OpenMath Content Dictionary: matrix1
Canonical URL:
http://www.win.tue.nl/SCIEnce/cds/matrix1.ocd
CD File:
matrix1.ocd
CD as XML Encoded OpenMath:
matrix1.omcd
Defines:
banded , block , column_dimension , dense , diagonal , entry_domain , lower_band , matrix , matrix_domain , row_dimension , sparse , sparse_entry , upper_band
Date:
2009-06-22
Version:
0
(Revision 4)
Review Date:
2017-09-30
Status:
experimental
This CD holds a collection of matrix constructors over arbitrary rings.
Description:
This symbol is a unary function, whose argument should be a ring r.
When applied to r, it represents the matrix-algebra ground domain (MAD).
Example:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="entry_domain" cd="matrix1"/>
<OMS name="Z" cd="ringname1"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML"><apply><csymbol cd="matrix1">entry_domain</csymbol><csymbol cd="ringname1">Z</csymbol></apply></math>
Prefix
Popcorn
matrix1.entry_domain(ringname1.Z)
Rendered Presentation MathML
Signatures:
sts
Description:
This symbol is a ternary function, whose first argument should be a
matrix1.entry_domain application.
The second and third arguments must be matrix1.row_dimension
and matrix1.column_dimension.
When applied to these arguments this `creates' the domain of linear mappings
between modules of specified dimensions over a common ground domain,
conveniently represented by matrices.
Example:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="matrix_domain" cd="matrix1"/>
<OMA>
<OMS name="entry_domain" cd="matrix1"/>
<OMS name="Z" cd="ringname1"/>
</OMA>
<OMA>
<OMS name="row_dimension" cd="matrix1"/>
<OMI>12</OMI>
</OMA>
<OMA>
<OMS name="column_dimension" cd="matrix1"/>
<OMI>10</OMI>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="matrix1">matrix_domain</csymbol>
<apply><csymbol cd="matrix1">entry_domain</csymbol><csymbol cd="ringname1">Z</csymbol></apply>
<apply><csymbol cd="matrix1">row_dimension</csymbol><cn type="integer">12</cn></apply>
<apply><csymbol cd="matrix1">column_dimension</csymbol><cn type="integer">10</cn></apply>
</apply>
</math>
Prefix
Popcorn
matrix1.matrix_domain(matrix1.entry_domain(ringname1.Z), matrix1.row_dimension(12), matrix1.column_dimension(10))
Rendered Presentation MathML
matrix_domain
(
entry_domain
(
Z
)
,
row_dimension
(
12
)
,
column_dimension
(
10
)
)
Signatures:
sts
Description:
This symbol is a unary function whose first argument must be either a
non-negative OpenMath integer or nums1.infinity.
When applied this creates an object that denotes the dimension of the
codomain of the linear mapping represented by the matrix.
Signatures:
sts
Description:
This symbol is a unary function whose first argument must be either a
non-negative OpenMath integer or nums1.infinity.
When applied this creates an object that denotes the dimension of the
domain of the linear mapping represented by the matrix.
Signatures:
sts
Description:
This symbol is a binary function whose first argument must be a
matrix algebra constructor and the second argument can be any of the
below matrix entry constructors.
Additionally it is possible to use the matrix constructors of the
linalg2 or linalg3 CDs.
Example:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMSTR>Todo</OMSTR>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML"><cs>Todo</cs></math>
Prefix
"Todo"
Rendered Presentation MathML
Signatures:
sts
Description:
This symbol is an $(m \cdot n)$-ary function whose arguments specify
the entries of the matrix, where $m$ is the dimension of the codomain
and $n$ is the dimension of the domain.
The matrix (or block) must be filled row-wise, that is the first argument
denotes the entry in row 1, column 1 of the matrix (or block), the second
argument denotes the entry at row 1, column 2, and so forth.
The number of arguments MUST match the dimensions of either the matrix
algebra or the surrounding block (see below).
Example:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="matrix" cd="matrix1"/>
<OMA>
<OMS name="matrix_domain" cd="matrix1"/>
<OMA>
<OMS name="entry_domain" cd="matrix1"/>
<OMS name="Z" cd="ringname1"/>
</OMA>
<OMA>
<OMS name="row_dimension" cd="matrix1"/>
<OMI>3</OMI>
</OMA>
<OMA>
<OMS name="column_dimension" cd="matrix1"/>
<OMI>3</OMI>
</OMA>
</OMA>
<OMA>
<OMS cd="matrix1" name="dense"/>
<OMI>1</OMI>
<OMI>2</OMI>
<OMI>3</OMI>
<OMI>4</OMI>
<OMI>5</OMI>
<OMI>6</OMI>
<OMI>7</OMI>
<OMI>8</OMI>
<OMI>9</OMI>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="matrix1">matrix</csymbol>
<apply><csymbol cd="matrix1">matrix_domain</csymbol>
<apply><csymbol cd="matrix1">entry_domain</csymbol><csymbol cd="ringname1">Z</csymbol></apply>
<apply><csymbol cd="matrix1">row_dimension</csymbol><cn type="integer">3</cn></apply>
<apply><csymbol cd="matrix1">column_dimension</csymbol><cn type="integer">3</cn></apply>
</apply>
<apply><csymbol cd="matrix1">dense</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
<cn type="integer">3</cn>
<cn type="integer">4</cn>
<cn type="integer">5</cn>
<cn type="integer">6</cn>
<cn type="integer">7</cn>
<cn type="integer">8</cn>
<cn type="integer">9</cn>
</apply>
</apply>
</math>
Prefix
matrix
(
matrix_domain
(
entry_domain
(
Z )
,
row_dimension
(3)
,
column_dimension
(3)
)
,
dense
(1, 2, 3, 4, 5, 6, 7, 8, 9)
)
Popcorn
matrix1.matrix(matrix1.matrix_domain(matrix1.entry_domain(ringname1.Z), matrix1.row_dimension(3), matrix1.column_dimension(3)), matrix1.dense(1, 2, 3, 4, 5, 6, 7, 8, 9))
Rendered Presentation MathML
matrix
(
matrix_domain
(
entry_domain
(
Z
)
,
row_dimension
(
3
)
,
column_dimension
(
3
)
)
,
dense
(
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
)
)
Signatures:
sts
Description:
The constructor for sparse matrices without any indication of dimension
or domain for the coefficients.
Its arguments are just matrix1.sparse_entrys.
Attention: No two matrix1.sparse_entrys must specify the
same location.
Signatures:
sts
Description:
This symbol denotes a ternary function whose first two arguments specify
the location of an entry inside the matrix, and whose final argument is
the entry itself.
The entry MUST be either from the specified ground domain directly,
or be a diagonal constructor as described below, a block constructor
as described below, or a banded constructor as described below.
In the block case, the dimensions of the block MUST NOT exceed the total
dimensions of the matrix algebra.
In the diagonal case, the dimension of the diagonal MUST NOT exceed the
total dimensions of the matrix algebra.
Example:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="matrix" cd="matrix1"/>
<OMA>
<OMS name="matrix_domain" cd="matrix1"/>
<OMA>
<OMS name="entry_domain" cd="matrix1"/>
<OMS name="Q" cd="fieldname1"/>
</OMA>
<OMA>
<OMS name="row_dimension" cd="matrix1"/>
<OMI>3</OMI>
</OMA>
<OMA>
<OMS name="column_dimension" cd="matrix1"/>
<OMI>3</OMI>
</OMA>
</OMA>
<OMA>
<OMS cd="matrix1" name="sparse"/>
<OMA>
<OMS cd="matrix1" name="sparse_entry"/>
<OMI>1</OMI>
<OMI>2</OMI>
<OMI>12</OMI>
</OMA>
<OMA>
<OMS cd="matrix1" name="sparse_entry"/>
<OMI>2</OMI>
<OMI>1</OMI>
<OMI>21</OMI>
</OMA>
<OMA>
<OMS cd="matrix1" name="sparse_entry"/>
<OMI>3</OMI>
<OMI>3</OMI>
<OMI>33</OMI>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="matrix1">matrix</csymbol>
<apply><csymbol cd="matrix1">matrix_domain</csymbol>
<apply><csymbol cd="matrix1">entry_domain</csymbol><csymbol cd="fieldname1">Q</csymbol></apply>
<apply><csymbol cd="matrix1">row_dimension</csymbol><cn type="integer">3</cn></apply>
<apply><csymbol cd="matrix1">column_dimension</csymbol><cn type="integer">3</cn></apply>
</apply>
<apply><csymbol cd="matrix1">sparse</csymbol>
<apply><csymbol cd="matrix1">sparse_entry</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
<cn type="integer">12</cn>
</apply>
<apply><csymbol cd="matrix1">sparse_entry</csymbol>
<cn type="integer">2</cn>
<cn type="integer">1</cn>
<cn type="integer">21</cn>
</apply>
<apply><csymbol cd="matrix1">sparse_entry</csymbol>
<cn type="integer">3</cn>
<cn type="integer">3</cn>
<cn type="integer">33</cn>
</apply>
</apply>
</apply>
</math>
Prefix
matrix
(
matrix_domain
(
entry_domain
(
Q )
,
row_dimension
(3)
,
column_dimension
(3)
)
,
sparse
(
sparse_entry
(1, 2, 12)
,
sparse_entry
(2, 1, 21)
,
sparse_entry
(3, 3, 33)
)
)
Popcorn
matrix1.matrix(matrix1.matrix_domain(matrix1.entry_domain(fieldname1.Q), matrix1.row_dimension(3), matrix1.column_dimension(3)), matrix1.sparse(matrix1.sparse_entry(1, 2, 12), matrix1.sparse_entry(2, 1, 21), matrix1.sparse_entry(3, 3, 33)))
Rendered Presentation MathML
matrix
(
matrix_domain
(
entry_domain
(
Q
)
,
row_dimension
(
3
)
,
column_dimension
(
3
)
)
,
sparse
(
sparse_entry
(
1
,
2
,
12
)
,
sparse_entry
(
2
,
1
,
21
)
,
sparse_entry
(
3
,
3
,
33
)
)
)
Signatures:
sts
Description:
This symbol is an $m$-ary function whose arguments specify the entries of
a (generalised) matrix diagonal.
The diagonal must be filled from top-left to bottom-right. That is: the
first argument represents the entry in row 1, column 1 of the matrix,
the second argument denotes the entry at row 2, column 2, and so forth.
If used inside a sparse_entry object at location $(i, j)$, the first entry
is offset accordingly.
If not used inside a sparse_entry object, the number of arguments MUST
match the dimensions of either the matrix algebra (the smaller of $m$ and
$n$).
If used inside a sparse_entry object, the number of entries MUST NOT
exceed the total matrix dimensions.
Example:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="matrix" cd="matrix1"/>
<OMA>
<OMS name="matrix_domain" cd="matrix1"/>
<OMA>
<OMS name="entry_domain" cd="matrix1"/>
<OMS name="C" cd="fieldname1"/>
</OMA>
<OMA>
<OMS name="row_dimension" cd="matrix1"/>
<OMI>3</OMI>
</OMA>
<OMA>
<OMS name="column_dimension" cd="matrix1"/>
<OMI>3</OMI>
</OMA>
</OMA>
<OMA>
<OMS cd="matrix1" name="diagonal"/>
<OMA>
<OMS cd="complex1" name="complex_cartesian"/>
<OMI>1</OMI>
<OMI>1</OMI>
</OMA>
<OMA>
<OMS cd="complex1" name="complex_cartesian"/>
<OMI>2</OMI>
<OMI>2</OMI>
</OMA>
<OMA>
<OMS cd="complex1" name="complex_cartesian"/>
<OMI>3</OMI>
<OMI>3</OMI>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="matrix1">matrix</csymbol>
<apply><csymbol cd="matrix1">matrix_domain</csymbol>
<apply><csymbol cd="matrix1">entry_domain</csymbol><csymbol cd="fieldname1">C</csymbol></apply>
<apply><csymbol cd="matrix1">row_dimension</csymbol><cn type="integer">3</cn></apply>
<apply><csymbol cd="matrix1">column_dimension</csymbol><cn type="integer">3</cn></apply>
</apply>
<apply><csymbol cd="matrix1">diagonal</csymbol>
<apply><csymbol cd="complex1">complex_cartesian</csymbol>
<cn type="integer">1</cn>
<cn type="integer">1</cn>
</apply>
<apply><csymbol cd="complex1">complex_cartesian</csymbol>
<cn type="integer">2</cn>
<cn type="integer">2</cn>
</apply>
<apply><csymbol cd="complex1">complex_cartesian</csymbol>
<cn type="integer">3</cn>
<cn type="integer">3</cn>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
matrix1.matrix(matrix1.matrix_domain(matrix1.entry_domain(fieldname1.C), matrix1.row_dimension(3), matrix1.column_dimension(3)), matrix1.diagonal(1 | 1, 2 | 2, 3 | 3))
Rendered Presentation MathML
matrix
(
matrix_domain
(
entry_domain
(
C
)
,
row_dimension
(
3
)
,
column_dimension
(
3
)
)
,
diagonal
(
1
+
i
,
2
+
2
i
,
3
+
3
i
)
)
Signatures:
sts
Description:
This symbol is like the matrix constructor as described above, but
intended for use inside matrix to form ``submatrices''. The symbol
takes at least two arguments: a column_dimension and a row_dimension
object which denote the total extent of the block.
Example:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="matrix" cd="matrix1"/>
<OMA>
<OMS name="matrix_domain" cd="matrix1"/>
<OMA>
<OMS name="entry_domain" cd="matrix1"/>
<OMS name="Q" cd="fieldname1"/>
</OMA>
<OMA>
<OMS name="row_dimension" cd="matrix1"/>
<OMI>30</OMI>
</OMA>
<OMA>
<OMS name="column_dimension" cd="matrix1"/>
<OMI>30</OMI>
</OMA>
</OMA>
<OMA>
<OMS cd="matrix1" name="sparse"/>
<OMA>
<OMS cd="matrix1" name="sparse_entry"/>
<!-- something starts in row 10, column 20 -->
<OMI>10</OMI>
<OMI>20</OMI>
<OMA>
<!-- It's a block of rectangle shape -->
<OMS cd="matrix1" name="block"/>
<!-- of dimensions 2 by 2 -->
<OMA>
<OMS name="row_dimension" cd="matrix1"/>
<OMI>2</OMI>
</OMA>
<OMA>
<OMS name="column_dimension" cd="matrix1"/>
<OMI>2</OMI>
</OMA>
<!-- and it's got dense entries -->
<OMA>
<OMS cd="matrix1" name="dense"/>
<OMI>11</OMI>
<OMI>12</OMI>
<OMI>21</OMI>
<OMI>22</OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="matrix1">matrix</csymbol>
<apply><csymbol cd="matrix1">matrix_domain</csymbol>
<apply><csymbol cd="matrix1">entry_domain</csymbol><csymbol cd="fieldname1">Q</csymbol></apply>
<apply><csymbol cd="matrix1">row_dimension</csymbol><cn type="integer">30</cn></apply>
<apply><csymbol cd="matrix1">column_dimension</csymbol><cn type="integer">30</cn></apply>
</apply>
<apply><csymbol cd="matrix1">sparse</csymbol>
<apply><csymbol cd="matrix1">sparse_entry</csymbol>
<cn type="integer">10</cn>
<cn type="integer">20</cn>
<apply><csymbol cd="matrix1">block</csymbol>
<apply><csymbol cd="matrix1">row_dimension</csymbol><cn type="integer">2</cn></apply>
<apply><csymbol cd="matrix1">column_dimension</csymbol><cn type="integer">2</cn></apply>
<apply><csymbol cd="matrix1">dense</csymbol>
<cn type="integer">11</cn>
<cn type="integer">12</cn>
<cn type="integer">21</cn>
<cn type="integer">22</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
matrix
(
matrix_domain
(
entry_domain
(
Q )
,
row_dimension
(30)
,
column_dimension
(30)
)
,
sparse
(
sparse_entry
(10, 20,
block
(
row_dimension
(2)
,
column_dimension
(2)
,
dense
(11, 12, 21, 22)
)
)
)
)
Popcorn
matrix1.matrix(matrix1.matrix_domain(matrix1.entry_domain(fieldname1.Q), matrix1.row_dimension(30), matrix1.column_dimension(30)), matrix1.sparse(matrix1.sparse_entry(10, 20, matrix1.block(matrix1.row_dimension(2), matrix1.column_dimension(2), matrix1.dense(11, 12, 21, 22)))))
Rendered Presentation MathML
matrix
(
matrix_domain
(
entry_domain
(
Q
)
,
row_dimension
(
30
)
,
column_dimension
(
30
)
)
,
sparse
(
sparse_entry
(
10
,
20
,
block
(
row_dimension
(
2
)
,
column_dimension
(
2
)
,
dense
(
11
,
12
,
21
,
22
)
)
)
)
)
Example:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="matrix" cd="matrix1"/>
<OMA>
<OMS name="matrix_domain" cd="matrix1"/>
<OMA>
<OMS name="entry_domain" cd="matrix1"/>
<OMS name="Z" cd="ringname1"/>
</OMA>
<OMA>
<OMS name="row_dimension" cd="matrix1"/>
<OMI>1000000</OMI>
</OMA>
<OMA>
<OMS name="column_dimension" cd="matrix1"/>
<OMI>1000000</OMI>
</OMA>
</OMA>
<OMA>
<OMS cd="matrix1" name="sparse"/>
<OMA>
<OMS cd="matrix1" name="sparse_entry"/>
<!-- something starts in row 24800, column 26133 -->
<OMI>24800</OMI>
<OMI>26133</OMI>
<OMA>
<!-- again, it's a block -->
<OMS cd="matrix1" name="block"/>
<!-- dimensions 99999 by 99999 -->
<OMA>
<OMS name="row_dimension" cd="matrix1"/>
<OMI>99999</OMI>
</OMA>
<OMA>
<OMS name="column_dimension" cd="matrix1"/>
<OMI>99999</OMI>
</OMA>
<!-- and it's got sparse entries. -->
<!-- Yes, it IS redundant, but this is an example after all -->
<OMA>
<OMS cd="matrix1" name="sparse"/>
<OMA>
<OMS cd="matrix1" name="sparse_entry"/>
<!-- position is relative to the top-left of block -->
<OMI>4</OMI>
<OMI>15</OMI>
<!-- more redundancy: we put a zero here -->
<OMI>0</OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="matrix1">matrix</csymbol>
<apply><csymbol cd="matrix1">matrix_domain</csymbol>
<apply><csymbol cd="matrix1">entry_domain</csymbol><csymbol cd="ringname1">Z</csymbol></apply>
<apply><csymbol cd="matrix1">row_dimension</csymbol><cn type="integer">1000000</cn></apply>
<apply><csymbol cd="matrix1">column_dimension</csymbol><cn type="integer">1000000</cn></apply>
</apply>
<apply><csymbol cd="matrix1">sparse</csymbol>
<apply><csymbol cd="matrix1">sparse_entry</csymbol>
<cn type="integer">24800</cn>
<cn type="integer">26133</cn>
<apply><csymbol cd="matrix1">block</csymbol>
<apply><csymbol cd="matrix1">row_dimension</csymbol><cn type="integer">99999</cn></apply>
<apply><csymbol cd="matrix1">column_dimension</csymbol><cn type="integer">99999</cn></apply>
<apply><csymbol cd="matrix1">sparse</csymbol>
<apply><csymbol cd="matrix1">sparse_entry</csymbol>
<cn type="integer">4</cn>
<cn type="integer">15</cn>
<cn type="integer">0</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
matrix1.matrix(matrix1.matrix_domain(matrix1.entry_domain(ringname1.Z), matrix1.row_dimension(1000000), matrix1.column_dimension(1000000)), matrix1.sparse(matrix1.sparse_entry(24800, 26133, matrix1.block(matrix1.row_dimension(99999), matrix1.column_dimension(99999), matrix1.sparse(matrix1.sparse_entry(4, 15, 0))))))
Rendered Presentation MathML
matrix
(
matrix_domain
(
entry_domain
(
Z
)
,
row_dimension
(
1000000
)
,
column_dimension
(
1000000
)
)
,
sparse
(
sparse_entry
(
24800
,
26133
,
block
(
row_dimension
(
99999
)
,
column_dimension
(
99999
)
,
sparse
(
sparse_entry
(
4
,
15
,
0
)
)
)
)
)
)
Signatures:
sts
Description:
This symbol is a constructor for banded matrices. It takes at least
2 arguments, the first of which being the number of upper bands and
the second being the number of lower bands.
Amongst the further arguments you can specify AT MOST one
matrix1.diagonal object. You MUST exactly as many
matrix1.upper_band objects as you specified upper bands, and
you MUST specify as many matrix1.lower_band objects as you
specified lower bands.
This symbol facilitates the use of blas based systems which expect
to know the bands structure upfront.
Example:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="matrix" cd="matrix1"/>
<OMA>
<OMS name="matrix_domain" cd="matrix1"/>
<OMA>
<OMS name="entry_domain" cd="matrix1"/>
<OMA>
<OMS name="Zm" cd="ringname1"/>
<OMI>7</OMI>
</OMA>
</OMA>
<OMA>
<OMS name="row_dimension" cd="matrix1"/>
<OMI>3</OMI>
</OMA>
<OMA>
<OMS name="column_dimension" cd="matrix1"/>
<OMI>3</OMI>
</OMA>
</OMA>
<OMA>
<OMS cd="matrix1" name="banded"/>
<OMI>1</OMI>
<!-- number of upper bands -->
<OMI>1</OMI>
<!-- number of lower bands -->
<OMA>
<OMS cd="matrix1" name="diagonal"/>
<!-- takes 3 args -->
<OMI>111</OMI>
<OMI>222</OMI>
<OMI>333</OMI>
</OMA>
<OMA>
<OMS cd="matrix1" name="upper_band"/>
<!-- first upper band -->
<OMI>1</OMI>
<OMA>
<OMS cd="matrix1" name="diagonal"/>
<!-- takes 2 args -->
<OMI>4</OMI>
<OMI>5</OMI>
</OMA>
</OMA>
<OMA>
<OMS cd="matrix1" name="lower_band"/>
<!-- first lower band -->
<OMI>1</OMI>
<OMA>
<OMS cd="matrix1" name="diagonal"/>
<!-- takes 2 args -->
<OMI>1</OMI>
<OMI>2</OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="matrix1">matrix</csymbol>
<apply><csymbol cd="matrix1">matrix_domain</csymbol>
<apply><csymbol cd="matrix1">entry_domain</csymbol>
<apply><csymbol cd="ringname1">Zm</csymbol><cn type="integer">7</cn></apply>
</apply>
<apply><csymbol cd="matrix1">row_dimension</csymbol><cn type="integer">3</cn></apply>
<apply><csymbol cd="matrix1">column_dimension</csymbol><cn type="integer">3</cn></apply>
</apply>
<apply><csymbol cd="matrix1">banded</csymbol>
<cn type="integer">1</cn>
<cn type="integer">1</cn>
<apply><csymbol cd="matrix1">diagonal</csymbol>
<cn type="integer">111</cn>
<cn type="integer">222</cn>
<cn type="integer">333</cn>
</apply>
<apply><csymbol cd="matrix1">upper_band</csymbol>
<cn type="integer">1</cn>
<apply><csymbol cd="matrix1">diagonal</csymbol>
<cn type="integer">4</cn>
<cn type="integer">5</cn>
</apply>
</apply>
<apply><csymbol cd="matrix1">lower_band</csymbol>
<cn type="integer">1</cn>
<apply><csymbol cd="matrix1">diagonal</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
matrix
(
matrix_domain
(
entry_domain
(
Zm
(7)
)
,
row_dimension
(3)
,
column_dimension
(3)
)
,
banded
(1, 1,
diagonal
(111, 222, 333)
,
upper_band
(1,
diagonal
(4, 5)
)
,
lower_band
(1,
diagonal
(1, 2)
)
)
)
Popcorn
matrix1.matrix(matrix1.matrix_domain(matrix1.entry_domain(ringname1.Zm(7)), matrix1.row_dimension(3), matrix1.column_dimension(3)), matrix1.banded(1, 1, matrix1.diagonal(111, 222, 333), matrix1.upper_band(1, matrix1.diagonal(4, 5)), matrix1.lower_band(1, matrix1.diagonal(1, 2))))
Rendered Presentation MathML
matrix
(
matrix_domain
(
entry_domain
(
Zm
(
7
)
)
,
row_dimension
(
3
)
,
column_dimension
(
3
)
)
,
banded
(
1
,
1
,
diagonal
(
111
,
222
,
333
)
,
upper_band
(
1
,
diagonal
(
4
,
5
)
)
,
lower_band
(
1
,
diagonal
(
1
,
2
)
)
)
)
Signatures:
sts
Description:
This symbol is a binary function whose first argument is a non-negative
OpenMath integer which denotes the index of the upper band which is
specified in the second argument.
Hereby the first upper band is the one immediately above the main
(generalised) diagonal, its starting coordinates relative to the top-left
of the matrix thus are (1, 2).
Signatures:
sts
Description:
This symbol is a binary function whose first argument is a non-negative
OpenMath integer which denotes the index of the lower band which is
specified in the second argument.
Hereby the first lower band is the one immediately below the main
(generalised) diagonal, its starting coordinates relative to the top-left
of the matrix thus are (2, 1).
Signatures:
sts