OpenMath Content Dictionary: airy
Canonical URL:
http://www.openmath.org/CDs/airy.ocd
CD File:
airy.ocd
CD as XML Encoded OpenMath:
airy.omcd
Defines:
Ai , Ai2 , Bi , Bi2
Date:
2002-01-19
Version:
1
(Revision 2)
Review Date:
2017-12-31
Status:
experimental
This document is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
The copyright holder grants you permission to redistribute this
document freely as a verbatim copy. Furthermore, the copyright
holder permits you to develop any derived work from this document
provided that the following conditions are met.
a) The derived work acknowledges the fact that it is derived from
this document, and maintains a prominent reference in the
work to the original source.
b) The fact that the derived work is not the original OpenMath
document is stated prominently in the derived work. Moreover if
both this document and the derived work are Content Dictionaries
then the derived work must include a different CDName element,
chosen so that it cannot be confused with any works adopted by
the OpenMath Society. In particular, if there is a Content
Dictionary Group whose name is, for example, `math' containing
Content Dictionaries named `math1', `math2' etc., then you should
not name a derived Content Dictionary `mathN' where N is an integer.
However you are free to name it `private_mathN' or some such. This
is because the names `mathN' may be used by the OpenMath Society
for future extensions.
c) The derived work is distributed under terms that allow the
compilation of derived works, but keep paragraphs a) and b)
intact. The simplest way to do this is to distribute the derived
work under the OpenMath license, but this is not a requirement.
If you have questions about this license please contact the OpenMath
society at http://www.openmath.org .
Author: James Davenport
This content dictionary contains symbols to describe the Airy functions
and associated functions.
Description:
The symbol Ai defines the unary Airy Ai function; as in Abramovitz &
Stegun equation 10.4.1. This is a solution to the equation:
$$w^{\prime\prime}-x*w=0$$
It is linearly independent to the Airy Bi function represented by
the Bi symbol in this Content Dictionary and is specifically
given by:
$$Ai(x)=Ai(0)~f(z)-(-Ai^\prime (0))~g(z)$$
where:
$$f(z)=\sum_{k=0}^\infty 3^k{\left (\frac{1}{3}\right )}_k
\frac{z^{3k}}{(3k)!}$$
and:
$$g(z)=\sum_{k=0}^\infty 3^k{\left (\frac{2}{3}\right )}_k
\frac{z^{3k+1}}{(3k+1)!}$$
Signatures:
sts
Description:
The symbol Bi defines the unary Airy Bi function. This is defined in
Abramivitz and Stegun 10.4.1 and is a solution to the equation:
$$w^{\prime\prime}-x*w=0$$
It is linearly independant to the Airy Ai function represented by
the Ai symbol in this Content Dictionary and is specifically
given by:
$$Bi(x)=\sqrt{3}(Bi(0)~f(z)+(-Bi^\prime (0))~g(z))$$
where:
$$f(z)=\sum_{k=0}^\infty 3^k{\left (\frac{1}{3}\right )}_k
\frac{z^{3k}}{(3k)!}$$
and:
$$g(z)=\sum_{k=0}^\infty 3^k{\left (\frac{2}{3}\right )}_k
\frac{z^{3k+1}}{(3k+1)!}$$
Signatures:
sts
Description:
The symbol Ai2 takes two arguments, it represents derivatives of
the Airy Ai function. The symbol Ai2(n,z) represents the n'th
derivative of Ai(z).
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="Ai" cd="airy"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS name="Ai2" cd="airy"/>
<OMS name="zero" cd="alg1"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="airy">Ai</csymbol><ci>z</ci></apply>
<apply><csymbol cd="airy">Ai2</csymbol><csymbol cd="alg1">zero</csymbol><ci>z</ci></apply>
</apply>
</math>
Prefix
Popcorn
airy.Ai($z) = airy.Ai2(alg1.zero, $z)
Rendered Presentation MathML
Ai
(
z
)
=
Ai2
(
0
,
z
)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMA>
<OMS name="diff" cd="calculus1"/>
<OMBIND>
<OMS name="lambda" cd="fns1"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA>
<OMS name="Ai2" cd="airy"/>
<OMV name="n"/>
<OMV name="z"/>
</OMA>
</OMBIND>
</OMA>
<OMV name="z"/>
</OMA>
<OMA>
<OMS name="Ai2" cd="airy"/>
<OMA>
<OMS name="plus" cd="arith1"/>
<OMV name="n"/>
<OMS name="one" cd="alg1"/>
</OMA>
<OMV name="z"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="calculus1">diff</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="airy">Ai2</csymbol><ci>n</ci><ci>z</ci></apply>
</bind>
</apply>
<ci>z</ci>
</apply>
<apply><csymbol cd="airy">Ai2</csymbol>
<apply><csymbol cd="arith1">plus</csymbol><ci>n</ci><csymbol cd="alg1">one</csymbol></apply>
<ci>z</ci>
</apply>
</apply>
</math>
Prefix
Popcorn
calculus1.diff(fns1.lambda[$z -> airy.Ai2($n, $z)])($z) = airy.Ai2($n + alg1.one, $z)
Rendered Presentation MathML
(
d
d
z
(
Ai2
(
n
,
z
)
)
)
(
z
)
=
Ai2
(
n
+
1
,
z
)
Signatures:
sts
Description:
The symbol Bi2 takes two arguments, it represents derivatives of
the Airy Bi function. The symbol Bi2(n,z) represents the n'th
derivative of Bi(z).
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="Bi" cd="airy"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS name="Bi2" cd="airy"/>
<OMS name="zero" cd="alg1"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="airy">Bi</csymbol><ci>z</ci></apply>
<apply><csymbol cd="airy">Bi2</csymbol><csymbol cd="alg1">zero</csymbol><ci>z</ci></apply>
</apply>
</math>
Prefix
Popcorn
airy.Bi($z) = airy.Bi2(alg1.zero, $z)
Rendered Presentation MathML
Bi
(
z
)
=
Bi2
(
0
,
z
)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMA>
<OMS name="diff" cd="calculus1"/>
<OMBIND>
<OMS name="lambda" cd="fns1"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA>
<OMS name="Bi2" cd="airy"/>
<OMV name="n"/>
<OMV name="z"/>
</OMA>
</OMBIND>
</OMA>
<OMV name="z"/>
</OMA>
<OMA>
<OMS name="Bi2" cd="airy"/>
<OMA>
<OMS name="plus" cd="arith1"/>
<OMV name="n"/>
<OMS name="one" cd="alg1"/>
</OMA>
<OMV name="z"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="calculus1">diff</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="airy">Bi2</csymbol><ci>n</ci><ci>z</ci></apply>
</bind>
</apply>
<ci>z</ci>
</apply>
<apply><csymbol cd="airy">Bi2</csymbol>
<apply><csymbol cd="arith1">plus</csymbol><ci>n</ci><csymbol cd="alg1">one</csymbol></apply>
<ci>z</ci>
</apply>
</apply>
</math>
Prefix
Popcorn
calculus1.diff(fns1.lambda[$z -> airy.Bi2($n, $z)])($z) = airy.Bi2($n + alg1.one, $z)
Rendered Presentation MathML
(
d
d
z
(
Bi2
(
n
,
z
)
)
)
(
z
)
=
Bi2
(
n
+
1
,
z
)
Signatures:
sts