OpenMath Content Dictionary: ringname1
Canonical URL:
http://www.openmath.org/cd/ringname1.ocd
CD Base:
http://www.openmath.org/cd
CD File:
ringname1.ocd
CD as XML Encoded OpenMath:
ringname1.omcd
Defines:
Z , Zm , quaternions
Date:
2004-03-08
Version:
1
Review Date:
2005-04-01
Status:
experimental
A CD of
names of frequently used rings in ring theory.
Written by Arjeh M. Cohen 2004-03-08
Description:
This symbol represents the ring of integers.
Commented Mathematical property (CMP):
The integer 1 is the identity element of this ring.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS name="eq" cd="relation1"/>
<OMA><OMS name="identity" cd="ring1"/>
<OMS name="Z" cd="ringname1"/>
</OMA>
<OMI>1</OMI>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="ring1">identity</csymbol><csymbol cd="ringname1">Z</csymbol></apply>
<cn type="integer">1</cn>
</apply>
</math>
Prefix
Popcorn
ring1.identity(ringname1.Z) = 1
Rendered Presentation MathML
Commented Mathematical property (CMP):
The carrier set of this ring is the set of integers.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS name="eq" cd="relation1"/>
<OMA><OMS name="carrier" cd="ring1"/>
<OMS name="Z" cd="ringname1"/>
</OMA>
<OMS name="Z" cd="setname1"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="ring1">carrier</csymbol><csymbol cd="ringname1">Z</csymbol></apply>
<csymbol cd="setname1">Z</csymbol>
</apply>
</math>
Prefix
Popcorn
ring1.carrier(ringname1.Z) = setname1.Z
Rendered Presentation MathML
Signatures:
sts
Description:
This symbol represents a unary function. Its argument is a
ring R. When evaluated on R, the function represents the
ring of quaternions over R, that is, the ring with basis
1,i,j,k over R such that ij=-ji=k, i^2=j^2=k^2=-1.
Commented Mathematical property (CMP):
The quaternion ring over R is isomorphic to the quotient of the free ring over
R generated by i, j, k subject to the relations
ij=-ji=k and i^2=j^2=k^2=-1.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="ring2" name="isomorphic"/>
<OMA><OMS cd="ringname1" name="quaternions"/>
<OMV name="R"/>
</OMA>
<OMA><OMS cd="ring3" name="quotient_ring"/>
<OMA id="fr"><OMS cd="ring3" name="free_ring"/>
<OMS cd="fieldname1" name="Q"/>
<OMV name="i"/> <OMV name="j"/> <OMV name="k"/>
</OMA>
<OMA><OMS cd="ring3" name="ideal"/>
<OMR href="#fr"/>
<OMA><OMS cd="list1" name="list"/>
<OMA><OMS cd="arith1" name="minus"/>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="i"/> <OMV name="j"/>
</OMA>
<OMV name="k"/>
</OMA>
<OMA><OMS cd="arith1" name="plus"/>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="j"/> <OMV name="i"/>
</OMA>
<OMV name="k"/>
</OMA>
<OMA><OMS cd="arith1" name="plus"/>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="i"/>
<OMI>2</OMI>
</OMA>
<OMI>1</OMI>
</OMA>
<OMA><OMS cd="arith1" name="plus"/>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="j"/>
<OMI>2</OMI>
</OMA>
<OMI>1</OMI>
</OMA>
<OMA><OMS cd="arith1" name="plus"/>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="k"/>
<OMI>2</OMI>
</OMA>
<OMI>1</OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="ring2">isomorphic</csymbol>
<apply><csymbol cd="ringname1">quaternions</csymbol><ci>R</ci></apply>
<apply><csymbol cd="ring3">quotient_ring</csymbol>
<apply id="fr"><csymbol cd="ring3">free_ring</csymbol>
<csymbol cd="fieldname1">Q</csymbol>
<ci>i</ci>
<ci>j</ci>
<ci>k</ci>
</apply>
<apply><csymbol cd="ring3">ideal</csymbol>
<share src="#fr"/>
<apply><csymbol cd="list1">list</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="arith1">times</csymbol><ci>i</ci><ci>j</ci></apply>
<ci>k</ci>
</apply>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">times</csymbol><ci>j</ci><ci>i</ci></apply>
<ci>k</ci>
</apply>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>i</ci><cn type="integer">2</cn></apply>
<cn type="integer">1</cn>
</apply>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>j</ci><cn type="integer">2</cn></apply>
<cn type="integer">1</cn>
</apply>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>k</ci><cn type="integer">2</cn></apply>
<cn type="integer">1</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
isomorphic
(
quaternions
(
R )
,
quotient_ring
(
free_ring
(
Q ,
i ,
j ,
k )
,
ideal
(,
list
(
minus
(
times
(
i ,
j )
,
k )
,
plus
(
times
(
j ,
i )
,
k )
,
plus
(
power
(
i , 2)
, 1)
,
plus
(
power
(
j , 2)
, 1)
,
plus
(
power
(
k , 2)
, 1)
)
)
)
)
Popcorn
ring2.isomorphic(ringname1.quaternions($R), ring3.quotient_ring(ring3.free_ring(fieldname1.Q, $i, $j, $k):fr, ring3.ideal(#fr, [$i * $j - $k , $j * $i + $k , $i ^ 2 + 1 , $j ^ 2 + 1 , $k ^ 2 + 1])))
Rendered Presentation MathML
isomorphic
(
quaternions
(
R
)
,
quotient_ring
(
free_ring
(
Q
,
i
,
j
,
k
)
,
ideal
(
free_ring
(
Q
,
i
,
j
,
k
)
,
i
j
-
k
j
i
+
k
i
2
+
1
j
2
+
1
k
2
+
1
)
)
)
Signatures:
sts
[Next: Zm ]
[Previous: Z ]
[Top ]
Role:
application
Description:
This symbol represents the ring of integers modulo m, where m is not necessarily
a prime. It takes one argument, the integer m.
Example:
The ring of integers mod 12:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS name="Zm" cd="ringname1"/>
<OMI> 12 </OMI>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML"><apply><csymbol cd="ringname1">Zm</csymbol><cn type="integer">12</cn></apply></math>
Prefix
Rendered Presentation MathML
Signatures:
sts