OpenMath Content Dictionary: fns1 
            
               
                  Canonical URL: 
                
               
                  http://www.openmath.org/cd/fns1.ocd 
                
               
                  CD Base: 
                
               
                  http://www.openmath.org/cd 
                
               
                  CD File: 
                
               
                  fns1.ocd
       
                
               
                  CD as XML Encoded OpenMath: 
                
               
                  fns1.omcd
       
                
               
                  Defines: 
                
               
                  domain , domainofapplication , identity , image , inverse , lambda , left_compose , left_inverse , range , restriction , right_inverse 
                
               
                  Date: 
                
               2009-04-01 
               
                  Version: 
                
               4 
               
                  Review Date: 
                
               2014-04-01 
               
                  Status: 
                
               official 
             
            
     This document is distributed in the hope that it will be useful, 
     but WITHOUT ANY WARRANTY; without even the implied warranty of 
     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
     The copyright holder grants you permission to redistribute this 
     document freely as a verbatim copy. Furthermore, the copyright
     holder permits you to develop any derived work from this document
     provided that the following conditions are met.
       a) The derived work acknowledges the fact that it is derived from
          this document, and maintains a prominent reference in the 
          work to the original source.
       b) The fact that the derived work is not the original OpenMath 
          document is stated prominently in the derived work.  Moreover if
          both this document and the derived work are Content Dictionaries
          then the derived work must include a different CDName element,
          chosen so that it cannot be confused with any works adopted by
          the OpenMath Society.  In particular, if there is a Content 
          Dictionary Group whose name is, for example, `math' containing
          Content Dictionaries named `math1', `math2' etc., then you should 
          not name a derived Content Dictionary `mathN' where N is an integer.
          However you are free to name it `private_mathN' or some such.  This
          is because the names `mathN' may be used by the OpenMath Society
          for future extensions.
       c) The derived work is distributed under terms that allow the
          compilation of derived works, but keep paragraphs a) and b)
          intact.  The simplest way to do this is to distribute the derived
          work under the OpenMath license, but this is not a requirement.
     If you have questions about this license please contact the OpenMath
     society at http://www.openmath.org .
 
            
  Author: OpenMath Consortium
  SourceURL: https://github.com/OpenMath/CDs 
             
            
    This CD is intended to be `compatible' with the corresponding
    elements in Content MathML.
                In this CD we give a set of functions concerning functions
    themselves. Functions can be constructed from expressions via a
    lambda expression. Also there are basic function functions like
    compose, etc.
            
               
                  Role: 
                
               application 
             
            
               
                  Description: 
                
               
                  
restriction takes two arguments, a function f, and a set S, which
should be a subset of domain(f) and returns the function
f restricted to S.
                
             
            
               
                  Formal Mathematical property (FMP): 
                
               
                  
                     OpenMath XML (source) 
                     
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
  <OMA><OMS cd="relation1" name="eq"/>
    <OMA><OMS cd="fns1" name="domain"/>
      <OMA><OMS cd="fns1" name="restriction"/>
        <OMV name="f"/>
        <OMV name="S"/>
      </OMA>
    </OMA>
    <OMV name="S"/>
  </OMA>
</OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="fns1">domain</csymbol>
   <apply><csymbol cd="fns1">restriction</csymbol><ci>f</ci><ci>S</ci></apply>
  </apply>
  <ci>S</ci>
 </apply>
</math> 
                   
                  Prefix 
                  
                  
                     Popcorn 
                     
  fns1.domain(fns1.restriction($f, $S)) = $S
                   
                  
                     Rendered Presentation MathML 
                     
                   
                
             
            
               
                  Formal Mathematical property (FMP): 
                
               
                  
                     OpenMath XML (source) 
                     
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
  <OMA><OMS cd="relation1" name="eq"/>
    <OMA><OMS cd="fns1" name="restriction"/>
      <OMV name="f"/>
      <OMA><OMS cd="fns1" name="domain"/>
        <OMV name="f"/>
      </OMA>
    </OMA>
    <OMV name="f"/>
  </OMA>
</OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="fns1">restriction</csymbol>
   <ci>f</ci>
   <apply><csymbol cd="fns1">domain</csymbol><ci>f</ci></apply>
  </apply>
  <ci>f</ci>
 </apply>
</math> 
                   
                  Prefix 
                  
                  
                     Popcorn 
                     
  fns1.restriction($f, fns1.domain($f)) = $f
                   
                  
                     Rendered Presentation MathML 
                     
                   
                
             
            
               
                  Signatures: 
                
               
                  
	sts
       
                
             
            
            
               
                  Role: 
                
               application 
             
            
               
                  Description: 
                
               
                  
Deprecated. This symbol was intended to model MathML 
domainofapplication but as defined it is a synonym for 
domain. In MathML3, MathML compatibility is defined to
use the new restriction symbol.
                
             
            
               
                  Signatures: 
                
               
                  
	sts
       
                
             
            
            
               
                  Role: 
                
               application 
             
            
               
                  Description: 
                
               
                  
This symbol denotes the domain of a given function, which is the set of
values it is defined over.
                
             
            
               
                  Commented Mathematical property (CMP): 
                
               
x is in the domain of f if and only if 
there exists a y in the range of f and f(x) = y
 
             
            
               
                  Formal Mathematical property (FMP): 
                
               
                  
                     OpenMath XML (source) 
                     
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
  <OMA>
    <OMS cd="logic1" name="equivalent"/>
    <OMA>
      <OMS cd="set1" name="in"/>
      <OMV name="x"/>
      <OMA>
        <OMS cd="fns1" name="domain"/>
	<OMV name="f"/>
      </OMA>
    </OMA>
    <OMBIND>
      <OMS cd="quant1" name="exists"/>
      <OMBVAR>
        <OMV name="y"/>
      </OMBVAR>
      <OMA>
        <OMS cd="logic1" name="and"/>
        <OMA>
          <OMS cd="set1" name="in"/>
	  <OMV name="y"/>
	  <OMA>
            <OMS cd="fns1" name="range"/>
	    <OMV name="f"/>
	  </OMA>
        </OMA>
	<OMA>
	  <OMS cd="relation1" name="eq"/>
	  <OMA>
	    <OMV name="f"/>
	    <OMV name="x"/>
	  </OMA>
	  <OMV name="y"/>
	</OMA>
      </OMA>
    </OMBIND>
  </OMA>
</OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="logic1">equivalent</csymbol>
  <apply><csymbol cd="set1">in</csymbol>
   <ci>x</ci>
   <apply><csymbol cd="fns1">domain</csymbol><ci>f</ci></apply>
  </apply>
  <bind><csymbol cd="quant1">exists</csymbol>
   <bvar><ci>y</ci></bvar>
   <apply><csymbol cd="logic1">and</csymbol>
    <apply><csymbol cd="set1">in</csymbol>
     <ci>y</ci>
     <apply><csymbol cd="fns1">range</csymbol><ci>f</ci></apply>
    </apply>
    <apply><csymbol cd="relation1">eq</csymbol>
     <apply><ci>f</ci><ci>x</ci></apply>
     <ci>y</ci>
    </apply>
   </apply>
  </bind>
 </apply>
</math> 
                   
                  Prefix 
                  
                  
                     Popcorn 
                     
  logic1.equivalent(set1.in($x, fns1.domain($f)), quant1.exists[$y -> set1.in($y, fns1.range($f)) and $f($x) = $y])
                   
                  
                     Rendered Presentation MathML 
                     
                        
                           
                              
                                 
                                    x 
                                    ∈ 
                                    
                                       domain 
                                        
                                       
                                          ( 
                                          f 
                                          ) 
                                        
                                     
                                  
                                 ≡ 
                                 
                                    ∃ 
                                      
                                    
                                       y 
                                     
                                    . 
                                    
                                       
                                          y 
                                          ∈ 
                                          
                                             range 
                                              
                                             
                                                ( 
                                                f 
                                                ) 
                                              
                                           
                                        
                                       ∧ 
                                       
                                          
                                             f 
                                              
                                             
                                                ( 
                                                x 
                                                ) 
                                              
                                           
                                          = 
                                          y 
                                        
                                     
                                  
                               
                            
                        
                      
                   
                
             
            
               
                  Signatures: 
                
               
                  
	sts
       
                
             
            
            
               
                  Role: 
                
               application 
             
            
               
                  Description: 
                
               
                  
This symbol denotes the range of a function, that is a set that the
function will map to. The single argument should be the function whos
range is being queried. It should be noted that this is not necessarily
equal to the image, it is merely required to contain the image.
                
             
            
               
                  Commented Mathematical property (CMP): 
                
               
the range of f is a subset of the image of f
 
             
            
               
                  Formal Mathematical property (FMP): 
                
               
                  
                     OpenMath XML (source) 
                     
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
  <OMA>
    <OMS cd="set1" name="subset"/>
    <OMA>
      <OMS cd="fns1" name="range"/>
      <OMV name="f"/>
    </OMA>
    <OMA>
      <OMS cd="fns1" name="image"/>
      <OMV name="f"/>
    </OMA>
  </OMA>
</OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="set1">subset</csymbol>
  <apply><csymbol cd="fns1">range</csymbol><ci>f</ci></apply>
  <apply><csymbol cd="fns1">image</csymbol><ci>f</ci></apply>
 </apply>
</math> 
                   
                  Prefix 
                  
                  
                     Popcorn 
                     
  set1.subset(fns1.range($f), fns1.image($f))
                   
                  
                     Rendered Presentation MathML 
                     
                        
                           
                              
                                 
                                    range 
                                     
                                    
                                       ( 
                                       f 
                                       ) 
                                     
                                  
                                 ⊂ 
                                 
                                    image 
                                     
                                    
                                       ( 
                                       f 
                                       ) 
                                     
                                  
                               
                            
                        
                      
                   
                
             
            
               
                  Signatures: 
                
               
                  
	sts
       
                
             
            
            
               
                  Role: 
                
               application 
             
            
               
                  Description: 
                
               
                  
This symbol denotes the image of a given function, which is the set of
values the domain of the given function maps to.
                
             
            
               
                  Commented Mathematical property (CMP): 
                
               x in the domain of f implies f(x) is in the image f 
             
            
               
                  Formal Mathematical property (FMP): 
                
               
                  
                     OpenMath XML (source) 
                     
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
  <OMA>
    <OMS cd="logic1" name="implies"/>
    <OMA>
      <OMS cd="set1" name="in"/>
      <OMV name="x"/>
      <OMA>
	<OMS cd="fns1" name="domain"/>
	<OMV name="f"/>
      </OMA>
    </OMA>
    <OMA>
      <OMS cd="set1" name="in"/>
      <OMA>
        <OMV name="f"/>
	<OMV name="x"/>
      </OMA>
      <OMA>
        <OMS cd="fns1" name="image"/>
	<OMV name="f"/>
      </OMA>
    </OMA>
  </OMA>
</OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="logic1">implies</csymbol>
  <apply><csymbol cd="set1">in</csymbol>
   <ci>x</ci>
   <apply><csymbol cd="fns1">domain</csymbol><ci>f</ci></apply>
  </apply>
  <apply><csymbol cd="set1">in</csymbol>
   <apply><ci>f</ci><ci>x</ci></apply>
   <apply><csymbol cd="fns1">image</csymbol><ci>f</ci></apply>
  </apply>
 </apply>
</math> 
                   
                  Prefix 
                  
                  
                     Popcorn 
                     
  set1.in($x, fns1.domain($f)) ==> set1.in($f($x), fns1.image($f))
                   
                  
                     Rendered Presentation MathML 
                     
                        
                           
                              
                                 
                                    x 
                                    ∈ 
                                    
                                       domain 
                                        
                                       
                                          ( 
                                          f 
                                          ) 
                                        
                                     
                                  
                                 ⇒ 
                                 
                                    
                                       f 
                                        
                                       
                                          ( 
                                          x 
                                          ) 
                                        
                                     
                                    ∈ 
                                    
                                       image 
                                        
                                       
                                          ( 
                                          f 
                                          ) 
                                        
                                     
                                  
                               
                            
                        
                      
                   
                
             
            
               
                  Signatures: 
                
               
                  
	sts
       
                
             
            
            
               
                  Role: 
                
               application 
             
            
               
                  Description: 
                
               
                  
The identity function, it takes one argument and returns the same value.
                
             
            
               
                  Commented Mathematical property (CMP): 
                
               for all x | identity(x)=x 
             
            
               
                  Formal Mathematical property (FMP): 
                
               
                  
                     OpenMath XML (source) 
                     
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
  <OMBIND>
    <OMS cd="quant1" name="forall"/>
    <OMBVAR>
      <OMV name="x"/>
    </OMBVAR>
    <OMA>
      <OMS cd="relation1" name="eq"/>
      <OMA>
        <OMS cd="fns1" name="identity"/>
        <OMV name="x"/>
      </OMA>
      <OMV name="x"/>
    </OMA>
  </OMBIND>
</OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <bind><csymbol cd="quant1">forall</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><csymbol cd="relation1">eq</csymbol>
   <apply><csymbol cd="fns1">identity</csymbol><ci>x</ci></apply>
   <ci>x</ci>
  </apply>
 </bind>
</math> 
                   
                  Prefix 
                  
                  
                     Popcorn 
                     
  quant1.forall[$x -> fns1.identity($x) = $x]
                   
                  
                     Rendered Presentation MathML 
                     
                   
                
             
            
               
                  Signatures: 
                
               
                  
	sts
       
                
             
            
            
               
                  Role: 
                
               application 
             
            
               
                  Description: 
                
               
                  
This symbol is used to describe the left inverse of its argument (a
function). This inverse may only be partially defined because the
function may not have been surjective. If the function is not
surjective the left inverse function is
ill-defined without further stipulations. No other assumptions are made on
the semantics of this left inverse.
                
             
            
               
                  Signatures: 
                
               
                  
	sts
       
                
             
            
            
               
                  Role: 
                
               application 
             
            
               
                  Description: 
                
               
                  
This symbol is used to describe the right inverse of its argument (a
function). This inverse may only be partially defined because the
function may not have been surjective. If the function is not
surjective the right inverse function is
ill-defined without further stipulations. No other assumptions are made on
the semantics of this right inverse.
                
             
            
               
                  Signatures: 
                
               
                  
	sts
       
                
             
            
            
               
                  Role: 
                
               application 
             
            
               
                  Description: 
                
               
                  
This symbol is used to describe the inverse of its argument (a
function). This inverse may only be partially defined because the
function may not have been surjective. If the function is not
surjective the inverse function is
ill-defined without further stipulations. No assumptions are made on
the semantics of this inverse.
                
             
            
               
                  Commented Mathematical property (CMP): 
                
               
(inverse(f))(f(x)) = x if f is injective,
that is
(for all x,y | f(x) = f(y) implies x=y) implies (inverse(f))(f(z)) = z
 
             
            
               
                  Formal Mathematical property (FMP): 
                
               
                  
                     OpenMath XML (source) 
                     
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
  <OMS cd="logic1" name="implies"/>
  <OMBIND>
    <OMS cd="quant1" name="forall"/>
    <OMBVAR>
      <OMV name="x"/>
      <OMV name="y"/>
    </OMBVAR>
    <OMA>
      <OMS cd="logic1" name="implies"/>
      <OMA>
        <OMS cd="relation1" name="eq"/>
        <OMA>
          <OMV name="f"/>
	  <OMV name="x"/>
        </OMA>
        <OMA>
          <OMV name="f"/>
          <OMV name="y"/>
        </OMA>
      </OMA>
      <OMA>
        <OMS cd="relation1" name="eq"/>
        <OMV name="x"/>
        <OMV name="y"/>
      </OMA>
    </OMA>
  </OMBIND>
  <OMA>
    <OMS cd="relation1" name="eq"/>
    <OMA>
      <OMA>
        <OMS cd="fns1" name="inverse"/>
        <OMV name="f"/>
      </OMA>
      <OMA>
        <OMV name="f"/>
        <OMV name="z"/>
      </OMA>
    </OMA>
    <OMV name="z"/>
  </OMA>
</OMA>
</OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="logic1">implies</csymbol>
  <bind><csymbol cd="quant1">forall</csymbol>
   <bvar><ci>x</ci></bvar>
   <bvar><ci>y</ci></bvar>
   <apply><csymbol cd="logic1">implies</csymbol>
    <apply><csymbol cd="relation1">eq</csymbol>
     <apply><ci>f</ci><ci>x</ci></apply>
     <apply><ci>f</ci><ci>y</ci></apply>
    </apply>
    <apply><csymbol cd="relation1">eq</csymbol><ci>x</ci><ci>y</ci></apply>
   </apply>
  </bind>
  <apply><csymbol cd="relation1">eq</csymbol>
   <apply>
    <apply><csymbol cd="fns1">inverse</csymbol><ci>f</ci></apply>
    <apply><ci>f</ci><ci>z</ci></apply>
   </apply>
   <ci>z</ci>
  </apply>
 </apply>
</math> 
                   
                  Prefix 
                  
                  
                     Popcorn 
                     
quant1.forall[$x, $y -> $f($x) = $f($y) ==> $x = $y] ==> fns1.inverse($f)($f($z)) = $z
                   
                  
                     Rendered Presentation MathML 
                     
                        
                           
                              
                                 
                                    ∀ 
                                      
                                    
                                       x 
                                       , 
                                       y 
                                     
                                    . 
                                    
                                       
                                          
                                             f 
                                              
                                             
                                                ( 
                                                x 
                                                ) 
                                              
                                           
                                          = 
                                          
                                             f 
                                              
                                             
                                                ( 
                                                y 
                                                ) 
                                              
                                           
                                        
                                       ⇒ 
                                       
                                          x 
                                          = 
                                          y 
                                        
                                     
                                  
                                 ⇒ 
                                 
                                    
                                       
                                          ( 
                                          
                                             f 
                                             -1 
                                           
                                          ) 
                                        
                                        
                                       
                                          ( 
                                          
                                             f 
                                              
                                             
                                                ( 
                                                z 
                                                ) 
                                              
                                           
                                          ) 
                                        
                                     
                                    = 
                                    z 
                                  
                               
                            
                        
                      
                   
                
             
            
               
                  Commented Mathematical property (CMP): 
                
               
f(inverse(f(y))=y if f is defined at inverse(f)(y)
that is, 
if there exists an x s.t. inverse(f)(y) = x then this implies
f(inverse(f)(y)) = y
 
             
            
               
                  Formal Mathematical property (FMP): 
                
               
                  
                     OpenMath XML (source) 
                     
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
  <OMA>
    <OMS cd="logic1" name="implies"/>
       <OMBIND>
        <OMS cd="quant1" name="exists"/>
	<OMBVAR>
	  <OMV name="x"/>
	</OMBVAR>
	<OMA>
	  <OMS cd="relation1" name="eq"/>
	  <OMA>
	    <OMA>
	      <OMS cd="fns1" name="inverse"/>
	      <OMV name="f"/>
	    </OMA>
	    <OMV name="y"/>
	  </OMA>
	  <OMV name="x"/>
	</OMA>
      </OMBIND>
    <OMA>
      <OMS cd="relation1" name="eq"/>
      <OMA>
        <OMV name="f"/>
	<OMA>
	  <OMA>
	    <OMS cd="fns1" name="inverse"/>
	    <OMV name="f"/>
	  </OMA>
	  <OMV name="y"/>
	</OMA>
      </OMA>
      <OMV name="y"/>
    </OMA>
  </OMA>
</OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="logic1">implies</csymbol>
  <bind><csymbol cd="quant1">exists</csymbol>
   <bvar><ci>x</ci></bvar>
   <apply><csymbol cd="relation1">eq</csymbol>
    <apply><apply><csymbol cd="fns1">inverse</csymbol><ci>f</ci></apply><ci>y</ci></apply>
    <ci>x</ci>
   </apply>
  </bind>
  <apply><csymbol cd="relation1">eq</csymbol>
   <apply>
    <ci>f</ci>
    <apply><apply><csymbol cd="fns1">inverse</csymbol><ci>f</ci></apply><ci>y</ci></apply>
   </apply>
   <ci>y</ci>
  </apply>
 </apply>
</math> 
                   
                  Prefix 
                  
                  
                     Popcorn 
                     
  quant1.exists[$x -> fns1.inverse($f)($y) = $x] ==> $f(fns1.inverse($f)($y)) = $y
                   
                  
                     Rendered Presentation MathML 
                     
                        
                           
                              
                                 
                                    ∃ 
                                      
                                    
                                       x 
                                     
                                    . 
                                    
                                       
                                          
                                             ( 
                                             
                                                f 
                                                -1 
                                              
                                             ) 
                                           
                                           
                                          
                                             ( 
                                             y 
                                             ) 
                                           
                                        
                                       = 
                                       x 
                                     
                                  
                                 ⇒ 
                                 
                                    
                                       f 
                                        
                                       
                                          ( 
                                          
                                             
                                                ( 
                                                
                                                   f 
                                                   -1 
                                                 
                                                ) 
                                              
                                              
                                             
                                                ( 
                                                y 
                                                ) 
                                              
                                           
                                          ) 
                                        
                                     
                                    = 
                                    y 
                                  
                               
                            
                        
                      
                   
                
             
            
               
                  Signatures: 
                
               
                  
	sts
       
                
             
            
            
               
                  Role: 
                
               application 
             
            
               
                  Description: 
                
               
                  
This symbol represents the function which forms the left-composition
of its two (function) arguments.
                
             
            
               
                  Commented Mathematical property (CMP): 
                
               for all f,g,x | left_compose(f,g)(x) = f(g(x))  
             
            
               
                  Formal Mathematical property (FMP): 
                
               
                  
                     OpenMath XML (source) 
                     
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMBIND>
  <OMS cd="quant1" name="forall"/>
  <OMBVAR>
    <OMV name="f"/>
    <OMV name="g"/>
    <OMV name="x"/>
  </OMBVAR>
  <OMA>
    <OMS cd="relation1" name="eq"/>
    <OMA>
      <OMA>
        <OMS cd="fns1" name="left_compose"/>
        <OMV name="f"/>
        <OMV name="g"/>
      </OMA>
      <OMV name="x"/>
    </OMA>
    <OMA>
      <OMV name="f"/>
      <OMA>
        <OMV name="g"/>
        <OMV name="x"/>
      </OMA>
    </OMA>
  </OMA>
</OMBIND>
</OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <bind><csymbol cd="quant1">forall</csymbol>
  <bvar><ci>f</ci></bvar>
  <bvar><ci>g</ci></bvar>
  <bvar><ci>x</ci></bvar>
  <apply><csymbol cd="relation1">eq</csymbol>
   <apply>
    <apply><csymbol cd="fns1">left_compose</csymbol><ci>f</ci><ci>g</ci></apply>
    <ci>x</ci>
   </apply>
   <apply><ci>f</ci><apply><ci>g</ci><ci>x</ci></apply></apply>
  </apply>
 </bind>
</math> 
                   
                  Prefix 
                  
                  
                     Popcorn 
                     
quant1.forall[$f, $g, $x -> fns1.left_compose($f, $g)($x) = $f($g($x))]
                   
                  
                     Rendered Presentation MathML 
                     
                        
                           
                              
                                 ∀ 
                                   
                                 
                                    f 
                                    , 
                                    g 
                                    , 
                                    x 
                                  
                                 . 
                                 
                                    
                                       
                                          ( 
                                          
                                             f 
                                             o 
                                             g 
                                           
                                          ) 
                                        
                                        
                                       
                                          ( 
                                          x 
                                          ) 
                                        
                                     
                                    = 
                                    
                                       f 
                                        
                                       
                                          ( 
                                          
                                             g 
                                              
                                             
                                                ( 
                                                x 
                                                ) 
                                              
                                           
                                          ) 
                                        
                                     
                                  
                               
                            
                        
                      
                   
                
             
            
               
                  Signatures: 
                
               
                  
	sts
       
                
             
            
            
               
                  Role: 
                
               binder 
             
            
               
                  Description: 
                
               
                  
This symbol is used to represent anonymous functions as lambda expansions. 
It is used in a binder that takes two further arguments, the first of which
is a list of variables, and the second of which is an expression, and it
forms the function which is the lambda extraction of the expression
                
             
            
               
                  Example: 
                
               
An example to show the connection between curried and uncurried
applications of a binary function f 
(lambda(x,y).(f))(a,b)= (lambda(x).((lambda(y).(f))(b)))(a)
                     OpenMath XML (source) 
                     <OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMBIND>
  <OMS cd="quant1" name="forall"/>
  <OMBVAR>
    <OMV name="a"/>
    <OMV name="b"/>
  </OMBVAR>
  <OMA>
    <OMS cd="relation1" name="eq"/>
    <OMA>
      <OMBIND>
        <OMS cd="fns1" name="lambda"/>
        <OMBVAR>
          <OMV name="x"/>
          <OMV name="y"/>
        </OMBVAR>
        <OMV name="f"/>
      </OMBIND>
      <OMV name="a"/>
      <OMV name="b"/>
    </OMA>
    <OMA>
      <OMBIND>
        <OMS cd="fns1" name="lambda"/>
        <OMBVAR>
          <OMV name="x"/>
        </OMBVAR>
        <OMA>
          <OMBIND>
            <OMS cd="fns1" name="lambda"/>
            <OMBVAR>
              <OMV name="y"/>
            </OMBVAR>
            <OMV name="f"/>
          </OMBIND>
          <OMV name="b"/>
        </OMA>
      </OMBIND>
      <OMV name="a"/>
    </OMA>
  </OMA>
</OMBIND>
</OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <bind><csymbol cd="quant1">forall</csymbol>
  <bvar><ci>a</ci></bvar>
  <bvar><ci>b</ci></bvar>
  <apply><csymbol cd="relation1">eq</csymbol>
   <apply>
    <bind><csymbol cd="fns1">lambda</csymbol>
     <bvar><ci>x</ci></bvar>
     <bvar><ci>y</ci></bvar>
     <ci>f</ci>
    </bind>
    <ci>a</ci>
    <ci>b</ci>
   </apply>
   <apply>
    <bind><csymbol cd="fns1">lambda</csymbol>
     <bvar><ci>x</ci></bvar>
     <apply>
      <bind><csymbol cd="fns1">lambda</csymbol><bvar><ci>y</ci></bvar><ci>f</ci></bind>
      <ci>b</ci>
     </apply>
    </bind>
    <ci>a</ci>
   </apply>
  </apply>
 </bind>
</math> 
                   
                  Prefix 
                  
                  
                     Popcorn 
                     
quant1.forall[$a, $b -> fns1.lambda[$x, $y -> $f]($a, $b) = fns1.lambda[$x -> fns1.lambda[$y -> $f]($b)]($a)]
                   
                  
                     Rendered Presentation MathML 
                     
                        
                           
                              
                                 ∀ 
                                   
                                 
                                    a 
                                    , 
                                    b 
                                  
                                 . 
                                 
                                    
                                       λ 
                                         
                                       
                                          x 
                                          , 
                                          y 
                                        
                                       . 
                                       f 
                                     
                                    = 
                                    
                                       λ 
                                         
                                       
                                          x 
                                        
                                       . 
                                       
                                          λ 
                                            
                                          
                                             y 
                                           
                                          . 
                                          f 
                                        
                                     
                                  
                               
                            
                        
                      
                   
                
             
            
               
                  Signatures: 
                
               
                  
	sts