OpenMath Content Dictionary: hypergeo1
Canonical URL:
http://www.math.kobe-u.ac.jp/OCD/
CD File:
hypergeo1.ocd
CD as XML Encoded OpenMath:
hypergeo1.omcd
Defines:
hypergeometric0F1 , hypergeometric1F1 , hypergeometric2F1 , hypergeometric_pFq
Date:
2002-11-29
Version:
0
(Revision 1)
Review Date:
2017-12-31
Status:
experimental
Author: Yasushi Tamura
This CD defines the Gauss hypergeometric function, confluent
hypergeometric functions, and generalized hypergeometric functions
in one variable.
These functions are described in the following books.
(1) Handbook of Mathematical Functions, Abramowitz, Stegun
(2) Higher transcendental functions. Vol. III. Krieger Publishing Co., Inc., Melbourne, Fla., 1981, Erdlyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz; Tricomi, Francesco G.
(3) From Gauss to Painleve, Vieweg, Katsunori Iwasaki, Hironobu Kimura, Shun Shimomura, Masaaki Yoshida.
Description:
Hypergeometric function {}_0 F_1.
Commented Mathematical property (CMP):
hypergeometric0F1(;a;z)
=\sum_{n=0}^{+\infty}
\frac{1}{pochhammer(a,n)pochhammer(1,n)} z^n
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="hypergeo1" name="hypergeometric0F1"/>
<OMV name="a"/>
<OMV name="z"/>
</OMA>
<OMA><OMS cd="arith1" name="sum"/>
<OMA><OMS cd="interval1" name="integer_interval"/>
<OMI> 0 </OMI>
<OMS cd="nums1" name="infinity"/>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="n"/>
</OMBVAR>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="divide"/>
<OMA><OMS cd="arith1" name="divide"/>
<OMI> 1 </OMI>
<OMA><OMS cd="hypergeo0" name="pochhammer"/>
<OMV name="a"/>
<OMV name="n"/>
</OMA>
</OMA>
<OMA><OMS cd="hypergeo0" name="pochhammer"/>
<OMI> 1 </OMI>
<OMV name="n"/>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="z"/>
<OMV name="n"/>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="hypergeo1">hypergeometric0F1</csymbol><ci>a</ci><ci>z</ci></apply>
<apply><csymbol cd="arith1">sum</csymbol>
<apply><csymbol cd="interval1">integer_interval</csymbol>
<cn type="integer">0</cn>
<csymbol cd="nums1">infinity</csymbol>
</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>n</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<cn type="integer">1</cn>
<apply><csymbol cd="hypergeo0">pochhammer</csymbol><ci>a</ci><ci>n</ci></apply>
</apply>
<apply><csymbol cd="hypergeo0">pochhammer</csymbol><cn type="integer">1</cn><ci>n</ci></apply>
</apply>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><ci>n</ci></apply>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
eq
(
hypergeometric0F1
(
a ,
z )
,
sum
(
integer_interval
( 0 ,
infinity )
,
lambda
[
n
] .
(
times
(
divide
(
divide
( 1 ,
pochhammer
(
a ,
n )
)
,
pochhammer
( 1 ,
n )
)
,
power
(
z ,
n )
)
)
)
)
Popcorn
hypergeo1.hypergeometric0F1($a, $z) = arith1.sum(interval1.integer_interval(0, nums1.infinity), fns1.lambda[$n -> 1 / hypergeo0.pochhammer($a, $n) / hypergeo0.pochhammer(1, $n) * $z ^ $n])
Rendered Presentation MathML
hypergeometric0F1
(
a
,
z
)
=
∑
n
=
0
∞
1
pochhammer
(
a
,
n
)
pochhammer
(
1
,
n
)
z
n
Signatures:
sts
Description:
Kummer's confluent hypergeometric function.
Commented Mathematical property (CMP):
hypergeometric1F1(a,b;z)
=\sum_{n=0}^{+\infty}
\frac{pochhammer(a,n)}{pochhammer(1,n)pochhammer(b,n)} z^n
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="hypergeo1" name="hypergeometric1F1"/>
<OMV name="a"/>
<OMV name="b"/>
<OMV name="z"/>
</OMA>
<OMA><OMS cd="arith1" name="sum"/>
<OMA><OMS cd="interval1" name="integer_interval"/>
<OMI> 0 </OMI>
<OMS cd="nums1" name="infinity"/>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="n"/>
</OMBVAR>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="divide"/>
<OMA><OMS cd="hypergeo0" name="pochhammer"/>
<OMV name="a"/>
<OMV name="n"/>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="hypergeo0" name="pochhammer"/>
<OMV name="b"/>
<OMV name="n"/>
</OMA>
<OMA><OMS cd="hypergeo0" name="pochhammer"/>
<OMI> 1 </OMI>
<OMV name="n"/>
</OMA>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="z"/>
<OMV name="n"/>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="hypergeo1">hypergeometric1F1</csymbol><ci>a</ci><ci>b</ci><ci>z</ci></apply>
<apply><csymbol cd="arith1">sum</csymbol>
<apply><csymbol cd="interval1">integer_interval</csymbol>
<cn type="integer">0</cn>
<csymbol cd="nums1">infinity</csymbol>
</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>n</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="hypergeo0">pochhammer</csymbol><ci>a</ci><ci>n</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="hypergeo0">pochhammer</csymbol><ci>b</ci><ci>n</ci></apply>
<apply><csymbol cd="hypergeo0">pochhammer</csymbol><cn type="integer">1</cn><ci>n</ci></apply>
</apply>
</apply>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><ci>n</ci></apply>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
eq
(
hypergeometric1F1
(
a ,
b ,
z )
,
sum
(
integer_interval
( 0 ,
infinity )
,
lambda
[
n
] .
(
times
(
divide
(
pochhammer
(
a ,
n )
,
times
(
pochhammer
(
b ,
n )
,
pochhammer
( 1 ,
n )
)
)
,
power
(
z ,
n )
)
)
)
)
Popcorn
hypergeo1.hypergeometric1F1($a, $b, $z) = arith1.sum(interval1.integer_interval(0, nums1.infinity), fns1.lambda[$n -> hypergeo0.pochhammer($a, $n) / (hypergeo0.pochhammer($b, $n) * hypergeo0.pochhammer(1, $n)) * $z ^ $n])
Rendered Presentation MathML
hypergeometric1F1
(
a
,
b
,
z
)
=
∑
n
=
0
∞
pochhammer
(
a
,
n
)
pochhammer
(
b
,
n
)
pochhammer
(
1
,
n
)
z
n
Signatures:
sts
Description:
The Gauss hypergeometric function.
This function has a branch cut on [1,+infinity).
Commented Mathematical property (CMP):
hypergeometric2F1(a,b,c;z)
=\sum_{n=0}^{+\infty}
\frac{pochhammer(a,n)pochhammer(b,n)}{pochhammer(c,n)pochhammer(1,n)} z^n
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="hypergeo1" name="hypergeometric2F1"/>
<OMV name="a"/>
<OMV name="b"/>
<OMV name="c"/>
<OMV name="z"/>
</OMA>
<OMA><OMS cd="arith1" name="sum"/>
<OMA><OMS cd="interval1" name="integer_interval"/>
<OMI> 0 </OMI>
<OMS cd="nums1" name="infinity"/>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="n"/>
</OMBVAR>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="divide"/>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="hypergeo0" name="pochhammer"/>
<OMV name="a"/>
<OMV name="n"/>
</OMA>
<OMA><OMS cd="hypergeo0" name="pochhammer"/>
<OMV name="b"/>
<OMV name="n"/>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="hypergeo0" name="pochhammer"/>
<OMV name="c"/>
<OMV name="n"/>
</OMA>
<OMA><OMS cd="hypergeo0" name="pochhammer"/>
<OMI> 1 </OMI>
<OMV name="n"/>
</OMA>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="z"/>
<OMV name="n"/>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="hypergeo1">hypergeometric2F1</csymbol>
<ci>a</ci>
<ci>b</ci>
<ci>c</ci>
<ci>z</ci>
</apply>
<apply><csymbol cd="arith1">sum</csymbol>
<apply><csymbol cd="interval1">integer_interval</csymbol>
<cn type="integer">0</cn>
<csymbol cd="nums1">infinity</csymbol>
</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>n</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="hypergeo0">pochhammer</csymbol><ci>a</ci><ci>n</ci></apply>
<apply><csymbol cd="hypergeo0">pochhammer</csymbol><ci>b</ci><ci>n</ci></apply>
</apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="hypergeo0">pochhammer</csymbol><ci>c</ci><ci>n</ci></apply>
<apply><csymbol cd="hypergeo0">pochhammer</csymbol><cn type="integer">1</cn><ci>n</ci></apply>
</apply>
</apply>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><ci>n</ci></apply>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
eq
(
hypergeometric2F1
(
a ,
b ,
c ,
z )
,
sum
(
integer_interval
( 0 ,
infinity )
,
lambda
[
n
] .
(
times
(
divide
(
times
(
pochhammer
(
a ,
n )
,
pochhammer
(
b ,
n )
)
,
times
(
pochhammer
(
c ,
n )
,
pochhammer
( 1 ,
n )
)
)
,
power
(
z ,
n )
)
)
)
)
Popcorn
hypergeo1.hypergeometric2F1($a, $b, $c, $z) = arith1.sum(interval1.integer_interval(0, nums1.infinity), fns1.lambda[$n -> (hypergeo0.pochhammer($a, $n) * hypergeo0.pochhammer($b, $n)) / (hypergeo0.pochhammer($c, $n) * hypergeo0.pochhammer(1, $n)) * $z ^ $n])
Rendered Presentation MathML
hypergeometric2F1
(
a
,
b
,
c
,
z
)
=
∑
n
=
0
∞
pochhammer
(
a
,
n
)
pochhammer
(
b
,
n
)
pochhammer
(
c
,
n
)
pochhammer
(
1
,
n
)
z
n
Example:
z (1-z) d^2 F/dz^2 + (c - (a+b+1) z) d F/dz - a b F = 0
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="arith1" name="minus"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="z"/>
<OMA><OMS cd="arith1" name="minus"/>
<OMI> 1 </OMI>
<OMV name="z"/>
</OMA>
</OMA>
<OMA><OMS cd="calculus1" name="diff"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA><OMS cd="calculus1" name="diff"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA><OMS cd="hypergeo1" name="hypergeometric2F1"/>
<OMV name="a"/>
<OMV name="b"/>
<OMV name="c"/>
<OMV name="z"/>
</OMA>
</OMBIND>
</OMA>
</OMBIND>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="minus"/>
<OMV name="c"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMI> 1 </OMI>
</OMA>
</OMA>
<OMV name="z"/>
</OMA>
<OMA><OMS cd="calculus1" name="diff"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA><OMS cd="hypergeo1" name="hypergeometric2F1"/>
<OMV name="a"/>
<OMV name="b"/>
<OMV name="c"/>
<OMV name="z"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA><OMS cd="hypergeo1" name="hypergeometric2F1"/>
<OMV name="a"/>
<OMV name="b"/>
<OMV name="c"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
<OMI> 0 </OMI>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<ci>z</ci>
<apply><csymbol cd="arith1">minus</csymbol><cn type="integer">1</cn><ci>z</ci></apply>
</apply>
<apply><csymbol cd="calculus1">diff</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="calculus1">diff</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="hypergeo1">hypergeometric2F1</csymbol>
<ci>a</ci>
<ci>b</ci>
<ci>c</ci>
<ci>z</ci>
</apply>
</bind>
</apply>
</bind>
</apply>
</apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<ci>c</ci>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">plus</csymbol><ci>a</ci><ci>b</ci></apply>
<cn type="integer">1</cn>
</apply>
</apply>
<ci>z</ci>
</apply>
<apply><csymbol cd="calculus1">diff</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="hypergeo1">hypergeometric2F1</csymbol>
<ci>a</ci>
<ci>b</ci>
<ci>c</ci>
<ci>z</ci>
</apply>
</bind>
</apply>
</apply>
</apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">times</csymbol><ci>a</ci><ci>b</ci></apply>
<apply><csymbol cd="hypergeo1">hypergeometric2F1</csymbol>
<ci>a</ci>
<ci>b</ci>
<ci>c</ci>
<ci>z</ci>
</apply>
</apply>
</apply>
<cn type="integer">0</cn>
</apply>
</math>
Prefix
eq
(
minus
(
plus
(
times
(
times
(
z ,
minus
( 1 ,
z )
)
,
diff
(
lambda
[
z
] .
(
diff
(
lambda
[
z
] .
(
hypergeometric2F1
(
a ,
b ,
c ,
z )
)
)
)
)
)
,
times
(
times
(
minus
(
c ,
plus
(
plus
(
a ,
b )
, 1 )
)
,
z )
,
diff
(
lambda
[
z
] .
(
hypergeometric2F1
(
a ,
b ,
c ,
z )
)
)
)
)
,
times
(
times
(
a ,
b )
,
hypergeometric2F1
(
a ,
b ,
c ,
z )
)
)
, 0 )
Popcorn
($z * (1 - $z) * calculus1.diff(fns1.lambda[$z -> calculus1.diff(fns1.lambda[$z -> hypergeo1.hypergeometric2F1($a, $b, $c, $z)])]) + ($c - ($a + $b + 1)) * $z * calculus1.diff(fns1.lambda[$z -> hypergeo1.hypergeometric2F1($a, $b, $c, $z)])) - $a * $b * hypergeo1.hypergeometric2F1($a, $b, $c, $z) = 0
Rendered Presentation MathML
z
(
1
-
z
)
d
d
z
(
d
d
z
(
hypergeometric2F1
(
a
,
b
,
c
,
z
)
)
)
+
(
c
-
a
+
b
+
1
)
z
d
d
z
(
hypergeometric2F1
(
a
,
b
,
c
,
z
)
)
-
a
b
hypergeometric2F1
(
a
,
b
,
c
,
z
)
=
0
Signatures:
sts
Description:
Generalized hypergeometric function.
This function has a branch cut on [1,+infinity).
Commented Mathematical property (CMP):
hypergeometric_pFq(a,b;z)
=\sum_{n=0}^{+\infty}
\frac{\Pi_i pochhammer(a_i,n)}{\Pi_i pochhammer(b_i,n)pochhammer(1,n)} z^n
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="hypergeo1" name="hypergeometric_pFq"/>
<OMV name="a"/>
<OMV name="b"/>
<OMV name="z"/>
</OMA>
<OMA><OMS cd="arith1" name="sum"/>
<OMA><OMS cd="interval1" name="integer_interval"/>
<OMI> 0 </OMI>
<OMS cd="nums1" name="infinity"/>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="n"/>
</OMBVAR>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="divide"/>
<OMA><OMS cd="arith1" name="divide"/>
<OMA><OMS cd="arith1" name="product"/>
<OMA><OMS cd="interval1" name="integer_interval"/>
<OMI> 1 </OMI>
<OMA><OMS cd="linalg4" name="size"/>
<OMV name="a"/>
</OMA>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="i"/>
</OMBVAR>
<OMA><OMS cd="hypergeo0" name="pochhammer"/>
<OMA><OMS cd="lialg1" name="vector_selector"/>
<OMV name="i"/>
<OMV name="a"/>
</OMA>
<OMV name="n"/>
</OMA>
</OMBIND>
</OMA>
<OMA><OMS cd="arith1" name="product"/>
<OMA><OMS cd="interval1" name="integer_interval"/>
<OMI> 1 </OMI>
<OMA><OMS cd="linalg4" name="size"/>
<OMV name="b"/>
</OMA>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="i"/>
</OMBVAR>
<OMA><OMS cd="hypergeo0" name="pochhammer"/>
<OMA><OMS cd="linalg1" name="vector_selector"/>
<OMV name="i"/>
<OMV name="b"/>
</OMA>
<OMV name="n"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
<OMA><OMS cd="hypergeo0" name="pochhammer"/>
<OMI> 1 </OMI>
<OMV name="n"/>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="z"/>
<OMV name="n"/>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="hypergeo1">hypergeometric_pFq</csymbol><ci>a</ci><ci>b</ci><ci>z</ci></apply>
<apply><csymbol cd="arith1">sum</csymbol>
<apply><csymbol cd="interval1">integer_interval</csymbol>
<cn type="integer">0</cn>
<csymbol cd="nums1">infinity</csymbol>
</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>n</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">product</csymbol>
<apply><csymbol cd="interval1">integer_interval</csymbol>
<cn type="integer">1</cn>
<apply><csymbol cd="linalg4">size</csymbol><ci>a</ci></apply>
</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>i</ci></bvar>
<apply><csymbol cd="hypergeo0">pochhammer</csymbol>
<apply><csymbol cd="lialg1">vector_selector</csymbol><ci>i</ci><ci>a</ci></apply>
<ci>n</ci>
</apply>
</bind>
</apply>
<apply><csymbol cd="arith1">product</csymbol>
<apply><csymbol cd="interval1">integer_interval</csymbol>
<cn type="integer">1</cn>
<apply><csymbol cd="linalg4">size</csymbol><ci>b</ci></apply>
</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>i</ci></bvar>
<apply><csymbol cd="hypergeo0">pochhammer</csymbol>
<apply><csymbol cd="linalg1">vector_selector</csymbol><ci>i</ci><ci>b</ci></apply>
<ci>n</ci>
</apply>
</bind>
</apply>
</apply>
<apply><csymbol cd="hypergeo0">pochhammer</csymbol><cn type="integer">1</cn><ci>n</ci></apply>
</apply>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><ci>n</ci></apply>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
eq
(
hypergeometric_pFq
(
a ,
b ,
z )
,
sum
(
integer_interval
( 0 ,
infinity )
,
lambda
[
n
] .
(
times
(
divide
(
divide
(
product
(
integer_interval
( 1 ,
size
(
a )
)
,
lambda
[
i
] .
(
pochhammer
(
vector_selector
(
i ,
a )
,
n )
)
)
,
product
(
integer_interval
( 1 ,
size
(
b )
)
,
lambda
[
i
] .
(
pochhammer
(
vector_selector
(
i ,
b )
,
n )
)
)
)
,
pochhammer
( 1 ,
n )
)
,
power
(
z ,
n )
)
)
)
)
Popcorn
hypergeo1.hypergeometric_pFq($a, $b, $z) = arith1.sum(interval1.integer_interval(0, nums1.infinity), fns1.lambda[$n -> arith1.product(interval1.integer_interval(1, linalg4.size($a)), fns1.lambda[$i -> hypergeo0.pochhammer(lialg1.vector_selector($i, $a), $n)]) / arith1.product(interval1.integer_interval(1, linalg4.size($b)), fns1.lambda[$i -> hypergeo0.pochhammer(linalg1.vector_selector($i, $b), $n)]) / hypergeo0.pochhammer(1, $n) * $z ^ $n])
Rendered Presentation MathML
hypergeometric_pFq
(
a
,
b
,
z
)
=
∑
n
=
0
∞
∏
i
=
1
size
(
a
)
pochhammer
(
vector_selector
(
i
,
a
)
,
n
)
∏
i
=
1
size
(
b
)
pochhammer
(
b
i
,
n
)
pochhammer
(
1
,
n
)
z
n
Signatures:
sts