Next: About this document ...
Up: The OpenMath Project Final
Previous: Conclusions
  Contents
- 1
- Dalmas,S., Gaëtano,M. & Huchet,C.,
A Deductive Database for Mathematical Formulae.
Proc. DISCO '96 (ed. J. Calmet and C. Limongelli), Springer Lecture Notes in
Computer Science 1128, Springer-Verlag, 1996, pp. 287-296.
- 2
- Kohlhase,M.,
OMDoc: Towards an OpenMath Representation of mathematical knowledge.
Seki Report SR-00-02, Fachbereich Informatik, Universität des
Saarlandes, 2000.
http://www.mathweb.org/omdoc.
- 3
- Kohlhase,M.,
OMDoc: Towards an internet standard for the administration, distribution
and teaching of mathematical knowledge.
To appear in Proc. Artificial Intelligence and Symbolic
Computation, 2000.
- 4
- J.H. Conway, A. Hulpke & J. McKay, On transitive permutation
groups.
LMS J. Computation and Mathematics 1 (1998) pp. 1-8.
- 5
- D.I. Deriziotis & C.P. Gotsis, The cuspidal modules of the
finite general linear group.
LMS J. Computation and Mathematics 1 (1998) pp. 75-108.
- 6
- G. Ellis & I. Kholodna, Three-dimensional presentations for
the groups of order at most 30.
LMS J. Computation and Mathematics 2 (1999) pp. 93-117.
- 7
- G.R. Sharp, Algorithmic recognition of actions of
2-homogeneous groups on pairs.
LMS J. Computation and Mathematics 1 (1998) pp. 109-147.
- 8
- G.R. Sharp, Algorithmic recognition of group actions on
orbitals.
LMS J. Computation and Mathematics 2 (1999) pp. 1-27.
- 9
-
The Lego Algebra Group.
See http://www.cs.man.ac.uk/ petera/LAG/.
- 10
-
Calculemus-2000: 8th Symposium on the Integration of Symbolic Computation
and Mechanized Reasoning. A. K. Peters Publishers, August 2000.
- 11
-
John A. Abbott, André M. van Leeuwen, and A. Strotmann.
OpenMath: Communicating Mathematical Information between
Co-operating Agents in a Knowledge Network.
Journal of Intelligent Systems, 1998.
Special Issue: "Improving the Design of Intelligent Systems:
Outstanding Problems and Some Methods for their Solution.".
- 12
-
Ron Ausbrooks, Stephen Buswell, David Carlisle, Stéphane Dalmas, Stan Devitt,
Angel Diaz, Roger Hunter, Bruce Smith, Neil Soiffer, Robert Sutor, and
Stephen Watt.
Mathematical Markup Language (MathML) Version 2.0.
W3C Working Draft 28 March 2000, March 2000.
Formerly available at http://www.w3.org/TR/REC-MathML2/.
- 13
-
Anthony Bailey.
The Machine-Checked Literate Formalisation of Algebra
in Type Theory.
PhD thesis, University of Manchester, January 15 January 15th 1998.
- 14
-
P. Bertoli, J. Calmet, F. Giunchiglia, and K. Homann.
Specification and Integration of Theorem Provers and Computer
Algebra Systems.
In J. Calmet and J. Plaza, editors, Artificial Intelligence and
Symbolic Computation: International Conference AISC'98, volume 1476 of
Lecture Notes in Artificial Intelligence, Plattsburgh, New York, USA,
September 1998.
- 15
-
Stephen Buswell.
STARS.
Stilo Technologies, April 1999.
http://www.stilo.com.
- 16
-
Stephen Buswell, Stan Devitt, Angel Diaz, Nico Poppelier, Bruce Smith, Neil
Soiffer, Robert Sutor, and Stephen Watt.
Mathematical Markup Language (MathML) 1.0 Specification.
W3C Recommendation 19980407, April 1998.
http://www.w3.org/TR/REC-MathML/.
- 17
-
Olga Caprotti and David Carlisle.
OpenMath and MathML: Semantic Mark Up for
Mathematics.
Crossroad, Special Issue on Markup Languages, 1999.
http://www.acm.org/crossroads.
- 18
-
Olga Caprotti and Arjeh Cohen.
On the role of OpenMath in interactive mathematical documents.
Journal of Symbolic Computation, Special Issue on Calculemus,
1999.
- 19
-
Arjeh Cohen and Michael Kohlhase.
Proposal of an Extension to OpenMath by Defining
Mathematical Properties.
12th OpenMath Workshop, June 1999.
http://www.win.tue.nl/ amc/kohlhase.dvi.
- 20
-
Watt et al.
AXIOM Library Compiler User Guide,
Numerical Algorithms Group Ltd, 1995.
- 21
-
OpenMath Consortium.
Axiom interface to OpenMath.
OpenMath ESPRIT Deliverable, 2000.
- 22
-
OpenMath Consortium.
GAP interface to OpenMath.
OpenMath ESPRIT Deliverable, 2000.
- 23
-
OpenMath Consortium.
The OpenMath Standard, February 2000.
O. Caprotti, D. P. Carlisle and A. M. Cohen Eds.
- 24
-
World Wide Web Consortium.
Extensible Markup Language (XML) 1.0.
W3C Recommendation REC-xml-19980210, February 1998.
Available at http://www.w3.org/TR/1998/REC-xml-19980210.
- 25
-
Projet Coq.
The Coq Proof Assistant: The standard library, version 6.3.1
edition, December 1999.
Formerly available at http://www.ens-lyon.fr/LIP/groupes/coq.
- 26
-
S. Dalmas, M. Gaëtano, and S. Watt.
An OpenMath 1.0 Implementation.
pages 241-248. ACM Press, 1997.
- 27
-
J. Davenport.
A Small OpenMath Type System.
OpenMath Deliverable 1.3.2b, April 1999.
http://www.nag.co.uk/projects/OpenMath/omstd/.
- 28
-
A. Franke, S. Hess, Ch. Jung, M. Kohlhase, and V. Sorge.
Agent-Oriented Integration of Distributed Mathematical Services.
Journal of Universal Computer Science, 5(3):156-187, March
1999.
Special issue on Integration of Deduction System.
- 29
-
Iso 7-bit coded character set for information interchange.
ISO 646:1983, 1983.
- 30
-
Z. Luo and R. Pollack.
LEGO Proof Development System: User's Manual.
Department of Compter Science, University of Edinburgh, 1992.
- 31
-
L. Pottier and L. Théry.
Certifier Computer Algebra.
In Calculemus and Types '98, Eindhoven, July 1998.
http://www-sop.inria.fr/croap/CFC/.
- 32
-
W3C.
Namespaces in XML.
REC-xml-names-19990114, January 1999.
http://www.w3.org/TR/REC-xml-names.
- 33
-
OpenMath Society Website.
http://www.openmath.org.
- 34
-
A.M. Cohen, H. Cuypers and H. Sterk.
Algebra Interactive!.
Springer Berlin Heidelberg 1999, ISBN 3-540-65368-6
The OpenMath Consortium