OpenMath Content Dictionary: linalgspec1
Canonical URL:
http://www.openmath.org/cd/linalgspec1.ocd
CD Base:
http://www.openmath.org/cd
CD File:
linalgspec1.ocd
CD as XML Encoded OpenMath:
linalgspec1.omcd
Defines:
lower_triangular , tridiagonal , upper_triangular
Date:
2004-11-30
Version:
4
(Revision 2)
Review Date:
2006-03-30
Status:
experimental
This document is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
The copyright holder grants you permission to redistribute this
document freely as a verbatim copy. Furthermore, the copyright
holder permits you to develop any derived work from this document
provided that the following conditions are met.
a) The derived work acknowledges the fact that it is derived from
this document, and maintains a prominent reference in the
work to the original source.
b) The fact that the derived work is not the original OpenMath
document is stated prominently in the derived work. Moreover if
both this document and the derived work are Content Dictionaries
then the derived work must include a different CDName element,
chosen so that it cannot be confused with any works adopted by
the OpenMath Society. In particular, if there is a Content
Dictionary Group whose name is, for example, `math' containing
Content Dictionaries named `math1', `math2' etc., then you should
not name a derived Content Dictionary `mathN' where N is an integer.
However you are free to name it `private_mathN' or some such. This
is because the names `mathN' may be used by the OpenMath Society
for future extensions.
c) The derived work is distributed under terms that allow the
compilation of derived works, but keep paragraphs a) and b)
intact. The simplest way to do this is to distribute the derived
work under the OpenMath license, but this is not a requirement.
If you have questions about this license please contact the OpenMath
society at http://www.openmath.org .
This CD contains symbols which represent a number of special types of
matrix.
Role:
application
Description:
This symbol represents an upper-triangular matrix, it takes one
argument. The argument should be a vector of vectors of elements of
the matrix.
Commented Mathematical property (CMP):
the product of two upper-triangular matrices is upper-triangular
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="linalgspec1" name="upper_triangular"/>
<OMV name="VV1"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="linalgspec1" name="upper_triangular"/>
<OMV name="VV2"/>
</OMA>
<OMA>
<OMS cd="linalgspec1" name="upper_triangular"/>
<OMV name="VV3"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="linalgspec1">upper_triangular</csymbol><ci>VV1</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="linalgspec1">upper_triangular</csymbol><ci>VV2</ci></apply>
<apply><csymbol cd="linalgspec1">upper_triangular</csymbol><ci>VV3</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
linalgspec1.upper_triangular($VV1) = linalgspec1.upper_triangular($VV2) * linalgspec1.upper_triangular($VV3)
Rendered Presentation MathML
upper_triangular
(
VV
1
)
=
upper_triangular
(
VV
2
)
upper_triangular
(
VV
3
)
Example:
An example to describe the upper triangular matrix:
[[1,2,3]
[0,4,5]
[0,0,6]]
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="linalgspec1" name="upper_triangular"/>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMI> 1 </OMI><OMI> 2 </OMI><OMI> 3 </OMI>
</OMA>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMI> 4 </OMI><OMI> 5 </OMI>
</OMA>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMI> 6 </OMI>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="linalgspec1">upper_triangular</csymbol>
<apply><csymbol cd="linalg2">vector</csymbol>
<apply><csymbol cd="linalg2">vector</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
<cn type="integer">3</cn>
</apply>
<apply><csymbol cd="linalg2">vector</csymbol>
<cn type="integer">4</cn>
<cn type="integer">5</cn>
</apply>
<apply><csymbol cd="linalg2">vector</csymbol><cn type="integer">6</cn></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
linalgspec1.upper_triangular(linalg2.vector(linalg2.vector(1, 2, 3), linalg2.vector(4, 5), linalg2.vector(6)))
Rendered Presentation MathML
upper_triangular
(
(
(
1
,
2
,
3
)
,
(
4
,
5
)
,
(
6
)
)
)
Signatures:
sts
Role:
application
Description:
This symbol represents a lower-triangular matrix, it takes one
argument. The argument should be a vector of vectors of elements of
the matrix.
Commented Mathematical property (CMP):
the product of two lower-triangular matrices is lower-triangular
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="linalgspec1" name="lower_triangular"/>
<OMV name="VV1"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="linalgspec1" name="lower_triangular"/>
<OMV name="VV2"/>
</OMA>
<OMA>
<OMS cd="linalgspec1" name="lower_triangular"/>
<OMV name="VV3"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="linalgspec1">lower_triangular</csymbol><ci>VV1</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="linalgspec1">lower_triangular</csymbol><ci>VV2</ci></apply>
<apply><csymbol cd="linalgspec1">lower_triangular</csymbol><ci>VV3</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
linalgspec1.lower_triangular($VV1) = linalgspec1.lower_triangular($VV2) * linalgspec1.lower_triangular($VV3)
Rendered Presentation MathML
lower_triangular
(
VV
1
)
=
lower_triangular
(
VV
2
)
lower_triangular
(
VV
3
)
Example:
An example to describe the lower triangular matrix:
[[1,0,0]
[2,3,0]
[4,5,6]]
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="linalgspec1" name="lower_triangular"/>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMI> 1 </OMI>
</OMA>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMI> 2 </OMI><OMI> 3 </OMI>
</OMA>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMI> 4 </OMI><OMI> 5 </OMI><OMI> 6 </OMI>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="linalgspec1">lower_triangular</csymbol>
<apply><csymbol cd="linalg2">vector</csymbol>
<apply><csymbol cd="linalg2">vector</csymbol><cn type="integer">1</cn></apply>
<apply><csymbol cd="linalg2">vector</csymbol>
<cn type="integer">2</cn>
<cn type="integer">3</cn>
</apply>
<apply><csymbol cd="linalg2">vector</csymbol>
<cn type="integer">4</cn>
<cn type="integer">5</cn>
<cn type="integer">6</cn>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
linalgspec1.lower_triangular(linalg2.vector(linalg2.vector(1), linalg2.vector(2, 3), linalg2.vector(4, 5, 6)))
Rendered Presentation MathML
lower_triangular
(
(
(
1
)
,
(
2
,
3
)
,
(
4
,
5
,
6
)
)
)
Signatures:
sts
Role:
application
Description:
This symbol represents a tridiagonal matrix, it takes one argument
which should be a vector of vectors which should have three elements.
These should be vectors representing the sub-diagonal, the diagonal
and the super-diagonal in that order.
Commented Mathematical property (CMP):
a tridiagonal matrix is a (1,1) banded matrix
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="linalg4" name="size"/>
<OMV name="VV"/>
</OMA>
<OMI> 3 </OMI>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="linalg4" name="size"/>
<OMA>
<OMS cd="linalg1" name="vector_selector"/>
<OMI> 2 </OMI>
<OMV name="VV"/>
</OMA>
</OMA>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="linalg4" name="size"/>
<OMA>
<OMS cd="linalg1" name="vector_selector"/>
<OMI> 1 </OMI>
<OMV name="VV"/>
</OMA>
</OMA>
<OMI> 1 </OMI>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="linalgspec1" name="tridiagonal"/>
<OMV name="VV"/>
</OMA>
<OMA>
<OMS cd="linalgspec1" name="banded"/>
<OMV name="VV"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="linalg4">size</csymbol><ci>VV</ci></apply>
<cn type="integer">3</cn>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="linalg4">size</csymbol>
<apply><csymbol cd="linalg1">vector_selector</csymbol><cn type="integer">2</cn><ci>VV</ci></apply>
</apply>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="linalg4">size</csymbol>
<apply><csymbol cd="linalg1">vector_selector</csymbol><cn type="integer">1</cn><ci>VV</ci></apply>
</apply>
<cn type="integer">1</cn>
</apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="linalgspec1">tridiagonal</csymbol><ci>VV</ci></apply>
<apply><csymbol cd="linalgspec1">banded</csymbol><ci>VV</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
linalg4.size($VV) = 3 and linalg4.size(linalg1.vector_selector(2, $VV)) = linalg4.size(linalg1.vector_selector(1, $VV)) + 1 and linalgspec1.tridiagonal($VV) = linalgspec1.banded($VV)
Rendered Presentation MathML
size
(
VV
)
=
3
∧
size
(
VV
2
)
=
size
(
VV
1
)
+
1
∧
tridiagonal
(
VV
)
=
banded
(
VV
)
Commented Mathematical property (CMP):
The product of two tridiagonal matrices is tridiagonal
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="linalgspec1" name="tridiagonal"/>
<OMV name="VV1"/>
</OMA>
<OMA>
<OMS cd="linalgspec1" name="tridiagonal"/>
<OMV name="VV2"/>
</OMA>
</OMA>
<OMA>
<OMS cd="linalgspec1" name="tridiagonal"/>
<OMV name="VV3"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="linalgspec1">tridiagonal</csymbol><ci>VV1</ci></apply>
<apply><csymbol cd="linalgspec1">tridiagonal</csymbol><ci>VV2</ci></apply>
</apply>
<apply><csymbol cd="linalgspec1">tridiagonal</csymbol><ci>VV3</ci></apply>
</apply>
</math>
Prefix
Popcorn
linalgspec1.tridiagonal($VV1) * linalgspec1.tridiagonal($VV2) = linalgspec1.tridiagonal($VV3)
Rendered Presentation MathML
tridiagonal
(
VV
1
)
tridiagonal
(
VV
2
)
=
tridiagonal
(
VV
3
)
Signatures:
sts