OpenMath Content Dictionary: magma3 
            
               
                  Canonical URL: 
                
               
                  http://www.openmath.org/cd/magma3.ocd 
                
               
                  CD Base: 
                
               
                  http://www.openmath.org/cd 
                
               
                  CD File: 
                
               
                  magma3.ocd
       
                
               
                  CD as XML Encoded OpenMath: 
                
               
                  magma3.omcd
       
                
               
                  Defines: 
                
               
                  automorphism_group , direct_product , free_magma 
                
               
                  Date: 
                
               2004-06-01 
               
                  Version: 
                
               1
    (Revision 2)
   
               
                  Review Date: 
                
               2006-06-01 
               
                  Status: 
                
               experimental 
             
             
             Basic functions for magma theory   
            
Initiated by Arjeh M. Cohen 2003-10-03
Edited by AMC 2004-03-02
 
             
            
            
               
                  Description: 
                
               
                  
This is a function with a single argument which must be a magma.
It refers to the automorphism group of its argument.
                
             
            
               
                  Signatures: 
                
               
                  
	sts
       
                
             
            
             
            
             
            
            
               
                  Description: 
                
               
                  
This is an n-ary function whose arguments must be magmas.
It refers to the direct product of its arguments.
                
             
            
               
                  Signatures: 
                
               
                  
	sts
       
                
             
            
             
            
             
            
            
               
                  Description: 
                
               
                  
This symbol represents a binary function. The argument is a
list or a set.
When evaluated on such an argument, the function represents the
free magma generated by the entries of the list or set.
                
             
            
               
                  Example: 
                
               
The free magma on the letters a, b:
                     OpenMath XML (source) 
                     <OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
  <OMA><OMS cd="magma3" name="free_magma"/>
       <OMA><OMS cd="list1" name="list"/>
            <OMV name="a"/>  <OMV name="b"/>
       </OMA>
  </OMA>
</OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="magma3">free_magma</csymbol>
  <apply><csymbol cd="list1">list</csymbol><ci>a</ci><ci>b</ci></apply>
 </apply>
</math> 
                   
                  Prefix 
                  
                  
                     Popcorn 
                     
  magma3.free_magma([$a , $b])
                   
                  
                     Rendered Presentation MathML 
                     
                        
                           
                              
                                 free_magma 
                                  
                                 
                                    ( 
                                    
                                       ( 
                                       a 
                                       , 
                                       b 
                                       ) 
                                     
                                    ) 
                                  
                               
                            
                        
                      
                   
                
             
            
               
                  Signatures: 
                
               
                  
	sts