OpenMath Content Dictionary: set1
Canonical URL:
http://www.openmath.org/cd/set1.ocd
CD Base:
http://www.openmath.org/cd
CD File:
set1.ocd
CD as XML Encoded OpenMath:
set1.omcd
Defines:
cartesian_product , emptyset , in , intersect , map , notin , notprsubset , notsubset , prsubset , set , setdiff , size , subset , suchthat , union
Date:
2004-03-30
Version:
3
(Revision 1)
Review Date:
2006-03-30
Status:
official
This document is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
The copyright holder grants you permission to redistribute this
document freely as a verbatim copy. Furthermore, the copyright
holder permits you to develop any derived work from this document
provided that the following conditions are met.
a) The derived work acknowledges the fact that it is derived from
this document, and maintains a prominent reference in the
work to the original source.
b) The fact that the derived work is not the original OpenMath
document is stated prominently in the derived work. Moreover if
both this document and the derived work are Content Dictionaries
then the derived work must include a different CDName element,
chosen so that it cannot be confused with any works adopted by
the OpenMath Society. In particular, if there is a Content
Dictionary Group whose name is, for example, `math' containing
Content Dictionaries named `math1', `math2' etc., then you should
not name a derived Content Dictionary `mathN' where N is an integer.
However you are free to name it `private_mathN' or some such. This
is because the names `mathN' may be used by the OpenMath Society
for future extensions.
c) The derived work is distributed under terms that allow the
compilation of derived works, but keep paragraphs a) and b)
intact. The simplest way to do this is to distribute the derived
work under the OpenMath license, but this is not a requirement.
If you have questions about this license please contact the OpenMath
society at http://www.openmath.org .
Author: OpenMath Consortium
SourceURL: https://github.com/OpenMath/CDs
This CD defines the set functions and constructors for basic
set theory. It is intended to be `compatible' with the
corresponding elements in MathML.
Role:
application
Description:
This symbol represents an n-ary construction function for constructing
the Cartesian product of sets. It takes n set arguments in order to
construct their Cartesian product.
Example:
An example to show the representation of the Cartesian product of sets: AxBxC.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="set1" name="cartesian_product"/>
<OMV name="A"/>
<OMV name="B"/>
<OMV name="C"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">cartesian_product</csymbol><ci>A</ci><ci>B</ci><ci>C</ci></apply>
</math>
Prefix
Popcorn
set1.cartesian_product($A, $B, $C)
Rendered Presentation MathML
Signatures:
sts
Role:
constant
Description:
This symbol is used to represent the empty set, that is the set which
contains no members. It takes no parameters.
Commented Mathematical property (CMP):
The intersection of A with the emptyset is the emptyset
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="set1" name="intersect"/>
<OMV name="A"/>
<OMS cd="set1" name="emptyset"/>
</OMA>
<OMS cd="set1" name="emptyset"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="set1">intersect</csymbol><ci>A</ci><csymbol cd="set1">emptyset</csymbol></apply>
<csymbol cd="set1">emptyset</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.intersect($A, set1.emptyset) = set1.emptyset
Rendered Presentation MathML
Commented Mathematical property (CMP):
The union of A with the emptyset is A
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="set1" name="union"/>
<OMV name="A"/>
<OMS cd="set1" name="emptyset"/>
</OMA>
<OMV name="A"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="set1">union</csymbol><ci>A</ci><csymbol cd="set1">emptyset</csymbol></apply>
<ci>A</ci>
</apply>
</math>
Prefix
Popcorn
set1.union($A, set1.emptyset) = $A
Rendered Presentation MathML
Commented Mathematical property (CMP):
the size of the empty set is zero
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="set1" name="size"/>
<OMS cd="set1" name="emptyset"/>
</OMA>
<OMS cd="alg1" name="zero"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="set1">size</csymbol><csymbol cd="set1">emptyset</csymbol></apply>
<csymbol cd="alg1">zero</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.size(set1.emptyset) = alg1.zero
Rendered Presentation MathML
Signatures:
sts
Role:
application
Description:
This symbol represents a mapping function which may be used to
construct sets, it takes as arguments a function from X to Y and a
set over X in that order. The value that is returned is a set of
values in Y. The argument list may be a set or an integer_interval.
Example:
The set of even values between 0 and 20, that is the values 2x, where
x ranges over the integral interval [0,10].
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="set1" name="map"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="x"/>
</OMBVAR>
<OMA>
<OMS cd="arith1" name="times"/>
<OMI> 2 </OMI>
<OMV name="x"/>
</OMA>
</OMBIND>
<OMA>
<OMS cd="interval1" name="integer_interval"/>
<OMI> 0 </OMI>
<OMI> 10 </OMI>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol><cn type="integer">2</cn><ci>x</ci></apply>
</bind>
<apply><csymbol cd="interval1">integer_interval</csymbol>
<cn type="integer">0</cn>
<cn type="integer">10</cn>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.map(fns1.lambda[$x -> 2 * $x], interval1.integer_interval(0, 10))
Rendered Presentation MathML
{
2
x
|
x
∈
[
0
,
10
]
}
Signatures:
sts
Role:
application
Description:
This symbol is used to denote the number of elements in a set. It is
either a non-negative integer, or an infinite cardinal number. The
symbol infinity may be used for an unspecified infinite cardinal.
Example:
The size of the set{3,6,9} = 3
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="set1" name="size"/>
<OMA>
<OMS cd="set1" name="set"/>
<OMI> 3 </OMI>
<OMI> 6 </OMI>
<OMI> 9 </OMI>
</OMA>
</OMA>
<OMI> 3 </OMI>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="set1">size</csymbol>
<apply><csymbol cd="set1">set</csymbol>
<cn type="integer">3</cn>
<cn type="integer">6</cn>
<cn type="integer">9</cn>
</apply>
</apply>
<cn type="integer">3</cn>
</apply>
</math>
Prefix
Popcorn
set1.size({3 , 6 , 9}) = 3
Rendered Presentation MathML
size
(
{
3
,
6
,
9
}
)
=
3
Example:
The size of the set of integers is infinite
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="set1" name="size"/>
<OMS cd="setname1" name="Z"/>
</OMA>
<OMS cd="nums1" name="infinity"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="set1">size</csymbol><csymbol cd="setname1">Z</csymbol></apply>
<csymbol cd="nums1">infinity</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.size(setname1.Z) = nums1.infinity
Rendered Presentation MathML
Signatures:
sts
Role:
application
Description:
This symbol represents the suchthat function which may be used to
construct sets, it takes two arguments. The first argument should be the
set which contains the elements of the set we wish to represent, the
second argument should be a predicate, that is a function from the set
to the booleans which describes if an element is to be in the set returned.
Example:
This example shows how to construct the set of even integers, using
the suchthat constructor.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="set1" name="suchthat"/>
<OMS cd="setname1" name="Z"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="x"/>
</OMBVAR>
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMV name="x"/>
<OMI> 2 </OMI>
</OMA>
<OMS cd="setname1" name="Z"/>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">suchthat</csymbol>
<csymbol cd="setname1">Z</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn type="integer">2</cn></apply>
<csymbol cd="setname1">Z</csymbol>
</apply>
</bind>
</apply>
</math>
Prefix
Popcorn
set1.suchthat(setname1.Z, fns1.lambda[$x -> set1.in($x / 2, setname1.Z)])
Rendered Presentation MathML
Signatures:
sts
Role:
application
Description:
This symbol represents the set construct. It is an n-ary function. The
set entries are given explicitly. There is no implied ordering to the
elements of a set.
Example:
The set {3, 6, 9}
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="set1" name="set"/>
<OMI> 3 </OMI>
<OMI> 6 </OMI>
<OMI> 9 </OMI>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">set</csymbol>
<cn type="integer">3</cn>
<cn type="integer">6</cn>
<cn type="integer">9</cn>
</apply>
</math>
Prefix
Rendered Presentation MathML
Signatures:
sts
Role:
application
Description:
This symbol is used to denote the n-ary intersection of sets. It takes
sets as arguments, and denotes the set that contains all the
elements that occur in all of them.
Commented Mathematical property (CMP):
(A intersect B) is a subset of A and (A intersect B) is a subset of B
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="subset"/>
<OMA>
<OMS cd="set1" name="intersect"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="set1" name="subset"/>
<OMA>
<OMS cd="set1" name="intersect"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
<OMV name="B"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">subset</csymbol>
<apply><csymbol cd="set1">intersect</csymbol><ci>A</ci><ci>B</ci></apply>
<ci>A</ci>
</apply>
<apply><csymbol cd="set1">subset</csymbol>
<apply><csymbol cd="set1">intersect</csymbol><ci>A</ci><ci>B</ci></apply>
<ci>B</ci>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.subset(set1.intersect($A, $B), $A) and set1.subset(set1.intersect($A, $B), $B)
Rendered Presentation MathML
Signatures:
sts
Role:
application
Description:
This symbol is used to denote the n-ary union of sets. It takes
sets as arguments, and denotes the set that contains all the
elements that occur in any of them.
Commented Mathematical property (CMP):
A is a subset of (A union B) and B is a subset of (A union B)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="subset"/>
<OMV name="A"/>
<OMA>
<OMS cd="set1" name="union"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="subset"/>
<OMV name="B"/>
<OMA>
<OMS cd="set1" name="union"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">subset</csymbol>
<ci>A</ci>
<apply><csymbol cd="set1">union</csymbol><ci>A</ci><ci>B</ci></apply>
</apply>
<apply><csymbol cd="set1">subset</csymbol>
<ci>B</ci>
<apply><csymbol cd="set1">union</csymbol><ci>A</ci><ci>B</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.subset($A, set1.union($A, $B)) and set1.subset($B, set1.union($A, $B))
Rendered Presentation MathML
Commented Mathematical property (CMP):
for all sets A,B and C
union(A,intersect(B,C)) = intersect(union(A,B),union(A,C))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="A"/>
<OMV name="B"/>
<OMV name="C"/>
</OMBVAR>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="set1" name="union"/>
<OMV name="A"/>
<OMA>
<OMS cd="set1" name="intersect"/>
<OMV name="B"/>
<OMV name="C"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="intersect"/>
<OMA>
<OMS cd="set1" name="union"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
<OMA>
<OMS cd="set1" name="union"/>
<OMV name="A"/>
<OMV name="C"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>A</ci></bvar>
<bvar><ci>B</ci></bvar>
<bvar><ci>C</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="set1">union</csymbol>
<ci>A</ci>
<apply><csymbol cd="set1">intersect</csymbol><ci>B</ci><ci>C</ci></apply>
</apply>
<apply><csymbol cd="set1">intersect</csymbol>
<apply><csymbol cd="set1">union</csymbol><ci>A</ci><ci>B</ci></apply>
<apply><csymbol cd="set1">union</csymbol><ci>A</ci><ci>C</ci></apply>
</apply>
</apply>
</bind>
</math>
Prefix
Popcorn
quant1.forall[$A, $B, $C -> set1.union($A, set1.intersect($B, $C)) = set1.intersect(set1.union($A, $B), set1.union($A, $C))]
Rendered Presentation MathML
∀
A
,
B
,
C
.
A
∪
B
∩
C
=
A
∪
B
∩
A
∪
C
Signatures:
sts
Role:
application
Description:
This symbol is used to denote the set difference of two sets. It takes
two sets as arguments, and denotes the set that contains all the
elements that occur in the first set, but not in the second.
Commented Mathematical property (CMP):
the difference of A and B is a subset of A
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="set1" name="subset"/>
<OMA>
<OMS cd="set1" name="setdiff"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
<OMV name="A"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">subset</csymbol>
<apply><csymbol cd="set1">setdiff</csymbol><ci>A</ci><ci>B</ci></apply>
<ci>A</ci>
</apply>
</math>
Prefix
Popcorn
set1.subset(set1.setdiff($A, $B), $A)
Rendered Presentation MathML
Signatures:
sts
Role:
application
Description:
This symbol has two (set) arguments. It is used to denote that the
first set is a subset of the second.
Commented Mathematical property (CMP):
if B is a subset of A and C is a subset of B then C is a subset of A
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="subset"/>
<OMV name="B"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="set1" name="subset"/>
<OMV name="C"/>
<OMV name="B"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="subset"/>
<OMV name="C"/>
<OMV name="A"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">subset</csymbol><ci>B</ci><ci>A</ci></apply>
<apply><csymbol cd="set1">subset</csymbol><ci>C</ci><ci>B</ci></apply>
</apply>
<apply><csymbol cd="set1">subset</csymbol><ci>C</ci><ci>A</ci></apply>
</apply>
</math>
Prefix
Popcorn
set1.subset($B, $A) and set1.subset($C, $B) ==> set1.subset($C, $A)
Rendered Presentation MathML
Signatures:
sts
Role:
application
Description:
This symbol has two arguments, an element and a set. It is used to
denote that the element is in the given set.
Commented Mathematical property (CMP):
if a is in A and a is in B then a is in A intersect B
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMV name="B"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="set1" name="intersect"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>a</ci><ci>A</ci></apply>
<apply><csymbol cd="set1">in</csymbol><ci>a</ci><ci>B</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="set1">intersect</csymbol><ci>A</ci><ci>B</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.in($a, $A) and set1.in($a, $B) ==> set1.in($a, set1.intersect($A, $B))
Rendered Presentation MathML
a
∈
A
∧
a
∈
B
⇒
a
∈
A
∩
B
Signatures:
sts
Role:
application
Description:
This symbol has two arguments, an element and a set. It is used to
denote that the element is not in the given set.
Commented Mathematical property (CMP):
if a is a member of a then it is not true that a is not a member of A
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="logic1" name="not"/>
<OMA>
<OMS cd="set1" name="notin"/>
<OMV name="a"/>
<OMV name="A"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>a</ci><ci>A</ci></apply>
<apply><csymbol cd="logic1">not</csymbol>
<apply><csymbol cd="set1">notin</csymbol><ci>a</ci><ci>A</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.in($a, $A) ==> not(set1.notin($a, $A))
Rendered Presentation MathML
Example:
4 is not in {1,2,3}
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="set1" name="notin"/>
<OMI> 4 </OMI>
<OMA>
<OMS cd="set1" name="set"/>
<OMI> 1 </OMI>
<OMI> 2 </OMI>
<OMI> 3 </OMI>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">notin</csymbol>
<cn type="integer">4</cn>
<apply><csymbol cd="set1">set</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
<cn type="integer">3</cn>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.notin(4, {1 , 2 , 3})
Rendered Presentation MathML
Signatures:
sts
Role:
application
Description:
This symbol has two (set) arguments. It is used to denote that the
first set is a proper subset of the second, that is a subset of the
second set but not actually equal to it.
Commented Mathematical property (CMP):
A is a proper subset of B implies that A is a subset of B and A not= B
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="prsubset"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="subset"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
<OMA>
<OMS cd="relation1" name="neq"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">prsubset</csymbol><ci>A</ci><ci>B</ci></apply>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">subset</csymbol><ci>A</ci><ci>B</ci></apply>
<apply><csymbol cd="relation1">neq</csymbol><ci>A</ci><ci>B</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.prsubset($A, $B) ==> set1.subset($A, $B) and $A != $B
Rendered Presentation MathML
Example:
{2,3} is a proper subset of {1,2,3}
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="set1" name="prsubset"/>
<OMA>
<OMS cd="set1" name="set"/>
<OMI> 2 </OMI>
<OMI> 3 </OMI>
</OMA>
<OMA>
<OMS cd="set1" name="set"/>
<OMI> 1 </OMI>
<OMI> 2 </OMI>
<OMI> 3 </OMI>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">prsubset</csymbol>
<apply><csymbol cd="set1">set</csymbol>
<cn type="integer">2</cn>
<cn type="integer">3</cn>
</apply>
<apply><csymbol cd="set1">set</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
<cn type="integer">3</cn>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.prsubset({2 , 3}, {1 , 2 , 3})
Rendered Presentation MathML
{
2
,
3
}
⊂
{
1
,
2
,
3
}
Signatures:
sts
Role:
application
Description:
This symbol has two (set) arguments. It is used to denote that the
first set is not a subset of the second.
Commented Mathematical property (CMP):
if A is not a subset of B then
there exists an x in B s.t. x is not a member of B
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="notsubset"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR>
<OMV name="x"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="x"/>
<OMV name="B"/>
</OMA>
<OMA>
<OMS cd="set1" name="notin"/>
<OMV name="x"/>
<OMV name="A"/>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">notsubset</csymbol><ci>A</ci><ci>B</ci></apply>
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>x</ci><ci>B</ci></apply>
<apply><csymbol cd="set1">notin</csymbol><ci>x</ci><ci>A</ci></apply>
</apply>
</bind>
</apply>
</math>
Prefix
Popcorn
set1.notsubset($A, $B) ==> quant1.exists[$x -> set1.in($x, $B) and set1.notin($x, $A)]
Rendered Presentation MathML
A
⊄
B
⇒
∃
x
.
x
∈
B
∧
x
∉
A
Example:
{2,3,4} is not a subset of {1,2,3}
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="set1" name="notsubset"/>
<OMA>
<OMS cd="set1" name="set"/>
<OMI> 2 </OMI>
<OMI> 3 </OMI>
<OMI> 4 </OMI>
</OMA>
<OMA>
<OMS cd="set1" name="set"/>
<OMI> 1 </OMI>
<OMI> 2 </OMI>
<OMI> 3 </OMI>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">notsubset</csymbol>
<apply><csymbol cd="set1">set</csymbol>
<cn type="integer">2</cn>
<cn type="integer">3</cn>
<cn type="integer">4</cn>
</apply>
<apply><csymbol cd="set1">set</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
<cn type="integer">3</cn>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.notsubset({2 , 3 , 4}, {1 , 2 , 3})
Rendered Presentation MathML
{
2
,
3
,
4
}
⊄
{
1
,
2
,
3
}
Signatures:
sts
Role:
application
Description:
This symbol has two (set) arguments. It is used to denote that the
first set is not a proper subset of the second. A proper subset of a
set is a subset of the set but not actually equal to it.
Commented Mathematical property (CMP):
A is not a proper subset of B implies
that it is not true that A is a proper subset of B
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="notprsubset"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
<OMA>
<OMS cd="logic1" name="not"/>
<OMA>
<OMS cd="set1" name="prsubset"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">notprsubset</csymbol><ci>A</ci><ci>B</ci></apply>
<apply><csymbol cd="logic1">not</csymbol>
<apply><csymbol cd="set1">prsubset</csymbol><ci>A</ci><ci>B</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.notprsubset($A, $B) ==> not(set1.prsubset($A, $B))
Rendered Presentation MathML
Example:
{1,2,3} is not a proper subset of {1,2,3}
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="set1" name="notprsubset"/>
<OMA>
<OMS cd="set1" name="set"/>
<OMI> 1 </OMI>
<OMI> 2 </OMI>
<OMI> 3 </OMI>
</OMA>
<OMA>
<OMS cd="set1" name="set"/>
<OMI> 1 </OMI>
<OMI> 2 </OMI>
<OMI> 3 </OMI>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">notprsubset</csymbol>
<apply><csymbol cd="set1">set</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
<cn type="integer">3</cn>
</apply>
<apply><csymbol cd="set1">set</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
<cn type="integer">3</cn>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.notprsubset({1 , 2 , 3}, {1 , 2 , 3})
Rendered Presentation MathML
{
1
,
2
,
3
}
⊄
{
1
,
2
,
3
}
Signatures:
sts