OpenMath Content Dictionary: permgp1
Canonical URL:
http://www.openmath.org/cd/permgp1.ocd
CD Base:
http://www.openmath.org/cd
CD File:
permgp1.ocd
CD as XML Encoded OpenMath:
permgp1.omcd
Defines:
base , generators , group , is_in , is_primitive , is_subgroup , is_transitive , orbit , orbits , order , schreier_tree , stabilizer , stabilizer_chain , support
Date:
2004-06-01
Version:
2
(Revision 1)
Review Date:
Status:
experimental
A CD of functions for permutation groups
First version written by A. Solomon 1998-11-19.
Modified by David Carlisle 1999-04-28.
Rebuilt by Arjeh M. Cohen 2002-12-16.
Description:
This symbol represents an n-ary function. The first argument is a
group operation
(usually, left_compose or right_compose),
the other n-1 arguments represent permutations.
When evaluated on such arguments, the function represents the
permutation group generated by the last n-1 arguments.
Example:
The permutation group generated by (1,5,4)(2,6) and (1,4,5)(3,6)
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="permgp1" name="group"/>
<OMS cd="permutation1" name="right_compose"/>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>5</OMI><OMI>4</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>2</OMI><OMI>6</OMI>
</OMA>
</OMA>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>3</OMI><OMI>6</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>4</OMI><OMI>5</OMI>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="permgp1">group</csymbol>
<csymbol cd="permutation1">right_compose</csymbol>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">5</cn>
<cn type="integer">4</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">2</cn>
<cn type="integer">6</cn>
</apply>
</apply>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">3</cn>
<cn type="integer">6</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">4</cn>
<cn type="integer">5</cn>
</apply>
</apply>
</apply>
</math>
Prefix
group
(
right_compose ,
permutation
(
cycle
(1, 5, 4)
,
cycle
(2, 6)
)
,
permutation
(
cycle
(3, 6)
,
cycle
(1, 4, 5)
)
)
Popcorn
permgp1.group(permutation1.right_compose, permutation1.permutation(permutation1.cycle(1, 5, 4), permutation1.cycle(2, 6)), permutation1.permutation(permutation1.cycle(3, 6), permutation1.cycle(1, 4, 5)))
Rendered Presentation MathML
group
(
right_compose
,
permutation
(
cycle
(
1
,
5
,
4
)
,
cycle
(
2
,
6
)
)
,
permutation
(
cycle
(
3
,
6
)
,
cycle
(
1
,
4
,
5
)
)
)
Signatures:
sts
Description:
This represents a unary function whose argument should be a
permutation group. When evaluated at a permutation group G, it is the
set of points which are moved a member of G.
Example:
The following expression evaluates to the set {1,2,3,4,5,6}.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="permgp1" name="support"/>
<OMA><OMS cd="permgp1" name="group"/>
<OMS cd="permutation1" name="right_compose"/>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>5</OMI><OMI>4</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>2</OMI><OMI>6</OMI>
</OMA>
</OMA>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>3</OMI><OMI>6</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>4</OMI><OMI>5</OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="permgp1">support</csymbol>
<apply><csymbol cd="permgp1">group</csymbol>
<csymbol cd="permutation1">right_compose</csymbol>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">5</cn>
<cn type="integer">4</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">2</cn>
<cn type="integer">6</cn>
</apply>
</apply>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">3</cn>
<cn type="integer">6</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">4</cn>
<cn type="integer">5</cn>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
support
(
group
(
right_compose ,
permutation
(
cycle
(1, 5, 4)
,
cycle
(2, 6)
)
,
permutation
(
cycle
(3, 6)
,
cycle
(1, 4, 5)
)
)
)
Popcorn
permgp1.support(permgp1.group(permutation1.right_compose, permutation1.permutation(permutation1.cycle(1, 5, 4), permutation1.cycle(2, 6)), permutation1.permutation(permutation1.cycle(3, 6), permutation1.cycle(1, 4, 5))))
Rendered Presentation MathML
support
(
group
(
right_compose
,
permutation
(
cycle
(
1
,
5
,
4
)
,
cycle
(
2
,
6
)
)
,
permutation
(
cycle
(
3
,
6
)
,
cycle
(
1
,
4
,
5
)
)
)
)
Signatures:
sts
Description:
This is a function with one argument, which should be a
permutation group. When evaluated with argument G it returns the list
of permutations which occur in the definition of G.
Example:
The following expression evaluates to the list of permutations [(1,5,4)(2,6),(3,6)(1,4,5)].
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="permgp1" name="generators"/>
<OMA><OMS cd="permgp1" name="group"/>
<OMS cd="permutation1" name="right_compose"/>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>5</OMI><OMI>4</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>2</OMI><OMI>6</OMI>
</OMA>
</OMA>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>3</OMI><OMI>6</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>4</OMI><OMI>5</OMI>
</OMA>
</OMA>
</OMA>
<OMI>2</OMI>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="permgp1">generators</csymbol>
<apply><csymbol cd="permgp1">group</csymbol>
<csymbol cd="permutation1">right_compose</csymbol>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">5</cn>
<cn type="integer">4</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">2</cn>
<cn type="integer">6</cn>
</apply>
</apply>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">3</cn>
<cn type="integer">6</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">4</cn>
<cn type="integer">5</cn>
</apply>
</apply>
</apply>
<cn type="integer">2</cn>
</apply>
</math>
Prefix
generators
(
group
(
right_compose ,
permutation
(
cycle
(1, 5, 4)
,
cycle
(2, 6)
)
,
permutation
(
cycle
(3, 6)
,
cycle
(1, 4, 5)
)
)
, 2)
Popcorn
permgp1.generators(permgp1.group(permutation1.right_compose, permutation1.permutation(permutation1.cycle(1, 5, 4), permutation1.cycle(2, 6)), permutation1.permutation(permutation1.cycle(3, 6), permutation1.cycle(1, 4, 5))), 2)
Rendered Presentation MathML
generators
(
group
(
right_compose
,
permutation
(
cycle
(
1
,
5
,
4
)
,
cycle
(
2
,
6
)
)
,
permutation
(
cycle
(
3
,
6
)
,
cycle
(
1
,
4
,
5
)
)
)
,
2
)
Signatures:
sts
Description:
The binary function whose first argument should be a permutation group G.
If the second argument is an element of the support of G,
the value is the orbit of the second argument under the action of G.
Otherwise, it is the singleton consisting of the second argument.
Example:
The following expression evaluates to the set {2,3,6}.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="permgp1" name="orbit"/>
<OMA><OMS cd="permgp1" name="group"/>
<OMS cd="permutation1" name="right_compose"/>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>5</OMI><OMI>4</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>2</OMI><OMI>6</OMI>
</OMA>
</OMA>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>3</OMI><OMI>6</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>4</OMI><OMI>5</OMI>
</OMA>
</OMA>
</OMA>
<OMI>2</OMI>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="permgp1">orbit</csymbol>
<apply><csymbol cd="permgp1">group</csymbol>
<csymbol cd="permutation1">right_compose</csymbol>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">5</cn>
<cn type="integer">4</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">2</cn>
<cn type="integer">6</cn>
</apply>
</apply>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">3</cn>
<cn type="integer">6</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">4</cn>
<cn type="integer">5</cn>
</apply>
</apply>
</apply>
<cn type="integer">2</cn>
</apply>
</math>
Prefix
orbit
(
group
(
right_compose ,
permutation
(
cycle
(1, 5, 4)
,
cycle
(2, 6)
)
,
permutation
(
cycle
(3, 6)
,
cycle
(1, 4, 5)
)
)
, 2)
Popcorn
permgp1.orbit(permgp1.group(permutation1.right_compose, permutation1.permutation(permutation1.cycle(1, 5, 4), permutation1.cycle(2, 6)), permutation1.permutation(permutation1.cycle(3, 6), permutation1.cycle(1, 4, 5))), 2)
Rendered Presentation MathML
orbit
(
group
(
right_compose
,
permutation
(
cycle
(
1
,
5
,
4
)
,
cycle
(
2
,
6
)
)
,
permutation
(
cycle
(
3
,
6
)
,
cycle
(
1
,
4
,
5
)
)
)
,
2
)
Signatures:
sts
Description:
This is an n-ary function with n at least 2.
The first argument is a permutation group G, the other arguments are
elements x_2,x_3,...,x_n upon which G acts. The value is the
subgroup of G consisting of all permutations which stabilize
each of x_2,x_3,...,x_n.
Example:
The following expression stands for the stabilizer of 1 and 2 in the
permutation group generated by the permutations (1,5,4)(2,6) and
(3,6)(1,4,5).
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="permgp1" name="stabilizer"/>
<OMA><OMS cd="permgp1" name="group"/>
<OMS cd="permutation1" name="right_compose"/>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>5</OMI><OMI>4</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>2</OMI><OMI>6</OMI>
</OMA>
</OMA>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>3</OMI><OMI>6</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>4</OMI><OMI>5</OMI>
</OMA>
</OMA>
</OMA>
<OMI>1</OMI>
<OMI>2</OMI>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="permgp1">stabilizer</csymbol>
<apply><csymbol cd="permgp1">group</csymbol>
<csymbol cd="permutation1">right_compose</csymbol>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">5</cn>
<cn type="integer">4</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">2</cn>
<cn type="integer">6</cn>
</apply>
</apply>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">3</cn>
<cn type="integer">6</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">4</cn>
<cn type="integer">5</cn>
</apply>
</apply>
</apply>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
</apply>
</math>
Prefix
stabilizer
(
group
(
right_compose ,
permutation
(
cycle
(1, 5, 4)
,
cycle
(2, 6)
)
,
permutation
(
cycle
(3, 6)
,
cycle
(1, 4, 5)
)
)
, 1, 2)
Popcorn
permgp1.stabilizer(permgp1.group(permutation1.right_compose, permutation1.permutation(permutation1.cycle(1, 5, 4), permutation1.cycle(2, 6)), permutation1.permutation(permutation1.cycle(3, 6), permutation1.cycle(1, 4, 5))), 1, 2)
Rendered Presentation MathML
stabilizer
(
group
(
right_compose
,
permutation
(
cycle
(
1
,
5
,
4
)
,
cycle
(
2
,
6
)
)
,
permutation
(
cycle
(
3
,
6
)
,
cycle
(
1
,
4
,
5
)
)
)
,
1
,
2
)
Signatures:
sts
Description:
This is a Boolean function with one argument, which should be a permutation
group.
When evaluated at a permutation group G, it returns the value true if
and only if the permutation group argument acts transitively
on the support of G.
Example:
The following boolean value is false.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="permgp1" name="is_transitive"/>
<OMA><OMS cd="permgp1" name="group"/>
<OMS cd="permutation1" name="right_compose"/>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>5</OMI><OMI>4</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>2</OMI><OMI>6</OMI>
</OMA>
</OMA>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>3</OMI><OMI>6</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>4</OMI><OMI>5</OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="permgp1">is_transitive</csymbol>
<apply><csymbol cd="permgp1">group</csymbol>
<csymbol cd="permutation1">right_compose</csymbol>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">5</cn>
<cn type="integer">4</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">2</cn>
<cn type="integer">6</cn>
</apply>
</apply>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">3</cn>
<cn type="integer">6</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">4</cn>
<cn type="integer">5</cn>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
is_transitive
(
group
(
right_compose ,
permutation
(
cycle
(1, 5, 4)
,
cycle
(2, 6)
)
,
permutation
(
cycle
(3, 6)
,
cycle
(1, 4, 5)
)
)
)
Popcorn
permgp1.is_transitive(permgp1.group(permutation1.right_compose, permutation1.permutation(permutation1.cycle(1, 5, 4), permutation1.cycle(2, 6)), permutation1.permutation(permutation1.cycle(3, 6), permutation1.cycle(1, 4, 5))))
Rendered Presentation MathML
is_transitive
(
group
(
right_compose
,
permutation
(
cycle
(
1
,
5
,
4
)
,
cycle
(
2
,
6
)
)
,
permutation
(
cycle
(
3
,
6
)
,
cycle
(
1
,
4
,
5
)
)
)
)
Signatures:
sts
Description:
This is a function with one argument, which
should be a permutation group. When evaluated at a permutation group
G, it returns the set of all orbits of G on elements from the support
of G.
Example:
The following expression evaluates to the list of sets [{2,3,6},{1,4,5}].
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="permgp1" name="orbits"/>
<OMA><OMS cd="permgp1" name="group"/>
<OMS cd="permutation1" name="right_compose"/>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>5</OMI><OMI>4</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>2</OMI><OMI>6</OMI>
</OMA>
</OMA>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>3</OMI><OMI>6</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>4</OMI><OMI>5</OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="permgp1">orbits</csymbol>
<apply><csymbol cd="permgp1">group</csymbol>
<csymbol cd="permutation1">right_compose</csymbol>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">5</cn>
<cn type="integer">4</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">2</cn>
<cn type="integer">6</cn>
</apply>
</apply>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">3</cn>
<cn type="integer">6</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">4</cn>
<cn type="integer">5</cn>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
orbits
(
group
(
right_compose ,
permutation
(
cycle
(1, 5, 4)
,
cycle
(2, 6)
)
,
permutation
(
cycle
(3, 6)
,
cycle
(1, 4, 5)
)
)
)
Popcorn
permgp1.orbits(permgp1.group(permutation1.right_compose, permutation1.permutation(permutation1.cycle(1, 5, 4), permutation1.cycle(2, 6)), permutation1.permutation(permutation1.cycle(3, 6), permutation1.cycle(1, 4, 5))))
Rendered Presentation MathML
orbits
(
group
(
right_compose
,
permutation
(
cycle
(
1
,
5
,
4
)
,
cycle
(
2
,
6
)
)
,
permutation
(
cycle
(
3
,
6
)
,
cycle
(
1
,
4
,
5
)
)
)
)
Signatures:
sts
Description:
The unary function with one argument, which should be a permutation group.
Its value is true if and only if G acts
primitively on the support of G. This means that there is no proper subset B
of the support of G with more than one element such that the image of
B under an element of G meets B in a proper nonempty subset of B.
Example:
The following expression evaluates to the boolean true.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="permgp1" name="is_primitive"/>
<OMA><OMS cd="permgp1" name="group"/>
<OMS cd="permutation1" name="right_compose"/>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>5</OMI><OMI>4</OMI><OMI>3</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>2</OMI><OMI>6</OMI>
</OMA>
</OMA>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>3</OMI><OMI>6</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>4</OMI><OMI>5</OMI><OMI>2</OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="permgp1">is_primitive</csymbol>
<apply><csymbol cd="permgp1">group</csymbol>
<csymbol cd="permutation1">right_compose</csymbol>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">5</cn>
<cn type="integer">4</cn>
<cn type="integer">3</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">2</cn>
<cn type="integer">6</cn>
</apply>
</apply>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">3</cn>
<cn type="integer">6</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">4</cn>
<cn type="integer">5</cn>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
is_primitive
(
group
(
right_compose ,
permutation
(
cycle
(1, 5, 4, 3)
,
cycle
(2, 6)
)
,
permutation
(
cycle
(3, 6)
,
cycle
(1, 4, 5, 2)
)
)
)
Popcorn
permgp1.is_primitive(permgp1.group(permutation1.right_compose, permutation1.permutation(permutation1.cycle(1, 5, 4, 3), permutation1.cycle(2, 6)), permutation1.permutation(permutation1.cycle(3, 6), permutation1.cycle(1, 4, 5, 2))))
Rendered Presentation MathML
is_primitive
(
group
(
right_compose
,
permutation
(
cycle
(
1
,
5
,
4
,
3
)
,
cycle
(
2
,
6
)
)
,
permutation
(
cycle
(
3
,
6
)
,
cycle
(
1
,
4
,
5
,
2
)
)
)
)
Signatures:
sts
Description:
This is a function with two arguments. The first argument should be a
permutation group G, the second argument a point x permuted by G.
When evaluated at G and x, it returns a list of three lists X,V,B.
The first list, X, enumerates the points of the G-orbit of x.
The second list and the third list both have the same length as X, say
n. The second list represents a map
V from [1,...,n] to {-m,...,-1,0,1,...,m}, where m is the number of
generators of G,
and the third list represents a map B from [1,...,n] to X.
These maps satisfy the following properties:
X(1) = B(1) = x.
Moreover, V(i) = 0 if and only if i = 1.
For each index i distinct from 1, the value B(i) is equal to X(j) for some index j
smaller than i.
If V(i) is positive, then X(i) is the image of B(i) under the V(i)-th
generator of G.
If V(i) is negative, then B(i) is the image of X(i) under the (-V(i))-th
generator of G.
Example:
The following expression represents a Schreier tree.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="permgp1" name="schreier_tree"/>
<OMA><OMS cd="permgp1" name="group"/>
<OMS cd="permutation1" name="right_compose"/>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>5</OMI><OMI>4</OMI><OMI>3</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>2</OMI><OMI>6</OMI>
</OMA>
</OMA>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>3</OMI><OMI>6</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>4</OMI><OMI>5</OMI><OMI>2</OMI>
</OMA>
</OMA>
</OMA>
<OMI>4</OMI>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="permgp1">schreier_tree</csymbol>
<apply><csymbol cd="permgp1">group</csymbol>
<csymbol cd="permutation1">right_compose</csymbol>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">5</cn>
<cn type="integer">4</cn>
<cn type="integer">3</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">2</cn>
<cn type="integer">6</cn>
</apply>
</apply>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">3</cn>
<cn type="integer">6</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">4</cn>
<cn type="integer">5</cn>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
<cn type="integer">4</cn>
</apply>
</math>
Prefix
schreier_tree
(
group
(
right_compose ,
permutation
(
cycle
(1, 5, 4, 3)
,
cycle
(2, 6)
)
,
permutation
(
cycle
(3, 6)
,
cycle
(1, 4, 5, 2)
)
)
, 4)
Popcorn
permgp1.schreier_tree(permgp1.group(permutation1.right_compose, permutation1.permutation(permutation1.cycle(1, 5, 4, 3), permutation1.cycle(2, 6)), permutation1.permutation(permutation1.cycle(3, 6), permutation1.cycle(1, 4, 5, 2))), 4)
Rendered Presentation MathML
schreier_tree
(
group
(
right_compose
,
permutation
(
cycle
(
1
,
5
,
4
,
3
)
,
cycle
(
2
,
6
)
)
,
permutation
(
cycle
(
3
,
6
)
,
cycle
(
1
,
4
,
5
,
2
)
)
)
,
4
)
Signatures:
sts
Description:
This is a function with one argument, which should be a permutation group.
When evaluated with argument G it
returns a list of points permuted by G such that the stabilizer of all
elements of the list in G is trivial. Besides, the list is minimal
with respect to the latter property (in the sense that the stabilizer
in G of the elements of no proper
subset is trivial).
Example:
The following expression represents a base.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="permgp1" name="base"/>
<OMA><OMS cd="permgp1" name="group"/>
<OMS cd="permutation1" name="right_compose"/>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>5</OMI><OMI>4</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>2</OMI><OMI>6</OMI>
</OMA>
</OMA>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>3</OMI><OMI>6</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>4</OMI><OMI>5</OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="permgp1">base</csymbol>
<apply><csymbol cd="permgp1">group</csymbol>
<csymbol cd="permutation1">right_compose</csymbol>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">5</cn>
<cn type="integer">4</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">2</cn>
<cn type="integer">6</cn>
</apply>
</apply>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">3</cn>
<cn type="integer">6</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">4</cn>
<cn type="integer">5</cn>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
base
(
group
(
right_compose ,
permutation
(
cycle
(1, 5, 4)
,
cycle
(2, 6)
)
,
permutation
(
cycle
(3, 6)
,
cycle
(1, 4, 5)
)
)
)
Popcorn
permgp1.base(permgp1.group(permutation1.right_compose, permutation1.permutation(permutation1.cycle(1, 5, 4), permutation1.cycle(2, 6)), permutation1.permutation(permutation1.cycle(3, 6), permutation1.cycle(1, 4, 5))))
Rendered Presentation MathML
base
(
group
(
right_compose
,
permutation
(
cycle
(
1
,
5
,
4
)
,
cycle
(
2
,
6
)
)
,
permutation
(
cycle
(
3
,
6
)
,
cycle
(
1
,
4
,
5
)
)
)
)
Signatures:
sts
Description:
This is a function with one argument, which should be a permutation group.
When evaluated with argument G it
returns the size of the group G.
Example:
The following expression evaluates to 18.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="permgp1" name="order"/>
<OMA><OMS cd="permgp1" name="group"/>
<OMS cd="permutation1" name="right_compose"/>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>5</OMI><OMI>4</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>2</OMI><OMI>6</OMI>
</OMA>
</OMA>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>3</OMI><OMI>6</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>4</OMI><OMI>5</OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="permgp1">order</csymbol>
<apply><csymbol cd="permgp1">group</csymbol>
<csymbol cd="permutation1">right_compose</csymbol>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">5</cn>
<cn type="integer">4</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">2</cn>
<cn type="integer">6</cn>
</apply>
</apply>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">3</cn>
<cn type="integer">6</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">4</cn>
<cn type="integer">5</cn>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
order
(
group
(
right_compose ,
permutation
(
cycle
(1, 5, 4)
,
cycle
(2, 6)
)
,
permutation
(
cycle
(3, 6)
,
cycle
(1, 4, 5)
)
)
)
Popcorn
permgp1.order(permgp1.group(permutation1.right_compose, permutation1.permutation(permutation1.cycle(1, 5, 4), permutation1.cycle(2, 6)), permutation1.permutation(permutation1.cycle(3, 6), permutation1.cycle(1, 4, 5))))
Rendered Presentation MathML
order
(
group
(
right_compose
,
permutation
(
cycle
(
1
,
5
,
4
)
,
cycle
(
2
,
6
)
)
,
permutation
(
cycle
(
3
,
6
)
,
cycle
(
1
,
4
,
5
)
)
)
)
Signatures:
sts
Description:
This is a Boolean function with two arguments. The first argument
should be a permutation, the second a permutation group.
When evaluated with first argument x and second argument G, it
returns true if and only if x belongs to G.
Example:
The following expression evaluates to the boolean false.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="permgp1" name="is_in"/>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>2</OMI>
</OMA>
</OMA>
<OMA><OMS cd="permgp1" name="group"/>
<OMS cd="permutation1" name="right_compose"/>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>5</OMI><OMI>4</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>2</OMI><OMI>6</OMI>
</OMA>
</OMA>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>3</OMI><OMI>6</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>4</OMI><OMI>5</OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="permgp1">is_in</csymbol>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
</apply>
</apply>
<apply><csymbol cd="permgp1">group</csymbol>
<csymbol cd="permutation1">right_compose</csymbol>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">5</cn>
<cn type="integer">4</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">2</cn>
<cn type="integer">6</cn>
</apply>
</apply>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">3</cn>
<cn type="integer">6</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">4</cn>
<cn type="integer">5</cn>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
is_in
(
permutation
(
cycle
(1, 2)
)
,
group
(
right_compose ,
permutation
(
cycle
(1, 5, 4)
,
cycle
(2, 6)
)
,
permutation
(
cycle
(3, 6)
,
cycle
(1, 4, 5)
)
)
)
Popcorn
permgp1.is_in(permutation1.permutation(permutation1.cycle(1, 2)), permgp1.group(permutation1.right_compose, permutation1.permutation(permutation1.cycle(1, 5, 4), permutation1.cycle(2, 6)), permutation1.permutation(permutation1.cycle(3, 6), permutation1.cycle(1, 4, 5))))
Rendered Presentation MathML
is_in
(
permutation
(
cycle
(
1
,
2
)
)
,
group
(
right_compose
,
permutation
(
cycle
(
1
,
5
,
4
)
,
cycle
(
2
,
6
)
)
,
permutation
(
cycle
(
3
,
6
)
,
cycle
(
1
,
4
,
5
)
)
)
)
Signatures:
sts
Description:
This is a Boolean function with two arguments, both of which are permutation
groups. When evaluated with first argument H and second argument G it
returns true if and only if H is a subgroup of G.
Example:
The following expression evaluates to the boolean false.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="permgp1" name="is_subgroup"/>
<OMA><OMS cd="permgp1" name="group"/>
<OMS cd="permutation1" name="right_compose"/>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>5</OMI><OMI>4</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>2</OMI><OMI>6</OMI>
</OMA>
</OMA>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>3</OMI><OMI>6</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>4</OMI><OMI>5</OMI>
</OMA>
</OMA>
</OMA>
<OMA><OMS cd="permgp1" name="group"/>
<OMS cd="permutation1" name="right_compose"/>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>5</OMI><OMI>4</OMI><OMI>3</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>2</OMI><OMI>6</OMI>
</OMA>
</OMA>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>3</OMI><OMI>6</OMI><OMI>2</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>4</OMI><OMI>5</OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="permgp1">is_subgroup</csymbol>
<apply><csymbol cd="permgp1">group</csymbol>
<csymbol cd="permutation1">right_compose</csymbol>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">5</cn>
<cn type="integer">4</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">2</cn>
<cn type="integer">6</cn>
</apply>
</apply>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">3</cn>
<cn type="integer">6</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">4</cn>
<cn type="integer">5</cn>
</apply>
</apply>
</apply>
<apply><csymbol cd="permgp1">group</csymbol>
<csymbol cd="permutation1">right_compose</csymbol>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">5</cn>
<cn type="integer">4</cn>
<cn type="integer">3</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">2</cn>
<cn type="integer">6</cn>
</apply>
</apply>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">3</cn>
<cn type="integer">6</cn>
<cn type="integer">2</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">4</cn>
<cn type="integer">5</cn>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
is_subgroup
(
group
(
right_compose ,
permutation
(
cycle
(1, 5, 4)
,
cycle
(2, 6)
)
,
permutation
(
cycle
(3, 6)
,
cycle
(1, 4, 5)
)
)
,
group
(
right_compose ,
permutation
(
cycle
(1, 5, 4, 3)
,
cycle
(2, 6)
)
,
permutation
(
cycle
(3, 6, 2)
,
cycle
(1, 4, 5)
)
)
)
Popcorn
permgp1.is_subgroup(permgp1.group(permutation1.right_compose, permutation1.permutation(permutation1.cycle(1, 5, 4), permutation1.cycle(2, 6)), permutation1.permutation(permutation1.cycle(3, 6), permutation1.cycle(1, 4, 5))), permgp1.group(permutation1.right_compose, permutation1.permutation(permutation1.cycle(1, 5, 4, 3), permutation1.cycle(2, 6)), permutation1.permutation(permutation1.cycle(3, 6, 2), permutation1.cycle(1, 4, 5))))
Rendered Presentation MathML
is_subgroup
(
group
(
right_compose
,
permutation
(
cycle
(
1
,
5
,
4
)
,
cycle
(
2
,
6
)
)
,
permutation
(
cycle
(
3
,
6
)
,
cycle
(
1
,
4
,
5
)
)
)
,
group
(
right_compose
,
permutation
(
cycle
(
1
,
5
,
4
,
3
)
,
cycle
(
2
,
6
)
)
,
permutation
(
cycle
(
3
,
6
,
2
)
,
cycle
(
1
,
4
,
5
)
)
)
)
Signatures:
sts
Description:
This function takes one argument which should be a permutation group.
When applied to the permutation group G, its value is a list consisting of two lists B, H of equal length.
The first list B is a base for G, whereas the i-th entry H[i] of the
second list is the stabilizer in G of the elements B[1], ..., B[i].
Example:
The following expression represents a stabilizer chain.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="permgp1" name="stabilizer_chain"/>
<OMA><OMS cd="permgp1" name="group"/>
<OMS cd="permutation1" name="right_compose"/>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>5</OMI><OMI>4</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>2</OMI><OMI>6</OMI>
</OMA>
</OMA>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>3</OMI><OMI>6</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>4</OMI><OMI>5</OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="permgp1">stabilizer_chain</csymbol>
<apply><csymbol cd="permgp1">group</csymbol>
<csymbol cd="permutation1">right_compose</csymbol>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">5</cn>
<cn type="integer">4</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">2</cn>
<cn type="integer">6</cn>
</apply>
</apply>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">3</cn>
<cn type="integer">6</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">4</cn>
<cn type="integer">5</cn>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
stabilizer_chain
(
group
(
right_compose ,
permutation
(
cycle
(1, 5, 4)
,
cycle
(2, 6)
)
,
permutation
(
cycle
(3, 6)
,
cycle
(1, 4, 5)
)
)
)
Popcorn
permgp1.stabilizer_chain(permgp1.group(permutation1.right_compose, permutation1.permutation(permutation1.cycle(1, 5, 4), permutation1.cycle(2, 6)), permutation1.permutation(permutation1.cycle(3, 6), permutation1.cycle(1, 4, 5))))
Rendered Presentation MathML
stabilizer_chain
(
group
(
right_compose
,
permutation
(
cycle
(
1
,
5
,
4
)
,
cycle
(
2
,
6
)
)
,
permutation
(
cycle
(
3
,
6
)
,
cycle
(
1
,
4
,
5
)
)
)
)
Signatures:
sts