
teger n coded on one byte (4 bytes for long references). This integer references the n+1th shared
sub-object (one where the shared flag is set) in the current object (counted in the order they are
generated in the encoding). For example Ox7E Ox01 references the second shared sub-object. Fig-
ure 3.6 shows the binary encoding of the object in Figure 3.1 above.

It is easy to see that in this binary encoding, the size of the encoding is 13+7(d−1) bytes, where
d is the depth of the tree, while a totally unshared encoding is 8 ∗ 2d − 8 bytes (sharing variables
saves up to 256 bytes for trees up to depth 8 and wastes space for greater depths). The shared XML

encoding only uses 32d +29 bytes, which is more space efficient starting at depth 9.

Note that in the conversion from the XML to the binary encoding the identifiers on the objects
are not preserved. Moreover, even though the XML encoding allows references across objects, as
in Figure 3.2, the binary encoding does not (the binary encoding has no notion of a multi-object
collection, while in the XML encoding this would naturally correspond to e.g. the embedding of
multiple OpenMath objects into a single XML document).

Note that objects need not be fully shared (or shared at all) in the binary encoding with sharing.

3.2.5 Implementation Note

A typical implementation of the binary encoding comes in two parts. The first part deals with the
unshared encodings, i.e. objects starting with the identifier [24].

This part uses four tables, each of 256 entries, for symbol, variables, 8 bit character strings whose
lengths are less than 256 characters and 16 bit character strings whose lengths are less than 256
characters. When an object is read, all the tables are first flushed. Each time a sharable sub-object
is read, it is entered in the corresponding table if it is not full. When a reference to the shared i-th
object of a given type is read, it stands for the i-th entry in the corresponding table. It is an encoding
error if the i-th position in the table has not already been assigned (i.e. forward references are not
allowed). Sharing is not mandatory, there may be duplicate entries in the tables (if the application

Page 36 of 135 The OpenMath Standard

The OpenMath Society

that wrote the object chose not to share optimally).

The part for the shared representations of OpenMath objects uses an unbounded array for storing
shared sub-objects. Whenever an object has the shared flag set, then it is read and a pointer to
the generated data structure is stored at the next position of the array. Whenever a reference of
the form [30] [_] is encountered, the array is queried for the value at [_] and analogously for
[30+128] {_}. Note that the application can decide to copy the value or share it among sub-terms
as long as it respects the identity conditions given by the tree-nature of the OpenMath objects.
The implementation must take care to ensure that no variables are captured during this process
(see section Section 3.1.3.2), and possibly have methods for recovering from cyclic dependency
relations (this can be done by standard loop-checking methods).

Writing an object is simple. The tables are first flushed. Each time a sharable sub-object is encoun-
tered (in the natural order of output given by the encoding), it is either entered in the corresponding
table (if it is not full) and output in the normal way or replaced by the right reference if it is already
present in the table.

3.2.6 Relation to the OpenMath 1 binary encoding

The OpenMath 2 binary encoding significantly extends the OpenMath 1 binary encoding to accom-
modate the new features and in particular sharing of sub-objects. The tags and structure of the
OpenMath 1 binary encoding are still present in the current OpenMath binary encoding, so that bi-
nary encoded OpenMath 1 objects are still valid in the OpenMath 2 binary encoding and correspond
to the same abstract OpenMath objects. In some cases, the binary encoding tags without the shared
flag can still be used as more compact representations of the objects (which are not shared, and do
not have an identifier).

As the binary encoding is geared towards compactness, OpenMath objects should be constructed so
as to maximise internal sharing (if computationally feasible). Note that since sharing is done only
at the encoding level, this does not alter the meaning of an OpenMath object, only allows it to be
represented more compactly.

3.3 The JSON encoding

JSON [1] is a lightweight data format natively supported by many programming languages, in
particular JavaScript and other web-based languages. The JSON encoding aims to ensure that
OpenMath objects can be represented as JSON objects with human-readable attribute names thus
making OpenMath more interoperable with the web. Furthermore, it aims to make translation from
XML to JSON schema easily possible. It uses JSON-native types where possible, and avoid XML
peculiarities like pseudo elements.

JSON Schema [3] is a format that allows structural verification of JSON objects. This format is
difficult to edit, hence the normative schema is authored as a TypeScript [2] definition file which

The OpenMath Standard Page 37 of 135

The OpenMath Society

can be found in Appendix F. A non-normative JSON Schema is then generated from this definition
files. It can be found in Appendix G.

3.3.1 General Structure

In general, each OpenMath object is represented as a JSON structure. For example:

{
"kind": "OMV",
"id": "something",
"name": "x"

}

This already shows two attributes that can be used with any OpenMath Element:

1. The kind attribute, which defines the kind of OpenMath object in question. This has to be
present on every OpenMath JSON object, and the values are the corresponding OpenMath
XML element name. It can be used to easily distinguish between the different types of ob-
jects. In TypeScript terms, this is called a TypeGuard.

2. The id attribute, which can be used for Structure sharing. This works similar to the XML
encoding, but more on this later.

In the TypeScript schema, this is expressed using the following two types:

• The element type is used by any OpenMath (or OpenMath-related) element, and only en-
forces that kind is a string.
• The referencable type is any OpenMath element that can optionally be given an id.

Note that for simplicity, the id attribute is omitted in any of the below.

3.3.2 The Object Constructor

We can use the OMOBJ type to create a new OpenMath object.

{
"kind": "OMOBJ",

/** optional version of openmath being used */
"openmath": "2.0",

/** the actual object */
"object": omel /* any element, see below */

}

Page 38 of 135 The OpenMath Standard

The OpenMath Society

For example, the integer 3:

{
"kind": "OMOBJ",
"openmath": "2.0",
"object": {

"kind": "OMI",
"integer": 3

}
}

The object can be any OpenMath element, as expressed by the omel type.

3.3.3 OpenMath Symbols

A symbol is represented using the OMS type.

{
"kind": "OMS",

/** the base for the cd, optional */
"cdbase": uri,

/** content dictonary the symbol is in, any name */
"cd": name,

/** name of the symbol */
"name": name

}

For example the sin symbol from the transc1 content dictionary:

{
"kind": "OMS",

"cd": "transc1",
"name": "sin"

}

3.3.4 Variables

A variable is represented using the OMV type.

{
"kind": "OMV",

The OpenMath Standard Page 39 of 135

The OpenMath Society

/** name of the variable */
"name": name

}

For example, the variable x:

{
"kind": "OMV",
"name": "x"

}

3.3.5 Integers

Integers can be represented in three different ways, to both make use of json and enable easy trans-
lation from the XML encoding.

3.3.5.1 JSON Integers

Integers can be represented as a native JSON Integer, using an integer property.

{
"kind": "OMI",

/** integer value */
"integer": integer

}

{
"kind": "OMI",
"integer": -120

}

3.3.5.2 Decimal Integers

Integers can be represented using their decimal encoding, using the decimal property:

{
"kind": "OMI",

/** decimal value */
"decimal": decimalInteger

}

Page 40 of 135 The OpenMath Standard

The OpenMath Society

{
"kind": "OMI",
"decimal": "-120"

}

3.3.5.3 Hexadecimal Integers

Integers can be represented using their hexadecimal encoding, using the hexadecimal property:

{
"kind": "OMI",

/** hexadecimal value */
"hexadecimal": hexInteger

}

{
"kind": "OMI",
"hexadecimal": "-x78"

}

3.3.6 Floats

Floats, like integers, can be represented in three different ways.

3.3.6.1 JSON Floats

Floats can be represented as a native JSON Numbers, using a float property.

{
"kind": "OMF",

/** float value */
"float": float

}

{
"kind": "OMF",
"float": 1e-10

}

The OpenMath Standard Page 41 of 135

The OpenMath Society

3.3.6.2 Decimal Floating Point Numbers

Integers can be represented using their decimal encoding, using the decimal property:

{
"kind": "OMF",

/** decimal value */
"decimal": decimalFloat

}

{
"kind": "OMF",
"decimal": "1.0e-10"

}

3.3.6.3 Hexadecimal Floats

Floats can be represented using their hexadecimal encoding, using the hexadecimal property:

{
"kind": "OMF",

/** hexadecimal value */
"hexadecimal": hexFloat

}

{
"kind": "OMF",
"hexaecimal": "3DDB7CDFD9D7BDBB"

}

3.3.7 Bytes

Byte Arrays can be represented using two ways, as a native array of JSON integers, or base64-
encoded as a string.

3.3.7.1 JSON Byte Arrays

Bytes can be represented as a native JSON Byte Array, using a bytes property.

Page 42 of 135 The OpenMath Standard

The OpenMath Society

{
"kind": "OMB",

/** an array of bytes */
"bytes": byte[]

}

{
"kind": "OMB",
"bytes": [104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100]

}

3.3.7.2 Base64-encoded bytes

Bytes can also be encoded as a base64 encoded string.

{
"kind": "OMB",

/** a base64 encoded string */
"base64": base64string

}

{
"kind": "OMB",
"base64": "aGVsbG8gd29ybGQ="

}

3.3.8 Strings

Strings can be represented using normal JSON strings and the OMS type.

{
"kind": "OMSTR",

/** the string */
"string": string

}

For example:

{
"kind": "OMSTR",
"string": "Hello world"

}

The OpenMath Standard Page 43 of 135

The OpenMath Society

3.3.9 Applications

Applications can be represented using the OMA type.

{
"kind": "OMA",

/** the base for the cd, optional */
"cdbase": uri,

/** the term that is being applied */
"applicant": omel,

/** the arguments that the applicant is being applied to, optional */
"arguments"?: omel[]

}

For example:

{
"kind": "OMA",

"applicant": {
"kind": "OMS",

"cd": "transc1",
"name": "sin"

},

"arguments": [{
"kind": "OMV",
"name": "x"

}]
}

3.3.10 Attribution

Attribution can be represented using the OMB type.

{
"kind": "OMATTR",

/** the base for the cd, optional */
"cdbase": uri,

/** attributes attributed to this object, non-empty */

Page 44 of 135 The OpenMath Standard

The OpenMath Society

"attributes": ([
OMS, omel|OMFOREIGN

])[]

/** object that is being attributed */
"object": omel

}

Here the attributes are being encoded as an array of pairs. Each pair consists of a symbol (the
attribute name) and a value (an element or foreign element).

For example:

{
"kind": "OMATTR",
"attributes": [

[
{

"kind": "OMS",
"cd": "ecc",
"name": "type"

},
{

"kind": "OMS",
"cd": "ecc",
"name": "real"

}
]

],
"object": {

"kind": "OMV",
"name": "x"

}
}

3.3.11 Binding

Binding can be represented using the OMB type.

{
"kind": "OMBIND",

/** the base for the cd, optional */
"cdbase": uri,

/** the binder being used */
"binder": omel

The OpenMath Standard Page 45 of 135

The OpenMath Society

/** the variables being bound, non-empty */
"variables": (OMV | attvar)[]

/** the object that is being bound */
"object": omel

}

Here, the variables can be a list of variables or attributed variables. Attributed variables are repre-
sented using the attvar type. This is any OMATTR element (see above), where the object being
attributed is an OMV instance.

For example:

{
"kind": "OMBIND",
"binder":{

"kind": "OMS",
"cd": "fns1",
"name": "lambda"

},
"variables":[

{
"kind": "OMV",
"name": "x"

}
],
"object": {

"kind": "OMA",
"applicant": {

"kind": "OMS",
"cd": "transc1",
"name":"sin"

},
"arguments": [

{
"kind":"OMV",
"name":"x"

}
]

}
}

3.3.12 Errors

Errors can be represented using the OME object:

{

Page 46 of 135 The OpenMath Standard

The OpenMath Society

"kind": "OME",

/** the error that has occured */
"error": OMS,

/** arguments to the error, optional */
"arguments": (omel|OMFOREIGN)[]

}

Here, the variables can be a list of elements or foreign objects.

For example:

{
"kind": "OME",
"error": {

"kind": "OMS",
"cd": "aritherror",
"name": "DivisionByZero"

},
"arguments": [

{
"kind": "OMA",
"applicant": {

"kind": "OMS",
"cd": "arith1",
"name": "divide"

},
"arguments": [

{
"kind": "OMV",
"name": "x"

},
{

"kind": "OMI",
"integer": 0

}
]

}
]

}

3.3.13 References and Structure Sharing

Just like in the XML encoding, the OMR type can be used for structure sharing. This can use an href
property.

{

The OpenMath Standard Page 47 of 135

The OpenMath Society

"kind": "OMR"

/** element that is being referenced */
"href": uri

}

For example:

{
"kind": "OMOBJ",
"object": {

"kind": "OMA",
"applicant": {

"kind": "OMV",
"name": "f"

},
"arguments": [

{
"kind": "OMA",
"id": "t1",
"applicant": {

"kind": "OMV",
"name": "f"

},
"arguments": [

{
"kind": "OMA",
"id": "t11",
"applicant": {

"kind": "OMV",
"name": "f"

},
"arguments": [

{
"kind": "OMV",
"name": "a"

},
{

"kind": "OMV",
"name": "a"

}
]

},
{

"kind": "OMR",
"href": "#t11"

}
]

},

Page 48 of 135 The OpenMath Standard

The OpenMath Society

{
"kind": "OMR",
"href": "#t1"

}
]

}
}

3.3.14 Foreign Objects

Just like in the XML encoding, the OMFOREIGN type can be used for foreign objects. This can use
an href property.

{
"kind": "OMFOREIGN"

/** encoding of the foreign object */
"encoding"?: string

/** the foreign object */
"foreign": any

}

For example:

{
"kind": "OMFOREIGN",
"encoding": "text/latex",
"foreign": "$x=\frac{1+y}{1+2z^2}$"

}

3.4 Summary

The key points of this chapter are:

• The XML encoding for OpenMath objects uses most common character sets.
• The XML encoding is readable, writable and can be embedded in most documents and trans-

port protocols.
• The binary encoding for OpenMath objects should be used when efficiency is a key issue. It

is compact yet simple enough to allow fast encoding and decoding of objects.
• JSON is a widely used standard, with implementations in most programming languages, in

particular JavaScript and other languages used on the web. The JSON encoding thus makes
OpenMath objects web-interoparable.

The OpenMath Standard Page 49 of 135

Chapter 4

Content Dictionaries

In this chapter we give a brief overview of Content Dictionaries before explicitly stating their func-
tionality and encoding.

4.1 Introduction

Content Dictionaries (CDs) are central to the OpenMath philosophy of transmitting mathematical
information. It is the OpenMath Content Dictionaries which actually hold the meanings of the
objects being transmitted.

For example if application A is talking to application B, and sends, say, an equation involving
multiplication of matrices, then A and B must agree on what a matrix is, and on what matrix mul-
tiplication is, and even on what constitutes an equation. All this information is held within some
Content Dictionaries which both applications agree upon.

A Content Dictionary holds the meanings of (various) mathematical “words”. These words are
OpenMath basic objects referred to as symbols in Section 2.1.

With a set of symbol definitions (perhaps from several Content Dictionaries), A and B can now talk
in a common “language”.

It is important to stress that it is not Content Dictionaries themselves which are being transmitted,
but some “mathematics” whose definitions are held within the Content Dictionaries. This means
that the applications must have already agreed on a set of Content Dictionaries which they “under-
stand” (i.e., can cope with to some degree).

In many cases, the Content Dictionaries that an application understands will be constant, and be
intrinsic to the application’s mathematical use. However the above approach can also be used for
applications which can handle every Content Dictionary (such as an OpenMath parser, or perhaps
a typesetting system), or alternatively for applications which understand a changeable number of
Content Dictionaries (perhaps after being sent Content Dictionaries in some way).

Page 50 of 135

The OpenMath Society

The primary use of Content Dictionaries is thought to be for designers of Phrasebooks, the programs
which translate between the OpenMath mathematical object and the corresponding (often internal)
structure of the particular application in question. For such a use the Content Dictionaries have
themselves been designed to be as readable and precise as possible.

Another possible use for OpenMath Content Dictionaries could rely on their automatic comprehen-
sion by a machine (e.g., when given definitions of objects defined in terms of previously understood
ones), in which case Content Dictionaries may have to be passed as data. Towards this end, a Con-
tent Dictionary has been written which contains a set of symbols sufficient to represent any other
Content Dictionary. This means that Content Dictionaries may be passed in the same way as other
(OpenMath) mathematical data.

Finally, the syntax of the reference encoding for Content Dictionaries has been designed to be
relatively easy to learn and to write, and also free from the need for any specialist software. This
is because it is acknowledged that there is an enormous amount of mathematical information to
represent, and so most Content Dictionaries are written by “ordinary” mathematicians, encoding
their particular fields of expertise. A further reason is that the mathematics conveyed by a specific
Content Dictionary should be understandable independently of any application.

The key points from this section are:

• Content Dictionaries should be readable and precise to help Phrasebook designers,
• Content Dictionaries should be readily write-able to encourage widespread use,
• It ought to be possible for a machine to understand a Content Dictionary to some degree.

4.2 Abstract Content Dictionaries

In this section we define the abstract structure of Content Dictionaries.

A Content Dictionary consists of the following mandatory pieces of information:

1. A name corresponding to the rules described in Section 2.3.
2. A description of the Content Dictionary.
3. A revision date, the date of the last change to the Content Dictionary. Dates should be stored

in the ISO-compliant format YYYY-MM-DD, e.g. 1966-02-03.
4. A review date, a date until which the content dictionary is guaranteed to remain unchanged.
5. A version number which consists of a major and minor part (see Section 4.2.2).
6. A status, as described in Section 4.2.1.
7. A CD base which, when combined with the CD name, forms a unique identifier for the

Content Dictionary. It may or may not refer to an actual location from which it can be
retrieved.

8. A series of one or more symbol definitions as described below.

The OpenMath Standard Page 51 of 135

The OpenMath Society

A symbol definition consists of the following pieces of information:

1. A mandatory name corresponding to the rules described in Section 2.3.
2. A mandatory description of the symbol, which can be as formal or informal as the author

likes.
3. An optional role as described in Section 2.1.4.
4. Zero or more commented mathematical properties which are mathematical properties of the

symbol expressed in a mechanism other than OpenMath.
5. Zero or more formal mathematical properties which are mathematical properties of the sym-

bol expressed in OpenMath. Note that it is common for commented and formal mathematical
properties to be introduced in pairs, with the former describing the latter.

A Formal Mathematical Property may be given an optional kind attribute. An author of a
Content Dictionary may use this to indicate whether, for example, the property provides an
algorithm for evaluation of the concept it is associated with. At present no fixed scheme is
mandated for how this information should be encoded or used by an application.

6. Zero or more examples which are intended to demonstrate the use of the symbol within an
OpenMath object.

Some pieces of information which might logically be thought to be part of a Content Dictio-
nary, such as the types or signatures of symbols, are better represented externally. This allows
for new variants to be associated with Content Dictionaries without the Dictionaries themselves
being changed. A model for signatures is given in Section 4.4.1.

Content Dictionaries may be grouped into CD Groups. These groups allow applications to easily
refer to collections of Content Dictionaries. One particular CDGroup of interest is the “MathML
CDGroup”. This group consists of the collection of core Content Dictionaries that is designed to
have the same semantic scope as the content elements of MathML [23]. OpenMath objects built
from symbols that come from Content Dictionaries in this CDGroup may be expected to be easily
transformed between OpenMath and MathML encodings. The detailed structure of a CDGroup is
described in Section 4.4.2 below.

4.2.1 Content Dictionary Status

The status of a Content Dictionary can be either

• official: approved by the OpenMath Society according to the procedure outlined in Sec-
tion 4.5;
• experimental: under development and thus liable to change;
• private: used by a private group of OpenMath users;
• obsolete: an obsolete Content Dictionary kept only for archival purposes.

Page 52 of 135 The OpenMath Standard

The OpenMath Society

4.2.2 Content Dictionary Version Numbers

A version number must consist of two parts, a major version and a revision, both of which should
be non-negative integers. In CDs that do not have status experimental, the version number should
be a positive integer.

Unless a CD has status experimental, no changes should ever be introduced that invalidate objects
built with previous versions. Any change that influences phrasebook compliance, like adding a new
symbol to a Content Dictionary, is considered a major change and should be reflected by an increase
in the major version number. Other changes, like adding an example or correcting a description, are
considered minor changes. For minor changes the version number is not changed, but an increase
should be made to the revision number. Note that a change such as removing a symbol should not
be made unless the CD has status experimental. Should this be required then a new CD with a
different name should be produced so as not to invalidate existing objects.

When the major version number is increased, the revision number is normally reset to zero.

As detailed in Chapter 5, OpenMath compliant applications state which versions of which CDs they
support.

4.3 The Reference Encoding for Content Dictionaries

The reference encoding of Content Dictionaries are as XML documents. A valid Content Dictionary
document should conform to the Relax NG Schema for Content Dictionaries given in Section 4.3.1.

An example of a complete Content Dictionary is given in Appendix Appendix A.1, which is the
Meta Content Dictionary for describing Content Dictionaries themselves. A more typical Content
Dictionary is given in Appendix A.2, the arith1 Content Dictionary for basic arithmetic functions.

4.3.1 The Relax NG Schema for Content Dictionaries

#
Relax NG Schema for OpenMath CD
#

default namespace = "http://www.openmath.org/OpenMathCD"

include "openmath2.rnc" {start = CD}

CDComment = element CDComment { text }
CDName = element CDName { xsd:NCName }
CDUses = element CDUses { CDName* }
CDURL = element CDURL { xsd:anyURI }

The OpenMath Standard Page 53 of 135

The OpenMath Society

CDBase = element CDBase { xsd:anyURI }
text-or-om = (text | OMOBJ)*
CDReviewDate = element CDReviewDate { xsd:date }
CDDate = element CDDate { xsd:date }
CDVersion = element CDVersion { xsd:nonNegativeInteger }
CDRevision = element CDRevision { xsd:nonNegativeInteger }
CDStatus = element CDStatus {

"official" |
"experimental" |
"private" |
"obsolete"}

Description = element Description { text }
Name = element Name { xsd:NCName }
Role = element Role {

"binder" |
"attribution" |
"semantic-attribution" |
"error" |
"application" |
"constant" }

CMP = element CMP { text }
FMP = element FMP {

attribute kind {xsd:string}?,
OMOBJ
}

allow embedded OM
Example = element Example { text-or-om }
CDDefinition =

element CDDefinition {
CDComment*,
(Name & Role? & Description),

(CDComment | Example | FMP | CMP)*
}

CD =
element CD {

attribute version { xsd:string }?,
attribute cdgroup { xsd:anyURI }?,
(CDComment* & Description? &
CDName & CDURL? & CDBase? &
CDReviewDate? & CDDate & CDStatus &
CDUses? &
CDVersion & CDRevision),

(CDDefinition,CDComment*)+
}

4.3.2 Further Description of the CD Schema

We now describe the elements used in the above schema in terms of the abstract description of

Page 54 of 135 The OpenMath Standard

The OpenMath Society

CDs in Section 4.2. Unless stated otherwise information is encoded as the content of the relevant
element.

CD The CD element can take an optional version attribute which indicate to which version of
the OpenMath standard it conforms. In previous versions of this standard this attribute did
not exist, so any OpenMath object without such an attribute must conform to version 1 (or
equivalently 1.1) of the OpenMath standard. Objects which conform to the description given
in this document should have version="2.0". The value of the version attribute on the CD
element determines the default value for all contained OMOBJ elements. Similarly, the value of
the optional cdgroup attribute determines the default of cdgroup contained OMOBJ elements.

CDName The name of the Content Dictionary.
Description The text occurring in the Description element is used to give a description of

the enclosing element, which could be a symbol or the entire Content Dictionary. The content
of this element can be any XML text.

CDReviewDate The review date of the Content Dictionary.
CDDate The revision date of this version of the Content Dictionary.
CDVersion The major version number of the CD.
CDRevision The minor version number of the CD.
CDStatus The status of the Content Dictionary.
CDBase The CD base of the CD.
CDURL The text occurring in the CDURL element should be a valid URL where the source file for

the Content Dictionary encoding can be found (if it exists). The filename should conform to
ISO 9660 [15].

CDUses The content of this element should be a series of CDName elements, each naming a Content
Dictionary used in the Example and FMPs of the current Content Dictionary. This element is
optional and deprecated since the information can easily be extracted automatically.

CDComment The content of this element should be text that does not convey any crucial infor-
mation concerning the current Content Dictionary. It can be used in the Content Dictionary
header to report the author of the Content Dictionary and to log change information. In the
body of the Content Dictionary, it can be used to attach extra remarks to certain symbols.

CDDefinition The element which contains the definition of an individual symbol.
Name The name of a symbol.
Role The role of a symbol: it must be one of binder, attribution, semantic-attribution,

error, application, or constant.
Example The text occurring in the Example element is used to give examples of the enclosing

symbol, and can be any XML text. In addition to text the element may contain examples as
XML encoded OpenMath, inside OMOBJ elements. Note that Examples must be with respect
to some symbol and cannot be “loose” in the Content Dictionary.

CMP A Commented Mathematical Property.
FMP A Formal Mathematical Property. It may take an optional kind attribute.

The OpenMath Standard Page 55 of 135

The OpenMath Society

4.4 Additional Information

Content Dictionaries contain just one part of the information that can be associated to a symbol in
order to define its meaning and its functionality. OpenMath Signature dictionaries, CDGroups, and
possibly collections of extra mathematical properties, are used to convey the different aspects that
as a whole make up a mathematical definition.

4.4.1 Signature Dictionaries

OpenMath may be used with any type system. One just needs to produce a Content Dictionary
which gives the constructors of the type system, and then one may build OpenMath objects repre-
senting types in the given type system. These are typically associated with OpenMath objects via
the OpenMath attribution constructor.

A Small Type System, called STS, has been designed to give semi-formal signatures to OpenMath
symbols and is documented in [7]. The signature file given in Appendix A.3 is based on this
formalism. Using the same mechanism, [6] shows how pure type systems can also be employed to
assign types to OpenMath symbols.

4.4.1.1 Abstract Specification of a Signature Dictionary

Signature dictionaries have a header which specifies the type system being used and the Content
Dictionary containing the symbols for which signatures are being given. Each signature takes the
form of an OpenMath object in an appropriate encoding.

1. A type definition: the name of the Content Dictionary or of the CDGroup (cfg. Section 4.4.2)
that represents the type system being used.

2. A CD name: the name of the CD for which signatures are being defined.
3. A review date as defined in Section 4.2.
4. A status: as defined in Section 4.2.
5. A series of signatures which are OpenMath objects in some encoding. The objects must

represent types as defined by the type definition.

4.4.1.2 A Relax NG Schema for a Signature Dictionary

The following is a reference encoding of a signature dictionary, designed to be used with Content
Dictionaries in the XML encoding.

#
Relax NG Schema for OpenMath CD Signatures

Page 56 of 135 The OpenMath Standard

The OpenMath Society

#

default namespace = "http://www.openmath.org/OpenMathCDS"

include "openmath2.rnc" { start = CDSignatures }

CDSComment = element CDSComment { text }
CDSReviewDate = element CDSReviewDate { text }
CDSStatus = element CDSStatus {

"official" |
"experimental" |
"private" |
"obsolete"}

CDSignatures =
element CDSignatures {

attlist.CDSignatures,
(CDSComment)*,
(CDSReviewDate? & CDSStatus),
(CDSComment | Signature)*

}

attlist.CDSignatures =
attribute cd { xsd:NCName },
attribute type { xsd:NCName }?,
attribute cdgroup { xsd:anyURI }?,
attribute cdurl { xsd:anyURI }?,
attribute version { xsd:string }?

Signature = element Signature { attlist.Signature, OMOBJ? }
attlist.Signature = attribute name { text }

The CDSignatures element specifies which CD the Signature elements contained pertain to via
the cd attribute. The optional cdurl can be used to specify the canonical URI of that CD if it is not
identifiable by other means. The CDSignatures element can take an optional version attribute
which indicates to which version of the OpenMath standard it conforms. In previous versions of
this standard this attribute did not exist, so any OpenMath object without such an attribute must
conform to version 1 (or equivalently 1.1) of the OpenMath standard. Objects which conform to
the description given in this document should have version="2.0". The value of the version
attribute on the CDSignatures element determines the default value for all contained OMOBJ ele-
ments. Similarly, the value of the optional cdgroup attribute determines the default of cdgroup
contained OMOBJ elements.

The contents of the CDSignatures element are made up of CDSComment, CDSReviewDate, and
CDSStatus, which are completely analogous to their CD counterparts (see Section 4.3.2) and
Signature elements, which we will describe by way of an example next.

The OpenMath Standard Page 57 of 135

The OpenMath Society

4.4.1.3 Examples

An example of a signature dictionary for the type system STS and the arith1 Content Dictionary
is given in Appendix A.3. Each signature entry is similar to the following one for the OpenMath
symbol <OMS cd="arith1" name="plus"/>:

<Signature name="plus">
<OMOBJ version="2.0">
<OMA>
<OMS name="mapsto" cd="sts"/>
<OMA>
<OMS name="nassoc" cd="sts"/>
<OMV name="AbelianSemiGroup"/>

</OMA>
<OMV name="AbelianSemiGroup"/>

</OMA>
</OMOBJ>
</Signature>

Conceptually, it associates the symbol plus with an OpenMath-encoded type; here an n-ary func-
tion from an Abelian Semigroup to itself.

4.4.2 CDGroups

The CD Group mechanism is a convenience mechanism for identifying collections of CDs and
specifying their location by an URI. A CD Group file is an XML document used in the (static or
dynamic) negotiation phase where communicating applications declare and agree on the Content
Dictionaries which they process. It is a complement, or an alternative, to the individual declaration
of Content Dictionaries understood by an application. >Additionally, a CD Group file can also be
used as a catalog for defaulting the CD bases of OpenMath symbols. Note that CD Groups do not
affect the OpenMath objects themselves. Symbols in an object always refer to content dictionaries,
not groups.

For an application to declare that it “understands CDGroup G” is exactly equivalent to, and inter-
changeable with, the declaration that it “understands Content Dictionaries x1, x2, . . . xn”, where
x1, . . . xn are the members of CDGroup G.

4.4.2.1 The Specification of CDGroups

CDGroups are XML documents, hence a valid CDGroup should

• be valid according to the schema given in Figure 4.1,
• adhere to the extra conditions on the content of the elements given in Section 4.4.2.2.

Page 58 of 135 The OpenMath Standard

The OpenMath Society

Schema for OpenMath CD groups

info on the CD group itself

default namespace = "http://www.openmath.org/OpenMathCDG"

CDGroupName = element CDGroupName { xsd:NCName }
CDGroupVersion = element CDGroupVersion { xsd:nonNegativeInteger }
CDGroupRevision = element CDGroupRevision { xsd:nonNegativeInteger }
CDGroupURL = element CDGroupURL { xsd:anyURI }
CDGroupDescription = element CDGroupDescription { text }
info on the CDs in the group
CDComment = element CDComment { text }
CDGroupMember =

element CDGroupMember {CDComment?, CDName, CDVersion?, CDURL?}
CDGroupInclude = element CDGroupInclude { xsd:anyURI }
CDName = element CDName { xsd:NCName }
CDVersion = element CDVersion { xsd:nonNegativeInteger }
CDURL = element CDURL { text }
structure of the group
CDGroup =
element CDGroup {

attribute version { xsd:string }?,
CDGroupName,
CDGroupVersion,
CDGroupRevision?,
CDGroupURL,
CDGroupDescription,
(CDGroupMember | CDComment | CDGroupInclude)*

}
start = CDGroup

Figure 4.1: Relax NG Specification of CDGroups

The OpenMath Standard Page 59 of 135

The OpenMath Society

Apart from some header information such as CDGroupName and CDGroup version, a CDGroup is
simply an unordered list of CDs, identified by name and optionally version number and URL.

The CD element can take optional version attribute which indicates to which version of the Open-
Math standard it conforms. In previous versions of this standard this attribute did not exist, so any
OpenMath object without such an attribute must conform to version 1 (or equivalently 1.1) of the
OpenMath standard. Objects which conform to the description given in this document should have
version="2.0".

4.4.2.2 Further Requirements of a CDGroup

The notion of being a valid CDGroup implies that the following requirements on the content of the
elements described by the schema given in Section 4.4.1.2 are also met.

CDGroup The XML element CDGroup is the outermost element in a CDGroup document.
CDGroupName The text occurring in the CDGroupName element corresponds to the name of the

CDGroup. For the syntactical requirements, see CDName in Section 4.3.2.
CDGroupVersion

CDGroupRevision The text occurring in these elements contains the major and minor version
numbers of the CDGroup.

CDGroupURL The text occurring in the CDGroupURL element identifies the location of the CD-
Group file, not necessarily of the member Content Dictionaries. If the CDGroupURL element
is missing, it defaults to the URL of the current CD group file. For the syntactical require-
ments, see CDURL in Section 4.3.2.

CDGroupDescription The text occurring in the CDGroupDescription element describes the
mathematical area of the CDGroup.

CDGroupMember The XML element CDGroupMember encloses the data identifying each member
of the CDGroup.

CDGroupInclude The text content of the CDGroupInclude identifies an external CD group file
whose CDGroup members are to be included into the current one. Technically: the set of
CDs of CD group given by a CD group file with CDGroupInclude elements is determined
by recursive flattening: The cd group has all the CDs given directly by the CDGroupMember
elements together with those CDs from CD groups referenced in the CDGroupInclude el-
ements. If this leads to duplicate CDNames, then directly specified CDs are prioritized, for
duplications between referenced CD groups, the latter one is prioritized. For the syntactical
requirements, see CDURL in Section 4.3.2.

CDName The text occurring in the CDName element names the referenced Content Dictionary (see
CDURL below) in this CD group, it must be unique in the CD group. In particular, OMS elements
in an OMOBJ whose cdgroup attribute references the current CD group derive their CD base
via this CDName. For the syntactical requirements, see CDName in Section 4.3.2.

Page 60 of 135 The OpenMath Standard

The OpenMath Society

CDVersion The text occurring in the CDVersion element identifies which version of the Content
Dictionary is to be taken as member of the CDGroup. This element is optional. In case
it is missing, the latest version is the one included in the CDGroup. For the syntactical
requirements, see CDVersion in Section 4.3.2.

CDURL The text occurring in the CDURL element identifies the location of the Content Dictionary
to be taken as member of the CDGroup. This element is optional. In case it is missing,
the location of the CDGroup identified by the element CDGroupURL is assumed. For the
syntactical requirements, see CDURL in Section 4.3.2.

CDComment See CDComment in Section 4.3.2.

4.5 Content Dictionaries Reviewing Process

The OpenMath Society is responsible for implementing a review and referee process to assess the
accuracy of the mathematical content of Content Dictionaries. The status (see CDStatus) and/or
the version number (see CDVersion) of a Content Dictionary may change as a result of this review
process.

The OpenMath Standard Page 61 of 135

Chapter 5

OpenMath Compliance

Applications that meet the requirements specified in this chapter may label themselves as OpenMath
compliant. OpenMath compliance is defined so as to maximize the potential for interoperability
amongst OpenMath applications.

5.1 Encodings

This standard defines two reference encodings for OpenMath, the binary encoding and XML encod-
ing, defined in Chapter 3.

As a minimum, an OpenMath compliant application, which accepts or generates OpenMath objects,
must be capable of doing so using the XML encoding. The ability to use other encodings is optional.

5.1.1 The XML Encoding

5.1.1.1 Generating Valid XML

All OpenMath objects generated by a compliant OpenMath application must validate against the
Relax NG Schema given in Appendix B.

5.1.1.2 Decimal versus Hexadecimal Float Representation

In the XML encoding, floating-point numbers may be defined using either decimal or hexadecimal
notation. For numerical values, plus the two infinities, the two representations may be used in-
terchangeably since there is a one-to-one correspondence between them. The exceptional case is
that of not a number (NaN) which is defined in the IEEE standard [26] to be any number whose
exponent has the maximum possible value (in this case the exponent is 11 bits so the maximum
value is 2047) and whose mantissa is non-zero. The standard explicitly notes the use of the 52 bits

Page 62 of 135

The OpenMath Society

in the mantissa (and also the sign bit) to store information about how the NaN was generated in a
system-specific way. Thus in some cases the exact representation of the NaN is significant.

The semantics of the OpenMath object <OMF dec="NaN"/> is that it represents any NaN, and a
phrasebook may substitute any specific NaN value when processing it. The semantics of a NaN
in hexadecimal notation however, such as <OMF hex="FFF8000000000001"/>, is that this is a
specific NaN, as distinct from all others. If a phrasebook author substitutes another value for the
NaN or maps all NaNs to a single object then he or she must recognise that this process is not an
identity transformation.

5.2 OpenMath Foreign Objects

An OpenMath foreign object may be attributed with a string indicating the format of its contents.
Although this information is optional, an OpenMath-compliant application which generates Open-
Math foreign objects should always include it where possible (see the discussion of MathML con-
version below for an example of a situation where it is not always possible). It is recommended
that, where the contents of the foreign object are in an XML dialect, the namespace [18] of the XML
dialect is used as the value of the encoding. For example (using the XML encoding):

<OMATTR>
<OMATP>

<OMS cd="annotations1" name="description"/>
<OMFOREIGN encoding="http://www.w3.org/1999/xhtml">
<html xmlns="http://www.w3.org/1999/xhtml">

<head><title>E</title></head>
<body>

<p>
The base of the natural logarithms, approximately 2.71828.

</p>
</body>

</html>
</OMFOREIGN>

</OMATP>
<OMS cd="nums1" name="e"/>

</OMATTR>

Where the contents of the foreign object is a format other than XML, it is recommended that its
MIME type [5] is used as the value of the encoding. For example (again using the XML encoding):

<OMATTR>
<OMATP>

<OMS cd="annotations1" name="description"/>
<OMFOREIGN encoding="text/latex">
\documentclass{article}
\begin{document}
\title{E}
\maketitle

The OpenMath Standard Page 63 of 135

The OpenMath Society

The base of the natural logarithms, approximately 2.71828.
\end{document}

</OMFOREIGN>
</OMATP>
<OMS cd="nums1" name="e"/>

</OMATTR>

An exception to the above guidelines occurs when a MathML object is converted to OpenMath.
MathML also has an encoding attribute which can appear in various places and whose format
is a string. Only two values are predefined, MathML-Content and MathML-Presentation, and
these may appear in the resulting OpenMath object despite the fact that they are not namespaces as
recommended above. For example the following MathML expression:

<semantics xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<sin/>
<ci>x</ci>

</apply>
<annotation encoding="MathML-Presentation">

<math>
<mi>sin</mi><mfenced><mi>x</mi></mfenced>

</math>
</annotation>

</semantics>

is equivalent to the OpenMath expression:

<OMATTR>
<OMATP>

<OMS cd="altenc" name="MathML_encoding"/>
<OMFOREIGN encoding="MathML-Presentation">

<math xmlns="http://www.w3.org/1998/Math/MathML">
<mi>sin</mi><mfenced><mi>x</mi></mfenced>

</math>
</OMFOREIGN>

</OMATP>
<OMA>
<OMS cd="transc1" name="sin"/>
<OMV name="x"/>

</OMA>
</OMATTR>

Since in MathML the encoding attribute is in effect optional (its default value is the empty string), a
convertor program may not in fact be able to provide a value for the OpenMath encoding attribute.
This is unfortunate but unavoidable.

5.3 Content Dictionaries

An OpenMath compliant application must be able to support the error Content Dictionary defined
in Appendix A.5.

Page 64 of 135 The OpenMath Standard

The OpenMath Society

A compliant application must declare the names and version numbers of the Content Dictionaries
that it supports. Equivalently it may declare the Content Dictionary Group (or groups) and major
version number (not revision number), rather than listing individual Content Dictionaries. Appli-
cations that support all Content Dictionaries (e.g. renderers) should refer to the implicit CD Group
all.

If a compliant application supports a Content Dictionary then it must explicitly declare any symbols
in the Content Dictionaries that are not supported. Phrasebooks are encouraged to support every
symbol in the Content Dictionaries.

Symbols which are not listed as unsupported are supported by the application. The meaning of sup-
ported will depend on the application domain. For example an OpenMath renderer should provide
a default display for any OpenMath object that only references supported symbols, whereas a Com-
puter Algebra System will be expected to map such an object to a suitable internal representation,
in this system, of this mathematical object. It is expected that the application’s phrasebooks for
supported Content Dictionaries will be constructed such that properties of the symbol expressed in
the Content Dictionary are respected as far as possible for the given application domain. However
OpenMath compliance does not imply any guarantee by the OpenMath Society on the accuracy of
these representations.

Given the inheritance mechanism for CD bases OpenMath symbols, Content Dictionaries available
from the official OpenMath repository at http://www.openmath.org need only be referenced by
name, other Content Dictionaries should be referenced using the CDBase and the CDName or via the
CD Group-based CD base inheritance mechanism.

When receiving an OpenMath symbol, e.g. s, that is not defined in a supported Content Dictionary,
a compliant application will act as if it had received the OpenMath object

error(unhandled_symbol,s)

where unhandled_symbol is the symbol from the error Content Dictionary.

Similarly if it receives a symbol, e.g. s, from an unsupported Content Dictionary, it will act as if it
had received the OpenMath object

error(unsupported_cd,s)

Finally if the compliant application receives a symbol from a supported Content Dictionary but with
an unknown name, then this must either be an incorrect object, or possibly the object has been built
using a later version of the Content Dictionary. In either case, the application will act as if it had
received the OpenMath object

error(unexpected_symbol,s)

The OpenMath Standard Page 65 of 135

http://www.openmath.org

The OpenMath Society

5.4 Lexical Errors

The previous section defines the behaviour of a compliant application upon receiving well formed
OpenMath objects containing unexpected symbols. This standard does not specify any behaviour
for an application upon receiving ill-formed objects.

5.5 OpenMath 1 Objects

Compliant OpenMath 2 documents and Content Dictionary files using the reference XML encodings
must be valid according to the specified schema, and so will use the namespaces http://www.
openmath.org/OpenMath and http://www.openmath.org/OpenMathCD respectively. Similarly
CD Group and Signature files will use http://www.openmath.org/OpenMathCDG and http://
www.openmath.org/OpenMathCDS.

Applications may also support OpenMath 1. XML-encoded OpenMath 1 documents may be in either
the http://www.openmath.org/OpenMath namespace or in no-namespace (i.e., do not have any
xmlns declarations). An application may accept either of these forms. Note however that OpenMath
documents that have a version attribute should validate against the schema for OpenMath 2 (or later
versions) and so should always use the OpenMath namespace. XML-encoded OpenMath 1 CD files,
CD Group files and CD Signature files must be in no-namespace. An OpenMath 2 application may
support these files by implicitly converting the documents to their respective namespace. Apart
from this change of namespace (and the addition of a version attribute on OMOBJ) the OpenMath 1
documents should conform to the schema specified in this standard.

The use of documents in no-namespace should be restricted to reading existing OpenMath 1 files.
No OpenMath 2 application should generate documents in this form.

Page 66 of 135 The OpenMath Standard

http://www.openmath.org/OpenMath
http://www.openmath.org/OpenMath
http://www.openmath.org/OpenMathCD
http://www.openmath.org/OpenMathCDG
http://www.openmath.org/OpenMathCDS
http://www.openmath.org/OpenMathCDS
http://www.openmath.org/OpenMath

Appendix A

CD Files

Page 67 of 135

The OpenMath Society

A.1 The meta Content Dictionary

<CD
xmlns="http://www.openmath.org/OpenMathCD">

<CDComment>

This document is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

The copyright holder grants you permission to redistribute this
document freely as a verbatim copy. Furthermore, the copyright
holder permits you to develop any derived work from this document
provided that the following conditions are met.

a) The derived work acknowledges the fact that it is derived from
this document, and maintains a prominent reference in the
work to the original source.

b) The fact that the derived work is not the original OpenMath
document is stated prominently in the derived work. Moreover if
both this document and the derived work are Content Dictionaries
then the derived work must include a different CDName element,
chosen so that it cannot be confused with any works adopted by
the OpenMath Society. In particular, if there is a Content
Dictionary Group whose name is, for example, ‘math’ containing
Content Dictionaries named ‘math1’, ‘math2’ etc., then you should
not name a derived Content Dictionary ‘mathN’ where N is an integer.
However you are free to name it ‘private_mathN’ or some such. This
is because the names ‘mathN’ may be used by the OpenMath Society
for future extensions.

c) The derived work is distributed under terms that allow the
compilation of derived works, but keep paragraphs a) and b)
intact. The simplest way to do this is to distribute the derived
work under the OpenMath license, but this is not a requirement.

If you have questions about this license please contact the OpenMath
society at http://www.openmath.org.

</CDComment>

<CDName>meta</CDName>
<CDReviewDate>2017-12-31</CDReviewDate>
<CDDate>2004-03-30</CDDate>
<CDVersion>3</CDVersion>
<CDRevision>1</CDRevision>
<CDComment>

Author: OpenMath Consortium
SourceURL: https://github.com/OpenMath/CDs

</CDComment>
<CDStatus>official</CDStatus>

Page 68 of 135 The OpenMath Standard

The OpenMath Society

<CDURL>http://www.openmath.org/cd/meta.ocd</CDURL>
<CDBase>http://www.openmath.org/cd</CDBase>

<Description>
This is a content dictionary to represent content dictionaries, so
that they may be passed between OpenMath compliant application in a
similar way to mathematical objects.

The information written here is taken from chapter 4 of the current
draft of the "OpenMath Standard".
</Description>

<CDDefinition>
<Name>CD</Name>
<Role>application</Role>
<Description>
The top level element for the Content Dictionary. It just acts
as a container for the elements described below.
</Description>
</CDDefinition>

<CDDefinition>
<Name>CDDefinition</Name>
<Role>application</Role>
<Description>
This symbol is used to represent the element which contains the
definition of each symbol in a content dictionary. That is: it must
contain a ’Name’ element and a ’Description’ element, and it may contain
an arbitrary number of ’Example’, ’FMP’ or ’CMP’ elements.
</Description>
</CDDefinition>

<CDDefinition>
<Name>CDName</Name>
<Role>application</Role>
<Description>
An element which contains the string corresponding to the name of the CD.
The string must match the syntax for CD names given in the OpenMath
Standard. Here and elsewhere white space occurring at the beginning or
end of the string will be ignored.
</Description>
</CDDefinition>

<CDDefinition>
<Name>CDURL</Name>
<Role>application</Role>
<Description>
An optional element.

The OpenMath Standard Page 69 of 135

The OpenMath Society

If it is used it contains a string representing the URL where the
canonical reference copy of this CD is stored.
</Description>
</CDDefinition>

<CDDefinition>
<Name>CDBase</Name>
<Role>application</Role>
<Description>
An optional element.
If it is used it contains a string representing the URI
to be used as the base for generated canonical URI references
for symbols in the CD.
</Description>
</CDDefinition>

<CDDefinition>
<Name>Example</Name>
<Role>application</Role>
<Description>
An element which contains an arbitrary number of children,
each of which is either a string or an OpenMath Object.

These children give examples in natural language, or in OpenMath, of the
enclosing symbol definition.
</Description>
</CDDefinition>

<CDDefinition>
<Name>CDDate</Name>
<Role>application</Role>
<Description>
An element which contains a date as a string in the ISO-8601
YYYY-MM-DD format. This gives the date at which the Content Dictionary
was last edited.
</Description>
</CDDefinition>

<CDDefinition>
<Name>CDVersion</Name>
<Role>application</Role>
<Description>
An element which contains a version number for the CD.
This should be a non negative integer. Any change to the CD
that affects existing OpenMath applications that support this CD
should result in an increase in the version number.
</Description>
</CDDefinition>

Page 70 of 135 The OpenMath Standard

The OpenMath Society

<CDDefinition>
<Name>CDRevision</Name>
<Role>application</Role>
<Description>
An element which contains a revision number (or minor version number)
This should be a non-negative integer starting from zero for each
new version. Additional examples would be typical changes
to a CD requiring a new revision number.
</Description>
</CDDefinition>

<CDDefinition>
<Name>CDReviewDate</Name>
<Role>application</Role>
<Description>
An element which contains a date as a string in the ISO-8601
YYYY-MM-DD format. This gives the date at which the Content Dictionary
is next scheduled for review. It should be expected to be stable
until at least this date.
</Description>
</CDDefinition>

<CDDefinition>
<Name>CDStatus</Name>
<Role>application</Role>
<Description>
An element giving information on the status of the CD.
The content of the element must be one of the following strings.

official (approved by the OpenMath Society),

experimental (currently being tested),

private (used by a private group of OpenMath users), or

obsolete (an obsolete CD kept only for archival purposes).
</Description>
</CDDefinition>

<CDDefinition>
<Name>CDComment</Name>
<Role>application</Role>
<Description>
This symbol is used to represent the element of a content dictionary which
explains some aspect of that content dictionary. It should have one string
argument which makes that explanation.
</Description>
</CDDefinition>

The OpenMath Standard Page 71 of 135

The OpenMath Society

<CDDefinition>
<Name>CDUses</Name>
<Role>application</Role>
<Description>
An element which contains zero or more CDNames which correspond
to the CDs that this CD depends on, i.e. uses in examples and FMPs. If
the CD is dependent on any other CDs they may be present here.
</Description>
</CDDefinition>

<CDDefinition>
<Name>Description</Name>
<Role>application</Role>
<Description>
An element which contains a string corresponding to the
description of either the CD or the symbol
(depending on which is the enclosing element).
</Description>
</CDDefinition>

<CDDefinition>
<Name>Name</Name>
<Role>application</Role>
<Description>
An element containing the string corresponding to the name of
the symbol being defined. This must match the syntax for
symbol names given in the OpenMath Standard. Here and elsewhere white
space occurring at the begining or end of the string will be ignored.
</Description>
</CDDefinition>

<CDDefinition>
<Name>Role</Name>
<Role>application</Role>
<Description>
An element containing the string corresponding to the role of
the symbol being defined.
</Description>
</CDDefinition>

<CDDefinition>
<Name>CMP</Name>
<Role>application</Role>
<Description>
An optional element (which may be repeated many times) which contains
a string corresponding to a property of the symbol being

Page 72 of 135 The OpenMath Standard

The OpenMath Society

defined.
</Description>
</CDDefinition>

<CDDefinition>
<Name>FMP</Name>
<Role>application</Role>
<Description>
An optional element which contains an OpenMath Object.
This corresponds to a property of the symbol being defined.
</Description>
</CDDefinition>

</CD>

The OpenMath Standard Page 73 of 135

The OpenMath Society

A.2 The arith1 Content Dictionary File

<CD
xmlns="http://www.openmath.org/OpenMathCD">

<CDComment>

This document is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

The copyright holder grants you permission to redistribute this
document freely as a verbatim copy. Furthermore, the copyright
holder permits you to develop any derived work from this document
provided that the following conditions are met.

a) The derived work acknowledges the fact that it is derived from
this document, and maintains a prominent reference in the
work to the original source.

b) The fact that the derived work is not the original OpenMath
document is stated prominently in the derived work. Moreover if
both this document and the derived work are Content Dictionaries
then the derived work must include a different CDName element,
chosen so that it cannot be confused with any works adopted by
the OpenMath Society. In particular, if there is a Content
Dictionary Group whose name is, for example, ‘math’ containing
Content Dictionaries named ‘math1’, ‘math2’ etc., then you should
not name a derived Content Dictionary ‘mathN’ where N is an integer.
However you are free to name it ‘private_mathN’ or some such. This
is because the names ‘mathN’ may be used by the OpenMath Society
for future extensions.

c) The derived work is distributed under terms that allow the
compilation of derived works, but keep paragraphs a) and b)
intact. The simplest way to do this is to distribute the derived
work under the OpenMath license, but this is not a requirement.

If you have questions about this license please contact the OpenMath
society at http://www.openmath.org.

</CDComment>

<CDName>arith1</CDName>
<CDBase>http://www.openmath.org/cd</CDBase>
<CDURL>http://www.openmath.org/cd/arith1.ocd</CDURL>
<CDReviewDate>2006-03-30</CDReviewDate>
<CDStatus>official</CDStatus>
<CDDate>2004-03-30</CDDate>
<CDVersion>3</CDVersion>
<CDRevision>1</CDRevision>
<CDComment>

Author: OpenMath Consortium
SourceURL: https://github.com/OpenMath/CDs

Page 74 of 135 The OpenMath Standard

The OpenMath Society

</CDComment>

<Description>
This CD defines symbols for common arithmetic functions.
</Description>

<CDDefinition>
<Name>lcm</Name>
<Role>application</Role>
<Description>
The symbol to represent the n-ary function to return the least common
multiple of its arguments.
</Description>

<CMP> lcm(a,b) = a*b/gcd(a,b) </CMP>

<FMP>
<OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">
<OMA>

<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="arith1" name="lcm"/>
<OMV name="a"/>
<OMV name="b"/>

</OMA>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMA>

<OMS cd="arith1" name="times"/>
<OMV name="a"/>
<OMV name="b"/>

</OMA>
<OMA>

<OMS cd="arith1" name="gcd"/>
<OMV name="a"/>
<OMV name="b"/>

</OMA>
</OMA>

</OMA>
</OMOBJ>
</FMP>
<CMP>
for all integers a,b |
There does not exist a c>0 such that c/a is an Integer and c/b is an
Integer and lcm(a,b) > c.
</CMP>

The OpenMath Standard Page 75 of 135

The OpenMath Society

<FMP>
<OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">
<OMBIND>

<OMS cd="quant1" name="forall"/>
<OMBVAR>

<OMV name="a"/>
<OMV name="b"/>

</OMBVAR>
<OMA>

<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>

<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMS cd="setname1" name="Z"/>

</OMA>
<OMA>

<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMS cd="setname1" name="Z"/>

</OMA>
</OMA>
<OMA>

<OMS cd="logic1" name="not"/>
<OMBIND>

<OMS cd="quant1" name="exists"/>
<OMBVAR>

<OMV name="c"/>
</OMBVAR>
<OMA>

<OMS cd="logic1" name="and"/>
<OMA>

<OMS cd="relation1" name="gt"/>
<OMV name="c"/>
<OMI>0</OMI>

</OMA>
<OMA>

<OMS cd="integer1" name="factorof"/>
<OMV name="a"/>
<OMV name="c"/>

</OMA>
<OMA>

<OMS cd="integer1" name="factorof"/>
<OMV name="b"/>
<OMV name="c"/>

</OMA>

Page 76 of 135 The OpenMath Standard

The OpenMath Society

<OMA>
<OMS cd="relation1" name="lt"/>
<OMV name="c"/>
<OMA>
<OMS cd="arith1" name="lcm"/>
<OMV name="a"/>
<OMV name="b"/>

</OMA>
</OMA>

</OMA>
</OMBIND>

</OMA>
</OMA>

</OMBIND>
</OMOBJ>
</FMP>
</CDDefinition>

<CDDefinition>
<Name>gcd</Name>
<Role>application</Role>
<Description>
The symbol to represent the n-ary function to return the gcd (greatest
common divisor) of its arguments.
</Description>

<CMP>
for all integers a,b |
There does not exist a c such that a/c is an Integer and b/c is an
Integer and c > gcd(a,b).

Note that this implies that gcd(a,b) > 0
</CMP>

<FMP>
<OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>

<OMV name="a"/>
<OMV name="b"/>

</OMBVAR>
<OMA>

<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>

The OpenMath Standard Page 77 of 135

The OpenMath Society

<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMS cd="setname1" name="Z"/>

</OMA>
<OMA>

<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMS cd="setname1" name="Z"/>

</OMA>
</OMA>
<OMA>

<OMS cd="logic1" name="not"/>
<OMBIND>

<OMS cd="quant1" name="exists"/>
<OMBVAR>

<OMV name="c"/>
</OMBVAR>
<OMA>

<OMS cd="logic1" name="and"/>
<OMA>

<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMV name="a"/>
<OMV name="c"/>

</OMA>
<OMS cd="setname1" name="Z"/>

</OMA>
<OMA>

<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMV name="b"/>
<OMV name="c"/>

</OMA>
<OMS cd="setname1" name="Z"/>

</OMA>
<OMA>

<OMS cd="relation1" name="gt"/>
<OMV name="c"/>
<OMA>
<OMS cd="arith1" name="gcd"/>
<OMV name="a"/>
<OMV name="b"/>

</OMA>
</OMA>

</OMA>
</OMBIND>

</OMA>

Page 78 of 135 The OpenMath Standard

The OpenMath Society

</OMA>
</OMBIND>
</OMOBJ>
</FMP>

<Example>
gcd(6,9) = 3
<OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">
<OMA>

<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="arith1" name="gcd"/>
<OMI> 6 </OMI>
<OMI> 9 </OMI>

</OMA>
<OMI> 3 </OMI>

</OMA>
</OMOBJ>
</Example>
</CDDefinition>

<CDDefinition>
<Name>plus</Name>
<Role>application</Role>
<Description>
The symbol representing an n-ary commutative function plus.
</Description>
<CMP> for all a,b | a + b = b + a </CMP>
<FMP>
<OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">
<OMBIND>

<OMS cd="quant1" name="forall"/>
<OMBVAR>

<OMV name="a"/>
<OMV name="b"/>

</OMBVAR>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>

<OMS cd="arith1" name="plus"/>
<OMV name="a"/>
<OMV name="b"/>

</OMA>
<OMA>

<OMS cd="arith1" name="plus"/>

The OpenMath Standard Page 79 of 135

The OpenMath Society

<OMV name="b"/>
<OMV name="a"/>

</OMA>
</OMA>

</OMBIND>
</OMOBJ>
</FMP>
</CDDefinition>

<CDDefinition>
<Name>unary_minus</Name>
<Role>application</Role>
<Description>
This symbol denotes unary minus, i.e. the additive inverse.
</Description>
<CMP> for all a | a + (-a) = 0 </CMP>
<FMP>
<OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">
<OMBIND>

<OMS cd="quant1" name="forall"/>
<OMBVAR>

<OMV name="a"/>
</OMBVAR>
<OMA>

<OMS cd="relation1" name="eq"/>
<OMA>

<OMS cd="arith1" name="plus"/>
<OMV name="a"/>
<OMA>

<OMS cd="arith1" name="unary_minus"/>
<OMV name="a"/>

</OMA>
</OMA>
<OMS cd="alg1" name="zero"/>

</OMA>
</OMBIND>

</OMOBJ>
</FMP>
</CDDefinition>

<CDDefinition>
<Name>minus</Name>
<Role>application</Role>
<Description>
The symbol representing a binary minus function. This is equivalent to
adding the additive inverse.
</Description>

Page 80 of 135 The OpenMath Standard

The OpenMath Society

<CMP> for all a,b | a - b = a + (-b) </CMP>
<FMP>
<OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">
<OMBIND>

<OMS cd="quant1" name="forall"/>
<OMBVAR>

<OMV name="a"/>
<OMV name="b"/>

</OMBVAR>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>

<OMS cd="arith1" name="minus"/>
<OMV name="a"/>
<OMV name="b"/>

</OMA>
<OMA>

<OMS cd="arith1" name="plus"/>
<OMV name="a"/>
<OMA>

<OMS cd="arith1" name="unary_minus"/>
<OMV name="b"/>

</OMA>
</OMA>

</OMA>
</OMBIND>

</OMOBJ>
</FMP>
</CDDefinition>

<CDDefinition>
<Name>times</Name>
<Role>application</Role>
<Description>
The symbol representing an n-ary multiplication function.
</Description>
<Example>
<OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>

<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="linalg2" name="matrix"/>
<OMA>

The OpenMath Standard Page 81 of 135

The OpenMath Society

<OMS cd="linalg2" name="matrixrow"/>
<OMI> 1 </OMI>
<OMI> 2 </OMI>

</OMA>
<OMA>

<OMS cd="linalg2" name="matrixrow"/>
<OMI> 3 </OMI>
<OMI> 4 </OMI>

</OMA>
</OMA>
<OMA>

<OMS cd="linalg2" name="matrix"/>
<OMA>

<OMS cd="linalg2" name="matrixrow"/>
<OMI> 5 </OMI>
<OMI> 6 </OMI>

</OMA>
<OMA>

<OMS cd="linalg2" name="matrixrow"/>
<OMI> 7 </OMI>
<OMI> 8 </OMI>

</OMA>
</OMA>

</OMA>
<OMA>

<OMS cd="linalg2" name="matrix"/>
<OMA>

<OMS cd="linalg2" name="matrixrow"/>
<OMI> 19 </OMI>
<OMI> 22 </OMI>

</OMA>
<OMA>

<OMS cd="linalg2" name="matrixrow"/>
<OMI> 43 </OMI>
<OMI> 50 </OMI>

</OMA>
</OMA>

</OMA>
</OMOBJ>
</Example>
<CMP> for all a,b | a * 0 = 0 and a * b = a * (b - 1) + a </CMP>

<FMP><OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">
<OMBIND>

<OMS cd="quant1" name="forall"/>
<OMBVAR>

<OMV name="a"/>

Page 82 of 135 The OpenMath Standard

The OpenMath Society

<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>

<OMS cd="relation1" name="eq"/>
<OMA>

<OMS cd="arith1" name="times"/>
<OMV name="a"/>
<OMS cd="alg1" name="zero"/>

</OMA>
<OMS cd="alg1" name="zero"/>

</OMA>
<OMA>

<OMS cd="relation1" name="eq"/>
<OMA>

<OMS cd="arith1" name="times"/>
<OMV name="a"/>
<OMV name="b"/>

</OMA>
<OMA>

<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMV name="a"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMV name="b"/>
<OMS cd="alg1" name="one"/>

</OMA>
</OMA>
<OMV name="a"/>

</OMA>
</OMA>

</OMA>
</OMBIND>
</OMOBJ></FMP>

<CMP> for all a,b,c | a*(b+c) = a*b + a*c </CMP>
<FMP><OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
<OMV name="c"/>

</OMBVAR>

The OpenMath Standard Page 83 of 135

The OpenMath Society

<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMV name="a"/>
<OMA>

<OMS cd="arith1" name="plus"/>
<OMV name="b"/>
<OMV name="c"/>

</OMA>
</OMA>
<OMA>

<OMS cd="arith1" name="plus"/>
<OMA>

<OMS cd="arith1" name="times"/>
<OMV name="a"/>
<OMV name="b"/>

</OMA>
<OMA>

<OMS cd="arith1" name="times"/>
<OMV name="a"/>
<OMV name="c"/>

</OMA>
</OMA>

</OMA>
</OMBIND>
</OMOBJ></FMP>
</CDDefinition>

<CDDefinition>
<Name>divide</Name>
<Role>application</Role>
<Description>
This symbol represents a (binary) division function denoting the first argument
right-divided by the second, i.e. divide(a,b)=a*inverse(b). It is the
inverse of the multiplication function defined by the symbol times in this CD.
</Description>
<CMP> whenever not(a=0) then a/a = 1 </CMP>
<FMP>
<OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">
<OMBIND>

<OMS cd="quant1" name="forall"/>
<OMBVAR>

<OMV name="a"/>
</OMBVAR>
<OMA>

<OMS cd="logic1" name="implies"/>

Page 84 of 135 The OpenMath Standard

The OpenMath Society

<OMA>
<OMS cd="relation1" name="neq"/>
<OMV name="a"/>
<OMS cd="alg1" name="zero"/>

</OMA>
<OMA>

<OMS cd="relation1" name="eq"/>
<OMA>

<OMS cd="arith1" name="divide"/>
<OMV name="a"/>
<OMV name="a"/>

</OMA>
<OMS cd="alg1" name="one"/>

</OMA>
</OMA>

</OMBIND>
</OMOBJ>
</FMP>
</CDDefinition>

<CDDefinition>
<Name>power</Name>
<Role>application</Role>
<Description>
This symbol represents a power function. The first argument is raised
to the power of the second argument. When the second argument is not
an integer, powering is defined in terms of exponentials and
logarithms for the complex and real numbers.
This operator can represent general powering.
</Description>

<CMP>
x\in C implies x^a = exp(a ln x)
</CMP>

<FMP>
<OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>

<OMS cd="set1" name="in"/>
<OMV name="x"/>
<OMS cd="setname1" name="C"/>

</OMA>
<OMA>

<OMS cd="relation1" name="eq"/>
<OMA>

The OpenMath Standard Page 85 of 135

The OpenMath Society

<OMS name="power" cd="arith1"/>
<OMV name="x"/>
<OMV name="a"/>

</OMA>
<OMA>

<OMS name="exp" cd="transc1"/>
<OMA>

<OMS name="times" cd="arith1"/>
<OMV name="a"/>
<OMA>

<OMS name="ln" cd="transc1"/>
<OMV name="x"/>

</OMA>
</OMA>

</OMA>
</OMA>

</OMA>
</OMOBJ>
</FMP>

<CMP>
if n is an integer then
x^0 = 1,
x^n = x * x^(n-1)

</CMP>
<FMP>
<OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"
cdbase="http://www.openmath.org/cd">
<OMA>

<OMS cd="logic1" name="implies"/>
<OMA>

<OMS cd="set1" name="in"/>
<OMV name="n"/>
<OMS cd="setname1" name="Z"/>

</OMA>
<OMA>

<OMS cd="logic1" name="and"/>
<OMA>

<OMS cd="relation1" name="eq"/>
<OMA>

<OMS cd="arith1" name="power"/>
<OMV name="x"/>
<OMI>0</OMI>

</OMA>
<OMS cd="alg1" name="one"/>

</OMA>
<OMA>

<OMS cd="relation1" name="eq"/>

Page 86 of 135 The OpenMath Standard

The OpenMath Society

<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="x"/>
<OMV name="n"/>

</OMA>
<OMA>

<OMS cd="arith1" name="times"/>
<OMV name="x"/>
<OMA>

<OMS cd="arith1" name="power"/>
<OMV name="x"/>
<OMA>

<OMS cd="arith1" name="minus"/>
<OMV name="n"/>
<OMI>1</OMI>

</OMA>
</OMA>

</OMA>
</OMA>

</OMA>
</OMA>

</OMOBJ>
</FMP>
<Example>
<OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>

<OMS cd="arith1" name="power"/>
<OMA>
<OMS cd="linalg2" name="matrix"/>
<OMA>

<OMS cd="linalg2" name="matrixrow"/>
<OMI> 1 </OMI>
<OMI> 2 </OMI>

</OMA>
<OMA>

<OMS cd="linalg2" name="matrixrow"/>
<OMI> 3 </OMI>
<OMI> 4 </OMI>

</OMA>
</OMA>
<OMI>3</OMI>

</OMA>
<OMA>
<OMS cd="linalg2" name="matrix"/>
<OMA>

The OpenMath Standard Page 87 of 135

The OpenMath Society

<OMS cd="linalg2" name="matrixrow"/>
<OMI> 37 </OMI>
<OMI> 54 </OMI>

</OMA>
<OMA>

<OMS cd="linalg2" name="matrixrow"/>
<OMI> 81 </OMI>
<OMI> 118 </OMI>

</OMA>
</OMA>

</OMA>
</OMOBJ>
</Example>
<Example>
<OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">
<OMA>

<OMS cd="relation1" name="eq"/>
<OMA>

<OMS cd="arith1" name="power"/>
<OMS cd="nums1" name="e"/>
<OMA>

<OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMS cd="nums1" name="pi"/>

</OMA>
</OMA>
<OMA>

<OMS cd="arith1" name="unary_minus"/>
<OMS cd="alg1" name="one"/>

</OMA>
</OMA>
</OMOBJ>
</Example>
</CDDefinition>

<CDDefinition>
<Name>abs</Name>
<Role>application</Role>
<Description>
A unary operator which represents the absolute value of its
argument. The argument should be numerically valued.
In the complex case this is often referred to as the modulus.
</Description>
<CMP> for all x,y | abs(x) + abs(y) >= abs(x+y) </CMP>
<FMP>
<OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

Page 88 of 135 The OpenMath Standard

The OpenMath Society

cdbase="http://www.openmath.org/cd">
<OMBIND>

<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="x"/>
<OMV name="y"/>

</OMBVAR>
<OMA>
<OMS cd="relation1" name="geq"/>
<OMA>

<OMS cd="arith1" name="plus"/>
<OMA>

<OMS cd="arith1" name="abs"/>
<OMV name="x"/>

</OMA>
<OMA>

<OMS cd="arith1" name="abs"/>
<OMV name="y"/>

</OMA>
</OMA>
<OMA>

<OMS cd="arith1" name="abs"/>
<OMA>

<OMS cd="arith1" name="plus"/>
<OMV name="x"/>
<OMV name="y"/>

</OMA>
</OMA>

</OMA>
</OMBIND>

</OMOBJ>
</FMP>
</CDDefinition>

<CDDefinition>
<Name>root</Name>
<Role>application</Role>
<Description>
A binary operator which represents its first argument "lowered" to its
n’th root where n is the second argument. This is the inverse of the operation
represented by the power symbol defined in this CD.

Care should be taken as to the precise meaning of this operator, in
particular which root is represented, however it is here to represent
the general notion of taking n’th roots. As inferred by the signature
relevant to this symbol, the function represented by this symbol is
the single valued function, the specific root returned is the one
indicated by the first CMP. Note also that the converse of the second
CMP is not valid in general.

The OpenMath Standard Page 89 of 135

The OpenMath Society

</Description>

<CMP> x\in C implies root(x,n) = exp(ln(x)/n) </CMP>
<FMP>

<OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">
<OMA>

<OMS cd="logic1" name="implies"/>
<OMA>

<OMS cd="set1" name="in"/>
<OMV name="x"/>
<OMS cd="setname1" name="C"/>

</OMA>
<OMA>

<OMS cd="relation1" name="eq"/>
<OMA>

<OMS cd="arith1" name="root"/>
<OMV name="x"/>
<OMV name="n"/>

</OMA>
<OMA>

<OMS name="exp" cd="transc1"/>
<OMA>

<OMS name="divide" cd="arith1"/>
<OMA>
<OMS name="ln" cd="transc1"/>
<OMV name="x"/>

</OMA>
<OMV name="n"/>

</OMA>
</OMA>

</OMA>
</OMA>

</OMOBJ>
</FMP>

<CMP> for all a,n | power(root(a,n),n) = a (if the root exists!) </CMP>
<FMP>
<OMOBJ

xmlns="http://www.openmath.org/OpenMath" version="2.0"
cdbase="http://www.openmath.org/cd">

<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>

<OMV name="a"/>
<OMV name="n"/>

</OMBVAR>
<OMA>

Page 90 of 135 The OpenMath Standard

The OpenMath Society

<OMS cd="relation1" name="eq"/>
<OMA>

<OMS cd="arith1" name="power"/>
<OMA>

<OMS cd="arith1" name="root"/>
<OMV name="a"/>
<OMV name="n"/>

</OMA>
<OMV name="n"/>

</OMA>
<OMV name="a"/>

</OMA>
</OMBIND>

</OMOBJ>
</FMP>
</CDDefinition>

<CDDefinition>
<Name>sum</Name>
<Role>application</Role>
<Description>
An operator taking two arguments, the first being the range of summation,
e.g. an integral interval, the second being the function to be
summed. Note that the sum may be over an infinite interval.
</Description>
<Example>
This represents the summation of the reciprocals of all the integers between
1 and 10 inclusive.

<OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">
<OMA>

<OMS cd="arith1" name="sum"/>
<OMA>

<OMS cd="interval1" name="integer_interval"/>
<OMI> 1 </OMI>
<OMI> 10 </OMI>

</OMA>
<OMBIND>

<OMS cd="fns1" name="lambda"/>
<OMBVAR>

<OMV name="x"/>
</OMBVAR>
<OMA>

<OMS cd="arith1" name="divide"/>
<OMI> 1 </OMI>

The OpenMath Standard Page 91 of 135

The OpenMath Society

<OMV name="x"/>
</OMA>

</OMBIND>
</OMA>

</OMOBJ>
</Example>
</CDDefinition>

<CDDefinition>
<Name>product</Name>
<Role>application</Role>
<Description>
An operator taking two arguments, the first being the range of multiplication
e.g. an integral interval, the second being the function to
be multiplied. Note that the product may be over an infinite interval.
</Description>
<Example>
This represents the statement that the factorial of n is equal to the product
of all the integers between 1 and n inclusive.
<OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">
<OMA>

<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="integer1" name="factorial"/>
<OMV name="n"/>

</OMA>
<OMA>

<OMS cd="arith1" name="product"/>
<OMA>

<OMS cd="interval1" name="integer_interval"/>
<OMI> 1 </OMI>
<OMV name="n"/>

</OMA>
<OMBIND>

<OMS cd="fns1" name="lambda"/>
<OMBVAR>

<OMV name="i"/>
</OMBVAR>
<OMV name="i"/>

</OMBIND>
</OMA>

</OMA>
</OMOBJ>
</Example>
</CDDefinition>

</CD>

Page 92 of 135 The OpenMath Standard

The OpenMath Society

A.3 The arith1 STS Signature File

<CDSignatures
xmlns="http://www.openmath.org/OpenMathCDS" type="sts" cd="arith1"

cdurl="http://www.openmath.org/cd/arith1.ocd" version="2.0">
<CDSStatus>official</CDSStatus>

<CDSComment>
Date: 1999-11-26
Author: David Carlisle
</CDSComment>

<Signature name="lcm">
<OMOBJ
xmlns="http://www.openmath.org/OpenMath">
<OMA>

<OMS name="mapsto" cd="sts"/>
<OMA>
<OMS name="nassoc" cd="sts"/>
<OMV name="SemiGroup"/>

</OMA>
<OMV name="SemiGroup"/>

</OMA>
</OMOBJ>
</Signature>

<Signature name="gcd">
<OMOBJ
xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="mapsto" cd="sts"/>
<OMA>
<OMS name="nassoc" cd="sts"/>
<OMV name="SemiGroup"/>

</OMA>
<OMV name="SemiGroup"/>

</OMA>
</OMOBJ>
</Signature>

<Signature name="plus">
<OMOBJ
xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="mapsto" cd="sts"/>
<OMA>
<OMS name="nassoc" cd="sts"/>
<OMV name="AbelianSemiGroup"/>

</OMA>

The OpenMath Standard Page 93 of 135

The OpenMath Society

<OMV name="AbelianSemiGroup"/>
</OMA>

</OMOBJ>
</Signature>

<Signature name="unary_minus">
<OMOBJ
xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="mapsto" cd="sts"/>
<OMV name="AbelianGroup"/>
<OMV name="AbelianGroup"/>

</OMA>
</OMOBJ>
</Signature>

<Signature name="minus">
<OMOBJ
xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="mapsto" cd="sts"/>
<OMV name="AbelianGroup"/>
<OMV name="AbelianGroup"/>
<OMV name="AbelianGroup"/>

</OMA>
</OMOBJ>
</Signature>

<Signature name="times">
<OMOBJ
xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="mapsto" cd="sts"/>
<OMA>
<OMS name="nassoc" cd="sts"/>
<OMV name="SemiGroup"/>

</OMA>
<OMV name="SemiGroup"/>

</OMA>
</OMOBJ>
</Signature>

<Signature name="divide">
<OMOBJ
xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="mapsto" cd="sts"/>
<OMV name="AbelianGroup"/>
<OMV name="AbelianGroup"/>

Page 94 of 135 The OpenMath Standard

The OpenMath Society

<OMV name="AbelianGroup"/>
</OMA>

</OMOBJ>
</Signature>

<Signature name="power">
<OMOBJ
xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="mapsto" cd="sts"/>
<OMS name="NumericalValue" cd="sts"/>
<OMS name="NumericalValue" cd="sts"/>
<OMS name="NumericalValue" cd="sts"/>

</OMA>
</OMOBJ>
</Signature>

<Signature name="abs">
<OMOBJ
xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="mapsto" cd="sts"/>
<OMS name="C" cd="setname1"/>
<OMS name="R" cd="setname1"/>

</OMA>
</OMOBJ>
</Signature>

<Signature name="root">
<OMOBJ
xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="mapsto" cd="sts"/>
<OMS name="NumericalValue" cd="sts"/>
<OMS name="NumericalValue" cd="sts"/>
<OMS name="NumericalValue" cd="sts"/>

</OMA>
</OMOBJ>
</Signature>

<Signature name="sum">
<OMOBJ
xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="mapsto" cd="sts"/>
<OMV name="IntegerRange"/>
<OMA>
<OMS name="mapsto" cd="sts"/>

The OpenMath Standard Page 95 of 135

The OpenMath Society

<OMS name="Z" cd="setname1"/>
<OMV name="AbelianMonoid"/>

</OMA>
<OMV name="AbelianMonoid"/>

</OMA>
</OMOBJ>
</Signature>

<Signature name="product">
<OMOBJ
xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="mapsto" cd="sts"/>
<OMV name="IntegerRange"/>
<OMA>
<OMS name="mapsto" cd="sts"/>
<OMS name="Z" cd="setname1"/>
<OMV name="AbelianMonoid"/>

</OMA>
<OMV name="AbelianMonoid"/>

</OMA>
</OMOBJ>
</Signature>

</CDSignatures>

Page 96 of 135 The OpenMath Standard

The OpenMath Society

A.4 The MathML CDGroup

<CDGroup
xmlns="http://www.openmath.org/OpenMathCDG" version="2.0">
<CDGroupName>mathml</CDGroupName>
<CDGroupVersion>2</CDGroupVersion>
<CDGroupRevision>1</CDGroupRevision>
<CDGroupURL>http://www.openmath.org/cdgroups/mathml.cdg</CDGroupURL>

<CDGroupDescription>MathML compatibility CD Group </CDGroupDescription>

<CDGroupMember>
<CDComment>Algebra</CDComment>
<CDName>alg1</CDName>
<CDURL>http://www.openmath.org/cd/alg1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Arithmetic</CDComment>
<CDName>arith1</CDName>
<CDURL>http://www.openmath.org/cd/arith1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Constructor for Floating Point Numbers</CDComment>
<CDName>bigfloat1</CDName>
<CDURL>http://www.openmath.org/cd/bigfloat1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Calculus</CDComment>
<CDName>calculus1</CDName>
<CDURL>http://www.openmath.org/cd/calculus1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Operations on and constructors for complex numbers</CDComment>
<CDName>complex1</CDName>
<CDURL>http://www.openmath.org/cd/complex1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Functions on functions</CDComment>
<CDName>fns1</CDName>
<CDURL>http://www.openmath.org/cd/fns1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Integer arithmetic</CDComment>

The OpenMath Standard Page 97 of 135

The OpenMath Society

<CDName>integer1</CDName>
<CDURL>http://www.openmath.org/cd/integer1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Intervals</CDComment>
<CDName>interval1</CDName>
<CDURL>http://www.openmath.org/cd/interval1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Linear Algebra - vector & matrix constructors, those symbols which

are independant of orientation, but in MathML</CDComment>
<CDName>linalg1</CDName>
<CDURL>http://www.openmath.org/cd/linalg1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Linear Algebra - vector & matrix constructors, those symbols which

are dependant of orientation, and in MathML</CDComment>
<CDName>linalg2</CDName>
<CDURL>http://www.openmath.org/cd/linalg2.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Limits of unary functions</CDComment>
<CDName>limit1</CDName>
<CDURL>http://www.openmath.org/cd/limit1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>List constructors</CDComment>
<CDName>list1</CDName>
<CDURL>http://www.openmath.org/cd/list1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Basic logical operators</CDComment>
<CDName>logic1</CDName>
<CDURL>http://www.openmath.org/cd/logic1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>MathML Numerical Types</CDComment>
<CDName>mathmltypes</CDName>
<CDURL>http://www.openmath.org/cd/mathmltypes.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>

Page 98 of 135 The OpenMath Standard

The OpenMath Society

<CDComment>MathML attributes</CDComment>
<CDName>mathmlattr</CDName>
<CDURL>http://www.openmath.org/cd/mathmlattr.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>MathML Keys</CDComment>
<CDName>mathmlkeys</CDName>
<CDURL>http://www.openmath.org/cd/mathmlkeys.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Minima and maxima</CDComment>
<CDName>minmax1</CDName>
<CDURL>http://www.openmath.org/cd/minmax1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Multset-theoretic operators and constructors</CDComment>
<CDName>multiset1</CDName>
<CDURL>http://www.openmath.org/cd/multiset1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>

Symbols for creating numbers, including some defined constants
(which can be seen as nullary constructors)

</CDComment>
<CDName>nums1</CDName>
<CDURL>http://www.openmath.org/cd/nums1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Symbols for creating piecewise definitions</CDComment>
<CDName>piece1</CDName>
<CDURL>http://www.openmath.org/cd/piece1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>The basic quantifiers forall and exists.</CDComment>
<CDName>quant1</CDName>
<CDURL>http://www.openmath.org/cd/quant1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Common arithmetic relations</CDComment>
<CDName>relation1</CDName>
<CDURL>http://www.openmath.org/cd/relation1.ocd</CDURL>

</CDGroupMember>

The OpenMath Standard Page 99 of 135

The OpenMath Society

<CDGroupMember>
<CDComment>Number sets</CDComment>
<CDName>setname1</CDName>
<CDURL>http://www.openmath.org/cd/setname1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Rounding</CDComment>
<CDName>rounding1</CDName>
<CDURL>http://www.openmath.org/cd/rounding1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Set-theoretic operators and constructors</CDComment>
<CDName>set1</CDName>
<CDURL>http://www.openmath.org/cd/set1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Basic data orientated statistical operators</CDComment>
<CDName>s_data1</CDName>
<CDURL>http://www.openmath.org/cd/s_data1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Basic random variable orientated statistical operators</CDComment>
<CDName>s_dist1</CDName>
<CDURL>http://www.openmath.org/cd/s_dist1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Basic transcendental functions</CDComment>
<CDName>transc1</CDName>
<CDURL>http://www.openmath.org/cd/transc1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>Vector calculus functions</CDComment>
<CDName>veccalc1</CDName>
<CDURL>http://www.openmath.org/cd/veccalc1.ocd</CDURL>

</CDGroupMember>

<CDGroupMember>
<CDComment>

Alternative encoding symbols for compatibility with the MathML Semantic mapping
constructs.

</CDComment>
<CDName>altenc</CDName>

Page 100 of 135 The OpenMath Standard

The OpenMath Society

<CDURL>http://www.openmath.org/cd/altenc.ocd</CDURL>
</CDGroupMember>

</CDGroup>

The OpenMath Standard Page 101 of 135

The OpenMath Society

A.5 The error Content Dictionary

<CD
xmlns="http://www.openmath.org/OpenMathCD">

<CDComment>

This document is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

The copyright holder grants you permission to redistribute this
document freely as a verbatim copy. Furthermore, the copyright
holder permits you to develop any derived work from this document
provided that the following conditions are met.

a) The derived work acknowledges the fact that it is derived from
this document, and maintains a prominent reference in the
work to the original source.

b) The fact that the derived work is not the original OpenMath
document is stated prominently in the derived work. Moreover if
both this document and the derived work are Content Dictionaries
then the derived work must include a different CDName element,
chosen so that it cannot be confused with any works adopted by
the OpenMath Society. In particular, if there is a Content
Dictionary Group whose name is, for example, ‘math’ containing
Content Dictionaries named ‘math1’, ‘math2’ etc., then you should
not name a derived Content Dictionary ‘mathN’ where N is an integer.
However you are free to name it ‘private_mathN’ or some such. This
is because the names ‘mathN’ may be used by the OpenMath Society
for future extensions.

c) The derived work is distributed under terms that allow the
compilation of derived works, but keep paragraphs a) and b)
intact. The simplest way to do this is to distribute the derived
work under the OpenMath license, but this is not a requirement.

If you have questions about this license please contact the OpenMath
society at http://www.openmath.org.

</CDComment>

<CDName>error</CDName>
<CDBase>http://www.openmath.org/cd</CDBase>
<CDURL>http://www.openmath.org/cd/error.ocd</CDURL>
<CDReviewDate>2017-12-31</CDReviewDate>
<CDStatus>official</CDStatus>
<CDDate>2004-03-30</CDDate>
<CDVersion>3</CDVersion>
<CDRevision>1</CDRevision>
<CDComment>

Author: OpenMath Consortium
SourceURL: https://github.com/OpenMath/CDs

Page 102 of 135 The OpenMath Standard

The OpenMath Society

</CDComment>

<CDDefinition>
<Name>unhandled_symbol</Name>
<Role>error</Role>
<Description>
This symbol represents the error which is raised when an application
reads a symbol which is present in the mentioned content
dictionary, but which it has not implemented.

When receiving such a symbol, the application should act as if it had
received the OpenMath error object constructed from unhandled_symbol
and the unhandled symbol as in the example below.
</Description>

<Example>
The application does not implement the Complex numbers:
<OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">
<OME>

<OMS cd="error" name="unhandled_symbol"/>
<OMS cd="setname1" name="C"/>

</OME>
</OMOBJ>
</Example>
</CDDefinition>

<CDDefinition>
<Name>unexpected_symbol</Name>
<Role>error</Role>
<Description>
This symbol represents the error which is raised when an application
reads a symbol which is not present in the mentioned content dictionary.

When receiving such a symbol, the application should act as if it had
received the OpenMath error object constructed from unexpected_symbol
and the unexpected symbol as in the example below.
</Description>
<Example>
The application received a mistyped symbol
<OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">
<OME>

<OMS cd="error" name="unexpected_symbol"/>
<OMS cd="arith1" name="plurse"/>

</OME>
</OMOBJ>

The OpenMath Standard Page 103 of 135

The OpenMath Society

</Example>
</CDDefinition>

<CDDefinition>
<Name>unsupported_CD</Name>
<Role>error</Role>
<Description>
This symbol represents the error which is raised when an application
reads a symbol where the mentioned content dictionary is not
present.

When receiving such a symbol, the application should act as if it had
received the OpenMath error object constructed from unsupported_CD and
the symbol from the unsupported Content Dictionary as in the example
below.
</Description>
<Example>
The application does not know about the CD specfun1
<OMOBJ
xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">
<OME>

<OMS cd="error" name="unsupported_CD"/>
<OMS cd="specfun1" name="BesselJ"/>

</OME>
</OMOBJ>
</Example>
</CDDefinition>

</CD>

Page 104 of 135 The OpenMath Standard

Appendix B

OpenMath Schema in Relax NG XML
Syntax (Normative)

This is the Relax NG Schema described in Section 3.1 expressed according to the Relax NG XML
Syntax.

<grammar
xmlns="http://relaxng.org/ns/structure/1.0" ns="http://www.openmath.org/OpenMath"

datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
<start>

<ref name="OMOBJ"/>
</start>
<!-- OpenMath object constructor -->
<define name="OMOBJ">

<element name="OMOBJ">
<ref name="compound.attributes"/>
<optional>

<attribute name="version">
<data type="string"/>

</attribute>
</optional>
<optional>

<attribute name="cdgroup">
<data type="anyURI"/>

</attribute>
</optional>
<ref name="omel"/>

</element>
</define>
<!-- Elements which can appear inside an OpenMath object -->
<define name="omel">
<choice>

<ref name="OMS"/>

Page 105 of 135

The OpenMath Society

<ref name="OMV"/>
<ref name="OMI"/>
<ref name="OMB"/>
<ref name="OMSTR"/>
<ref name="OMF"/>
<ref name="OMA"/>
<ref name="OMBIND"/>
<ref name="OME"/>
<ref name="OMATTR"/>
<ref name="OMR"/>

</choice>
</define>
<!-- things which can be variables -->
<define name="omvar">

<choice>
<ref name="OMV"/>
<ref name="attvar"/>

</choice>
</define>
<define name="attvar">

<element name="OMATTR">
<ref name="common.attributes"/>
<group>

<ref name="OMATP"/>
<choice>

<ref name="OMV"/>
<ref name="attvar"/>

</choice>
</group>

</element>
</define>
<define name="cdbase">

<optional>
<attribute name="cdbase">

<data type="anyURI"/>
</attribute>

</optional>
</define>
<!-- attributes common to all elements -->
<define name="common.attributes">

<optional>
<attribute name="id">

<data type="ID"/>
</attribute>

</optional>
</define>
<!-- attributes common to all elements that construct compount OM objects. -->
<define name="compound.attributes">

<ref name="common.attributes"/>

Page 106 of 135 The OpenMath Standard

The OpenMath Society

<ref name="cdbase"/>
</define>
<!-- symbol -->
<define name="OMS">
<element name="OMS">

<ref name="common.attributes"/>
<attribute name="name">

<data type="NCName"/>
</attribute>
<attribute name="cd">

<data type="NCName"/>
</attribute>
<ref name="cdbase"/>

</element>
</define>
<!-- variable -->
<define name="OMV">
<element name="OMV">

<ref name="common.attributes"/>
<attribute name="name">

<data type="NCName"/>
</attribute>

</element>
</define>
<!-- integer -->
<define name="OMI">
<element name="OMI">

<ref name="common.attributes"/>
<data type="string">

<param name="pattern">\s*-?((\s*[0-9])+|x(\s*[0-9A-F])+)\s*</param>
</data>

</element>
</define>
<!-- byte array -->
<define name="OMB">
<element name="OMB">

<ref name="common.attributes"/>
<data type="base64Binary"/>

</element>
</define>
<!-- string -->
<define name="OMSTR">
<element name="OMSTR">

<ref name="common.attributes"/>
<text/>

</element>
</define>
<!-- IEEE floating point number -->
<define name="OMF">

The OpenMath Standard Page 107 of 135

The OpenMath Society

<element name="OMF">
<ref name="common.attributes"/>
<choice>

<attribute name="dec">
<data type="double"/>

</attribute>
<attribute name="hex">

<data type="string">
<param name="pattern">[0-9A-F]+</param>

</data>
</attribute>

</choice>
</element>

</define>
<!-- apply constructor -->
<define name="OMA">

<element name="OMA">
<ref name="compound.attributes"/>
<oneOrMore>

<ref name="omel"/>
</oneOrMore>

</element>
</define>
<!-- binding constructor -->
<define name="OMBIND">

<element name="OMBIND">
<ref name="compound.attributes"/>
<ref name="omel"/>
<ref name="OMBVAR"/>
<ref name="omel"/>

</element>
</define>
<!-- variables used in binding constructor -->
<define name="OMBVAR">

<element name="OMBVAR">
<ref name="common.attributes"/>
<oneOrMore>

<ref name="omvar"/>
</oneOrMore>

</element>
</define>
<!-- error constructor -->
<define name="OME">

<element name="OME">
<ref name="compound.attributes"/>
<ref name="OMS"/>
<zeroOrMore>

<choice>
<ref name="omel"/>

Page 108 of 135 The OpenMath Standard

The OpenMath Society

<ref name="OMFOREIGN"/>
</choice>

</zeroOrMore>
</element>

</define>
<!-- attribution constructor and attribute pair constructor -->
<define name="OMATTR">
<element name="OMATTR">

<ref name="compound.attributes"/>
<ref name="OMATP"/>
<ref name="omel"/>

</element>
</define>
<define name="OMATP">
<element name="OMATP">

<ref name="compound.attributes"/>
<oneOrMore>

<ref name="OMS"/>
<choice>

<ref name="omel"/>
<ref name="OMFOREIGN"/>

</choice>
</oneOrMore>

</element>
</define>
<!-- foreign constructor -->
<define name="OMFOREIGN">
<element name="OMFOREIGN">

<ref name="compound.attributes"/>
<optional>

<attribute name="encoding">
<data type="string"/>

</attribute>
</optional>
<zeroOrMore>

<choice>
<ref name="omel"/>
<ref name="notom"/>

</choice>
</zeroOrMore>

</element>
</define>
<!--
Any elements not in the om namespace
(valid om is allowed as a descendant)

-->
<define name="notom">
<choice>

<element>

The OpenMath Standard Page 109 of 135

The OpenMath Society

<anyName>
<except>

<nsName/>
</except>

</anyName>
<zeroOrMore>

<attribute>
<anyName/>

</attribute>
</zeroOrMore>
<zeroOrMore>

<choice>
<ref name="omel"/>
<ref name="notom"/>

</choice>
</zeroOrMore>

</element>
<text/>

</choice>
</define>
<!-- reference constructor -->
<define name="OMR">

<element name="OMR">
<ref name="common.attributes"/>
<attribute name="href">

<data type="anyURI"/>
</attribute>

</element>
</define>

</grammar>

Page 110 of 135 The OpenMath Standard

Appendix C

Restricting the OpenMath Schema
(Non-Normative)

Relax NG allows one to state constraints such as if the cd attribute of OMS is arith1 then the
name attribute must be one of lcm, gcd, plus etc. Thus it is easy to use a stylesheet to generate
for any given CD, a Relax NG schema that expresses the constraint that an OMS naming that CD
must only use symbols defined in the specified dictionary. Similarly it is possible to use the role
information contained in the CD to restrict which symbols can be the first child of an OMBIND or the
odd-numbered children of an OMATP.

The modularisation mechanisms of Relax NG then allow one to include these schema for all the
CDs that you want to allow and, for example, to replace the regexp-based validation of the OMS
attributes by explicit lists of allowed CD names, and for each CD Name, a list of allowed symbol
names.

For example, a CD-specific Relax NG Schema for the arith1 CD shown in Appendix A.2 would
look like:

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0" datatypeLibrary="">

<define name="cd.attlist.OMS" combine="choice">
<attribute name="cd">
<value type="string">arith1</value>

</attribute>
<attribute name="name">
<choice>

<value type="string">lcm</value>
<value type="string">gcd</value>
<value type="string">plus</value>
<value type="string">unary_minus</value>
<value type="string">minus</value>
<value type="string">times</value>
<value type="string">divide</value>

Page 111 of 135

The OpenMath Society

<value type="string">power</value>
<value type="string">abs</value>
<value type="string">root</value>
<value type="string">sum</value>
<value type="string">product</value>

</choice>
</attribute>

</define>
</grammar>

or, using the Relax NG compact syntax:

cd.attlist.OMS |=
attribute cd {string "arith1" },
attribute name {
string "lcm" |
string "gcd" |
string "plus" |
string "unary_minus" |
string "minus" |
string "times" |
string "divide" |
string "power" |
string "abs" |
string "root" |
string "sum" |
string "product" }

To build a schema that allows only symbols from arith1 we just need to include the OpenMath
schema described in Section 3.1.1, override the attribute declarations for OMS, and then include
the schema for arith1. For example:

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0">
<include href="openmath.rng">

<define name="attlist.OMS">
<ref name="cd.attlist.OMS"/>

</define>
</include>
<include href="arith1.rng"/>

</grammar>

or, in the compact syntax:

include "openmath.rnc" {
attlist.OMS = cd.attlist.OMS}

include "arith1.rnc"

Using this approach it is possible to include as many files as required.

Page 112 of 135 The OpenMath Standard

Appendix D

OpenMath Schema in XSD Syntax
(Non-Normative)

This is an XSD Schema generated from the Relax NG Schema described in Section 3.1.

<schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:om="http://www.openmath.org/OpenMath" elementFormDefault="qualified"

targetNamespace="http://www.openmath.org/OpenMath">
<!-- OpenMath object constructor -->
<element name="OMOBJ">

<complexType>
<group ref="om:omel"/>
<attributeGroup ref="om:compound.attributes"/>
<attribute name="version" type="xs:string"/>
<attribute name="cdgroup" type="xs:anyURI"/>

</complexType>
</element>
<!-- Elements which can appear inside an OpenMath object -->
<group name="omel">

<choice>
<element ref="om:OMS"/>
<element ref="om:OMV"/>
<element ref="om:OMI"/>
<element ref="om:OMB"/>
<element ref="om:OMSTR"/>
<element ref="om:OMF"/>
<element ref="om:OMA"/>
<element ref="om:OMBIND"/>
<element ref="om:OME"/>
<group ref="om:OMATTR"/>
<element ref="om:OMR"/>

</choice>

Page 113 of 135

The OpenMath Society

</group>
<!-- things which can be variables -->
<group name="omvar">

<choice>
<element ref="om:OMV"/>
<group ref="om:attvar"/>

</choice>
</group>
<group name="attvar">

<sequence>
<element name="OMATTR">

<complexType>
<sequence>

<element ref="om:OMATP"/>
<choice>
<element ref="om:OMV"/>
<group ref="om:attvar"/>

</choice>
</sequence>
<attributeGroup ref="om:common.attributes"/>

</complexType>
</element>

</sequence>
</group>
<attributeGroup name="cdbase">

<attribute name="cdbase" type="xs:anyURI"/>
</attributeGroup>
<!-- attributes common to all elements -->
<attributeGroup name="common.attributes">

<attribute name="id" type="xs:ID"/>
</attributeGroup>
<!-- attributes common to all elements that construct compount OM objects. -->
<attributeGroup name="compound.attributes">

<attributeGroup ref="om:common.attributes"/>
<attributeGroup ref="om:cdbase"/>

</attributeGroup>
<!-- symbol -->
<element name="OMS">

<complexType>
<attributeGroup ref="om:common.attributes"/>
<attribute name="name" use="required" type="xs:NCName"/>
<attribute name="cd" use="required" type="xs:NCName"/>
<attributeGroup ref="om:cdbase"/>

</complexType>
</element>
<!-- variable -->
<element name="OMV">

<complexType>
<attributeGroup ref="om:common.attributes"/>

Page 114 of 135 The OpenMath Standard

The OpenMath Society

<attribute name="name" use="required" type="xs:NCName"/>
</complexType>

</element>
<!-- integer -->
<element name="OMI">
<complexType>

<simpleContent>
<restriction base="xs:anyType">

<simpleType>
<restriction base="xs:string">

<pattern value="\s*-?((\s*[0-9])+|x(\s*[0-9A-F])+)\s*"/>
</restriction>

</simpleType>
<attributeGroup ref="om:common.attributes"/>

</restriction>
</simpleContent>

</complexType>
</element>
<!-- byte array -->
<element name="OMB">
<complexType>

<simpleContent>
<extension base="xs:base64Binary">

<attributeGroup ref="om:common.attributes"/>
</extension>

</simpleContent>
</complexType>

</element>
<!-- string -->
<element name="OMSTR">
<complexType mixed="true">

<attributeGroup ref="om:common.attributes"/>
</complexType>

</element>
<!-- IEEE floating point number -->
<element name="OMF">
<complexType>

<attributeGroup ref="om:common.attributes"/>
<attribute name="dec" type="xs:double"/>
<attribute name="hex">

<simpleType>
<restriction base="xs:string">

<pattern value="[0-9A-F]+"/>
</restriction>

</simpleType>
</attribute>

</complexType>
</element>
<!-- apply constructor -->

The OpenMath Standard Page 115 of 135

The OpenMath Society

<element name="OMA">
<complexType>
<group maxOccurs="unbounded" ref="om:omel"/>
<attributeGroup ref="om:compound.attributes"/>

</complexType>
</element>
<!-- binding constructor -->
<element name="OMBIND">

<complexType>
<sequence>

<group ref="om:omel"/>
<element ref="om:OMBVAR"/>
<group ref="om:omel"/>

</sequence>
<attributeGroup ref="om:compound.attributes"/>

</complexType>
</element>
<!-- variables used in binding constructor -->
<element name="OMBVAR">

<complexType>
<group maxOccurs="unbounded" ref="om:omvar"/>
<attributeGroup ref="om:common.attributes"/>

</complexType>
</element>
<!-- error constructor -->
<element name="OME">

<complexType>
<sequence>

<element ref="om:OMS"/>
<choice minOccurs="0" maxOccurs="unbounded">

<group ref="om:omel"/>
<element ref="om:OMFOREIGN"/>

</choice>
</sequence>
<attributeGroup ref="om:compound.attributes"/>

</complexType>
</element>
<!-- attribution constructor and attribute pair constructor -->
<group name="OMATTR">

<sequence>
<element name="OMATTR">

<complexType>
<sequence>

<element ref="om:OMATP"/>
<group ref="om:omel"/>

</sequence>
<attributeGroup ref="om:compound.attributes"/>

</complexType>
</element>

Page 116 of 135 The OpenMath Standard

The OpenMath Society

</sequence>
</group>
<element name="OMATP">
<complexType>

<sequence maxOccurs="unbounded">
<element ref="om:OMS"/>
<choice>

<group ref="om:omel"/>
<element ref="om:OMFOREIGN"/>

</choice>
</sequence>
<attributeGroup ref="om:compound.attributes"/>

</complexType>
</element>
<!-- foreign constructor -->
<element name="OMFOREIGN">
<complexType mixed="true">

<choice minOccurs="0" maxOccurs="unbounded">
<group ref="om:omel"/>
<group ref="om:notom"/>

</choice>
<attributeGroup ref="om:compound.attributes"/>
<attribute name="encoding" type="xs:string"/>

</complexType>
</element>
<!--
Any elements not in the om namespace
(valid om is allowed as a descendant)

-->
<group name="notom">
<sequence>

<choice minOccurs="0">
<any namespace="##other" processContents="skip"/>
<any namespace="##local" processContents="skip"/>

</choice>
</sequence>

</group>
<!-- reference constructor -->
<element name="OMR">
<complexType>

<attributeGroup ref="om:common.attributes"/>
<attribute name="href" use="required" type="xs:anyURI"/>

</complexType>
</element>

</schema>

The OpenMath Standard Page 117 of 135

Appendix E

OpenMath DTD (Non-Normative)

This is a DTD generated from the Relax NG Schema described in Section 3.1. Note that we cannot
express the fact that the OMFOREIGN element can contain any well-formed XML, so we have simply
restricted it to contain any XML defined in the DTD.

<?xml encoding="UTF-8"?>

<!--
RELAX NG Schema for OpenMath 2
Revision 2: Corrected regex for OMI to match the documented standard and allow hex
-->

<!ENTITY % cdbase "
cdbase CDATA #IMPLIED">

<!-- attributes common to all elements -->

<!ENTITY % common.attributes "
id ID #IMPLIED">

<!-- attributes common to all elements that construct compount OM objects. -->

<!ENTITY % compound.attributes "
%common.attributes;
%cdbase;">

<!-- Elements which can appear inside an OpenMath object -->

<!ENTITY % omel "OMS|OMV|OMI|OMB|OMSTR|OMF
|OMA|OMBIND|OME|OMATTR|OMR">

<!-- OpenMath object constructor -->

Page 118 of 135

The OpenMath Society

<!ELEMENT OMOBJ (%omel;)>
<!ATTLIST OMOBJ

xmlns CDATA #FIXED ’http://www.openmath.org/OpenMath’
%compound.attributes;
version CDATA #IMPLIED
cdgroup CDATA #IMPLIED>

<!ENTITY % attvar "OMATTR">

<!-- things which can be variables -->

<!ENTITY % omvar "OMV|%attvar;">

<!-- symbol -->

<!ELEMENT OMS EMPTY>
<!ATTLIST OMS
xmlns CDATA #FIXED ’http://www.openmath.org/OpenMath’
%common.attributes;
name NMTOKEN #REQUIRED
cd NMTOKEN #REQUIRED
%cdbase;>

<!-- variable -->

<!ELEMENT OMV EMPTY>
<!ATTLIST OMV
xmlns CDATA #FIXED ’http://www.openmath.org/OpenMath’
%common.attributes;
name NMTOKEN #REQUIRED>

<!-- integer -->

<!ELEMENT OMI (#PCDATA)>
<!ATTLIST OMI
xmlns CDATA #FIXED ’http://www.openmath.org/OpenMath’
%common.attributes;>

<!-- byte array -->

<!ELEMENT OMB (#PCDATA)>
<!ATTLIST OMB
xmlns CDATA #FIXED ’http://www.openmath.org/OpenMath’
%common.attributes;>

<!-- string -->

<!ELEMENT OMSTR (#PCDATA)>
<!ATTLIST OMSTR

The OpenMath Standard Page 119 of 135

The OpenMath Society

xmlns CDATA #FIXED ’http://www.openmath.org/OpenMath’
%common.attributes;>

<!-- IEEE floating point number -->

<!ELEMENT OMF EMPTY>
<!ATTLIST OMF

xmlns CDATA #FIXED ’http://www.openmath.org/OpenMath’
%common.attributes;
dec CDATA #IMPLIED
hex CDATA #IMPLIED>

<!-- apply constructor -->

<!ELEMENT OMA (%omel;)+>
<!ATTLIST OMA

xmlns CDATA #FIXED ’http://www.openmath.org/OpenMath’
%compound.attributes;>

<!-- binding constructor -->

<!ELEMENT OMBIND ((%omel;),OMBVAR,(%omel;))>
<!ATTLIST OMBIND

xmlns CDATA #FIXED ’http://www.openmath.org/OpenMath’
%compound.attributes;>

<!-- variables used in binding constructor -->

<!ELEMENT OMBVAR (%omvar;)+>
<!ATTLIST OMBVAR

xmlns CDATA #FIXED ’http://www.openmath.org/OpenMath’
%common.attributes;>

<!-- error constructor -->

<!ELEMENT OME (OMS,(%omel;|OMFOREIGN)*)>
<!ATTLIST OME

xmlns CDATA #FIXED ’http://www.openmath.org/OpenMath’
%compound.attributes;>

<!-- attribution constructor and attribute pair constructor -->

<!ELEMENT OMATTR (OMATP,(%omel;))>
<!ATTLIST OMATTR

xmlns CDATA #FIXED ’http://www.openmath.org/OpenMath’
%compound.attributes;>

<!ELEMENT OMATP (OMS,(%omel;|OMFOREIGN))+>
<!ATTLIST OMATP

Page 120 of 135 The OpenMath Standard

The OpenMath Society

xmlns CDATA #FIXED ’http://www.openmath.org/OpenMath’
%compound.attributes;>

<!-- foreign constructor -->

<!ELEMENT OMFOREIGN ANY>
<!ATTLIST OMFOREIGN
xmlns CDATA #FIXED ’http://www.openmath.org/OpenMath’
%compound.attributes;
encoding CDATA #IMPLIED>

<!--
Any elements not in the om namespace
(valid om is allowed as a descendant)
-->

<!-- reference constructor -->

<!ELEMENT OMR EMPTY>
<!ATTLIST OMR
xmlns CDATA #FIXED ’http://www.openmath.org/OpenMath’
%common.attributes;
href CDATA #REQUIRED>

The OpenMath Standard Page 121 of 135

Appendix F

OpenMath .d.ts (Normative)

JSON Schemas [3] define a vocabulary allowing us to validate and annotate JSON documents.
Unfortunately, JSON schema is often tedious to read and write for humans. This is especially true
when it comes to recursively defined data structures. As OpenMath has many recursive structures,
the normative JSON encoding is instead authored as a human readable TypeScript [2] definition
file. This file can be found below.

While JSON provides many types, sometimes more restrictions than the general type is required.
The JSON Schema provides several facilities for this, for example strings matching a particular
regular expression.

The schema uses the following helper types:

• uri represents any URI encoded as a string. This uses the JSONSchema format: uri.
• name represents any valid name. In this schema uses any kind of string.
• integerrepresents an arbitrary precise JSON-native integer. Uses JSON numbers as under-

lying type, and the JSON Schema number type.
• decimalInteger represents a string representing the decimal expansion of an integer. Uses

the regular expression ^-?[0-9]+$.
• hexInteger represents a string representing the heximadecimal expansion of an integer.

Uses the regular expression ^-?x[0-9A-F]+.$.
• float represents any IEEE 32-bit integer, represented as a native JSON integer.
• decimalFloat represents a string representing the decimal expansion of an IEEE floating

point number. Uses the regular expression ^(-?)([0-9]+)?([̇0-9]+)?([eE](-?)[0-9]+)?.
• hexFloat represents a string representing the hexadecimal expansion of an IEEE floating

point number. Uses the regular expression ^([0-9A-F]+)$.
• byte represents a byte of data represented as an integer, between 0 and 255 (inclusive).

Page 122 of 135

The OpenMath Society

• base64string represents a string representing a set of bytes encoded as a base64 string.
Uses the regular expression ^(?:[A-Za-z0-9+/]{4})*(?:[A-Za-z0-9+/]{2}==|[A-Za-z0-9+/]{3}=)?$.

The main type in the schema is the omel type. It is defined as any of the following:

• OMS

• OMV

• OMI

• OMB

• OMSTR

• OMF

• OMA

• OMBIND

• OME

• OMATTR

• OMR

Concrete (non-normative) examples can be found in Section 3.3.

The OpenMath Standard Page 123 of 135

Appendix G

OpenMath .json Schema
(Non-Normative)

This section contains the non-normative JSON Schema [3] file for the OpenMath JSON encoding. It
is generated using [11] from the TypeScript definition file in Appendix G. It can be used to perform
machine-validation of JSON-encoded OpenMath objects.

Page 124 of 135

Appendix H

Changes between OpenMath 1.1 and
OpenMath 2 (Non-Normative)

In this appendix we describe the major changes that occurred between version 1.1 and version 2 of
the OpenMath standard. All changes to the encodings and content dictionaries have been designed
to be backward compatible, in other words all existing OpenMath objects and Content Dictionaries
are still valid in OpenMath 2. On the other hand an existing OpenMath 1.1 application may not be
able to process OpenMath 2 objects.

Page 125 of 135

The OpenMath Society

H.1 Changes to the Formal Definition of Objects

Additional features of abstract objects have been introduced:

• OpenMath symbols have an optional role qualifier which restricts the place where they may
occur within compound OpenMath object Although part of the abstract description of a sym-
bol this information is intended to be stored in the CD. In the XML encoding it may be used
to provide a more restricted schema leading to tighter validation.
• In addition to their name and cd properties, symbols now have an optional cdbase property.

This can be used to disambiguate between two CDs which are produced independently but
have the same name, and can also be used to produce a canonical URI for any OpenMath
symbol for use in frameworks such as RDFS or MathML which need one.
• An OpenMath object may be attributed with a non-OpenMath object using the new foreign

constructor. This allows an XML-encoded OpenMath object to be attributed with appropriate
Presentation MathML, for example, or a base-64 encoded MPEG file of its aural rendering.
• In addition, an OpenMath error object may take as its arguments non-OpenMath objects

wrapped in the new foreign constructor.
• The new role property can be used to indicate that a symbol is an attribution, in which case

an application may ignore or remove it, or a semantic attribution in which case removing it
is no longer guaranteed to produce an equivalent object.
• Restrictions on the names of symbols, variables and content dictionaries have been relaxed

to be compatible with XML and to be less Anglo-Saxon.

Page 126 of 135 The OpenMath Standard

The OpenMath Society

H.2 Changes to the encodings

The OpenMath version 2 standard still mandates two encodings: XML and binary. The XML encod-
ing in particular has been updated to reflect the latest development of XML and is now a full XML

application. Version 2 encodings are backward compatible with version 1.1 encodings.

• Both encodings have been updated to support the changes to the model of abstract objects
described above.
• Encodings support internal and external sharing of objects
• An optional attribute defining the version of the encoding can be specified for the encoded

object
• The XML encoding in version 2 is defined by a Relax NG schema and the mandated character-

based grammar of version 1 has been removed, while the DTD has been relegated to an
Appendix.
• The symbolic values INF, -INF and NaN have been added to the decimal attribute of an OMF

in the XML encoding, and guidelines on the interpretation of NaNs added to the compliance
section.
• The Binary encoding has been extended to support the streaming of objects.

The OpenMath Standard Page 127 of 135

The OpenMath Society

H.3 Changes to Content Dictionaries

• In OpenMath version 2 Content Dictionaries are defined in terms of the abstract information
content that needs to be specified for defining OpenMath symbols. The current implementa-
tion is thus just one possible encoding of this abstract model.
• The CDUses element is not part of this information model and has been made optional and

deprecated in the reference encoding since it is trivial to extract its content automatically from
the CD.
• A CD may now, optionally, define its cdbase.
• A CD symbol definition may now, optionally, define its role.
• An FMP may, optionally, have a kind attribute for use in classifying different kinds of defi-

nitions. The details of how this attribute is used are not mandated by the standard.
• The XML encoded Content Dictionaries now use elements from the namespace http://
www.openmath.org/OpenMathCD.

Page 128 of 135 The OpenMath Standard

http://www.openmath.org/OpenMathCD
http://www.openmath.org/OpenMathCD

Appendix I

Revisions to OpenMath 2
(Non-Normative)

In this appendix we describe the revisions to the OpenMath 2 standard. All of these revisions are
either editorial, clarifications, or additions, so they only change the OpenMath 2 standard conserva-
tively.

Page 129 of 135

The OpenMath Society

I.1 Changes in 2.0 Revision 1 (July 2017)

• There are now explicitly two XML encodings: the previous one and the Strict Content
MathML one. This necessitated changes to the preamble and the start of Chapter 3.
• The description of the encoding of xfffffff1 in base 256 was corrected (the 0xab (base

256/positive) byte was omitted and 0xF1 had been written 0xFI.
• The phrase “in little endian format” was unhelpfully included in the description of the binary

integer encoding, which contradicted the later “network byte order”. Now removed.
• Section 3.1.2 described the OpenMath XML value of hex as “from lowest to highest bits

using a least significant byte ordering”. Replaced by the current “in network byte order”.
• The example of binary encoding of floats in Section 3.2.2 For example, 0.1 is encoded as
0x03 0x000000000000f03f" was wrong, and has been replaced by the same example as the
XML encoding.
• A citation to MathML 3 was added.
• The “Note on names”, which used to refer to Unicode 2.0, has been upgraded to allow for

XML 1.0 5th edition and more specifically erratum NE17 in [20], so that the current version
of Unicode is incorporated.
• Various included example files (such as arith1.ocd) have been updated to match the versions

on the OpenMath web site.

Page 130 of 135 The OpenMath Standard

The OpenMath Society

I.2 Changes in 2.0 Revision 2 (August 2018)

• cdbase and cd url are now defined in terms of Internationalized Resource Identifiers (IRIs)
[10].
• The notion of the head of an attribution has been introduced to clarify the notion of an at-

tributed variable.

The notion of alphabetic renaming has been clarified. It now specifies what should happen
in the presence of attributed bound variables: the variables in the attribute values need to be
renamed as well.

Duplicate bound variables in binders have been deprecated, since they make no sense. The
fallback semantics of duplicate variables been clarified for the case of attributed bound vari-
ables.
• The RelaxNG schema has been corrected to allow hexadecimal representation of integers to

match Section 3.1.2.
• For a better alignment with MathML3, the OMOBJ element has been extended by a cdgroup

attribute that specifies a CDGroup file that acts as a catalog for the CD bases of OMS elements
in that OMOBJ. The inheritance for CD bases of OMS has been clarified. See sections 3.1.2
and 4.4.2.
• The meaning of CDGroup/CDGroupMember/CDName has been clarified in terms of uniqueness

conditions and correspondence to name of the referenced CD.
• An inclusion mechanism has been introduced to make the cdgroup catalog mechanism in

MathML more realistic and manageable.
• The top level elements of the XML encodings of CDs, CD signatures, and CD groups have

been augmented with version attribute and the first two with a cdgroup attribute that give
the defaults for the contained OMOBJ elements.

The OpenMath Standard Page 131 of 135

The OpenMath Society

I.3 Changes in 2.0 Revision 3 (July 2019)

• A newly endorsed JSON encoding was added. JSON is a standard available in many pro-
gramming languages, in particular in JavaScript and other languages powering modern web
applications. The OpenMath JSON enocoding thus makes OpenMath web-interoperable. See
newly added Section 3.3, Appendix F and Appendix G.

Page 132 of 135 The OpenMath Standard

Appendix J

Bibliography

[1] JSON (JavaScript Object Notation) , July 5 2019.
;http://json.org/;

[2] TypeScript - JavaScript that scales. , July 5 2019.
;https://www.typescriptlang.org/;

[3] H. Andrews and A. Wright JSON Schema: A Media Type for Describing JSON Documents ,
March 19 2018.
;https://tools.ietf.org/html/draft-handrews-json-schema-01;

[4] N. Borenstein and N. Freed MIME (Multipurpose Internet Mail Extensions) Part One: Format
of Internet Message Bodies , November 1996.
;http://www.ietf.org/rfc/rfc2045.txt;

[5] N. Borenstein and N. Freed MIME (Multipurpose Internet Mail Extensions) Part Two: Media
Types , November 1996.
;http://www.ietf.org/rfc/rfc2046.txt;

[6] Olga Caprotti and Arjeh M. Cohen A Type System for OpenMath 1.3.2b OpenMath Esprit
Consortium, February 1999.
;http://www.openmath.org/standard/ecc.pdf;

[7] J. Davenport A Small OpenMath Type System , April 1999.
;http://www.openmath.org/standard/sts.pdf;

[8] S. Freundt, P. Horn, A. Konovalov, S. Linton and D. Roozemond Symbolic Computation Soft-
ware Composability Protocol SCSCP Specification 1.3 , March 22, 2009.
;https://github.com/OpenMath/scscp/blob/master/revisions/SCSCP_1_3.pdf;

[9] IEEE and The Open Group Std 1003.1, 2003 Edition, The Open Group Base Specifications
Issue 6 , 2003.
;http://www.unix.org/version3/ieee_std.html;

Page 133 of 135

;
;
;
;
;
;
;
;
;

The OpenMath Society

[10] IETF RFC 3987 - Internationalized Resource Identifiers (IRIs) , January 2005.
;http://www.ietf.org/rfc/rfc3987.txt;

[11] Dominik Moritz ts-json-schema-generator , July 5 2019.
;https://github.com/vega/ts-json-schema-generator;

[12] OASIS Committee Specification RELAX NG Specification , December 2001.
;http://www.oasis-open.org/committees/relax-ng/spec-20011203.html;

[13] OpenMath Consortium OpenMath Version 2.0 , June 2004.
;http://www.openmath.org/standard/om20-2004-06-30/;

[14] OpenMath Consortium OpenMath Primer , June 2004.
;http://www.openmath.org/standard/primer/;

[15] Technical committee / subcommittee: JTC 1 ISO 9660:1988 Information processing –Volume
and File Structure of CDROM for Information Interchange , 1988.
;http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=17505;

[16] Unicode Consortium The Unicode Standard: Version 4.0.0 Addison-Wesley, 2003.
;Online edition available from http://www.unicode.org/versions/Unicode4.0.0;

[17] World Wide Web Consortium XML Schema Part 1: Structures & Part 2: Datatypes , May
2001.
;http://www.w3.org/TR/xmlschema-1/;
;http://www.w3.org/TR/xmlschema-2/;

[18] World Wide Web Consortium Namespaces in XML , January 1999.
;http://www.w3.org/TR/REC-xml-names/;

[19] World Wide Web Consortium Extensible Markup Language (XML) 1.0. , February 1998.
;http://www.w3.org/TR/1998/REC-xml-19980210;

[20] World Wide Web Consortium Namespaces in XML 1.0 (Second Edition) Errata , November
2008.
;https://www.w3.org/XML/2006/xml-names-errata;

[21] World Wide Web Consortium Extensible Markup Language (XML) 1.1. W3C Recommenda-
tion REC-xml11-20040204 , February 2004.
;http://www.w3.org/TR/2004/REC-xml11-20040204/;

[22] World Wide Web Consortium Mathematical Markup Language (MathML) 2.0 Specification
(Second Edition) , October 2003.
;http://www.w3.org/TR/MathML2/;

[23] World Wide Web Consortium Mathematical Markup Language (MathML) 3.0 Specification
2nd Edition , April 2014.
;http://www.w3.org/TR/MathML3/;

Page 134 of 135 The OpenMath Standard

;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

The OpenMath Society

[24] World Wide Web Consortium OWL Web Ontology Language Overview , February 2004.
;http://www.w3.org/TR/2004/REC-owl-features-20040210/;

[25] World Wide Web Consortium Resource Description Framework (RDF): Concepts and Ab-
stract Syntax , February 2004.
;http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/;

[26] IEEE Standard for binary Floating-Point Arithmetic ANSI/IEEE Standard 754 , 1985.
;http://standards.ieee.org/reading/ieee/std_public/description/busarch/754-1985_desc.html;

The OpenMath Standard Page 135 of 135

;
;
;

	Introduction to OpenMath
	OpenMath Architecture
	OpenMath Objects and Encodings
	Content Dictionaries
	Additional Files
	Phrasebooks

	OpenMath Objects
	Formal Definition of OpenMath Objects
	Basic OpenMath objects
	Derived OpenMath Objects
	OpenMath Objects
	OpenMath Symbol Roles

	Further Description of OpenMath Objects
	Names
	Summary

	OpenMath Encodings
	The xml Encoding
	A Schema for the xml Encoding
	Informal description of the xml Encoding
	Some Notes on References
	An Acyclicity Constraint
	Sharing and Bound Variables

	Embedding OpenMath in xml Documents

	The Binary Encoding
	A Grammar for the Binary Encoding
	Description of the Grammar
	Example of Binary Encoding
	Sharing
	Sharing in Objects beginning with the identifier [24]
	Sharing with References (beginning with [24+64])

	Implementation Note
	Relation to the OpenMath 1 binary encoding

	The JSON encoding
	General Structure
	The Object Constructor
	OpenMath Symbols
	Variables
	Integers
	JSON Integers
	Decimal Integers
	Hexadecimal Integers

	Floats
	JSON Floats
	Decimal Floating Point Numbers
	Hexadecimal Floats

	Bytes
	JSON Byte Arrays
	Base64-encoded bytes

	Strings
	Applications
	Attribution
	Binding
	Errors
	References and Structure Sharing
	Foreign Objects

	Summary

	Content Dictionaries
	Introduction
	Abstract Content Dictionaries
	Content Dictionary Status
	Content Dictionary Version Numbers

	The Reference Encoding for Content Dictionaries
	The Relax NG Schema for Content Dictionaries
	Further Description of the CD Schema

	Additional Information
	Signature Dictionaries
	Abstract Specification of a Signature Dictionary
	A Relax NG Schema for a Signature Dictionary
	Examples

	CDGroups
	The Specification of CDGroups
	Further Requirements of a CDGroup

	Content Dictionaries Reviewing Process

	OpenMath Compliance
	Encodings
	The XML Encoding
	Generating Valid XML
	Decimal versus Hexadecimal Float Representation

	OpenMath Foreign Objects
	Content Dictionaries
	Lexical Errors
	OpenMath 1 Objects

	CD Files
	The meta Content Dictionary
	The arith1 Content Dictionary File
	The arith1 STS Signature File
	The MathML CDGroup
	The error Content Dictionary

	OpenMath Schema in Relax NG XML Syntax (Normative)
	Restricting the OpenMath Schema (Non-Normative)
	OpenMath Schema in XSD Syntax (Non-Normative)
	OpenMath DTD (Non-Normative)
	OpenMath .d.ts (Normative)
	OpenMath .json Schema (Non-Normative)
	Changes between OpenMath 1.1 and OpenMath 2 (Non-Normative)
	Changes to the Formal Definition of Objects
	Changes to the encodings
	Changes to Content Dictionaries

	Revisions to OpenMath 2 (Non-Normative)
	Changes in 2.0 Revision 1 (July 2017)
	Changes in 2.0 Revision 2 (August 2018)
	Changes in 2.0 Revision 3 (July 2019)

	Bibliography

