OpenMath Content Dictionary: permgp2
Canonical URL:
http://www.openmath.org/cd/permgp2.ocd
CD Base:
http://www.openmath.org/cd
CD File:
permgp2.ocd
CD as XML Encoded OpenMath:
permgp2.omcd
Defines:
alternating_group , cyclic_group , dihedral_group , quaternion_group , symmetric_group , vierer_group
Date:
2004-06-01
Version:
1
(Revision 1)
Review Date:
Status:
experimental
A CD of functions for permutation groups.
Primarily for defining the best known permutation groups.
Built by Arjeh M. Cohen 2003-02-16.
Description:
This symbol represents a unary function. Its argument is either a
positive integer or a set.
When evaluated on a set, it represents the
permutation group of all permutations of that set.
When evaluated on a positive integer n, it represents the
permutation group of all permutations of the set {1,..., n}.
Example:
The permutation group generated by (1,2) and (2,3) is equal to the
symmetric group on {1,2,3}.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="permgp1" name="group"/>
<OMS cd="permutation1" name="right_compose"/>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>2</OMI>
</OMA>
</OMA>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>2</OMI><OMI>3</OMI>
</OMA>
</OMA>
</OMA>
<OMA><OMS cd="permgp2" name="symmetric_group"/>
<OMI>3</OMI>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="permgp1">group</csymbol>
<csymbol cd="permutation1">right_compose</csymbol>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
</apply>
</apply>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">2</cn>
<cn type="integer">3</cn>
</apply>
</apply>
</apply>
<apply><csymbol cd="permgp2">symmetric_group</csymbol><cn type="integer">3</cn></apply>
</apply>
</math>
Prefix
Popcorn
permgp1.group(permutation1.right_compose, permutation1.permutation(permutation1.cycle(1, 2)), permutation1.permutation(permutation1.cycle(2, 3))) = permgp2.symmetric_group(3)
Rendered Presentation MathML
group
(
right_compose
,
permutation
(
cycle
(
1
,
2
)
)
,
permutation
(
cycle
(
2
,
3
)
)
)
=
S
3
Signatures:
sts
Description:
This symbol represents a unary function. Its argument is either a
positive integer or a set.
When evaluated on a set, it represents the
permutation group of all even permutations of that set.
When evaluated on a positive integer n, it represents the
permutation group of all even permutations of the set {1,..., n}.
Example:
The permutation group generated by (1,2,3) and (3,4,5) is equal to the
alternating group on {1,2,3,4,5}.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="permgp1" name="group"/>
<OMS cd="permutation1" name="right_compose"/>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>2</OMI><OMI>3</OMI>
</OMA>
</OMA>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>3</OMI><OMI>4</OMI><OMI>5</OMI>
</OMA>
</OMA>
</OMA>
<OMA><OMS cd="permgp2" name="alternating_group"/>
<OMI>5</OMI>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="permgp1">group</csymbol>
<csymbol cd="permutation1">right_compose</csymbol>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
<cn type="integer">3</cn>
</apply>
</apply>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">3</cn>
<cn type="integer">4</cn>
<cn type="integer">5</cn>
</apply>
</apply>
</apply>
<apply><csymbol cd="permgp2">alternating_group</csymbol><cn type="integer">5</cn></apply>
</apply>
</math>
Prefix
Popcorn
permgp1.group(permutation1.right_compose, permutation1.permutation(permutation1.cycle(1, 2, 3)), permutation1.permutation(permutation1.cycle(3, 4, 5))) = permgp2.alternating_group(5)
Rendered Presentation MathML
group
(
right_compose
,
permutation
(
cycle
(
1
,
2
,
3
)
)
,
permutation
(
cycle
(
3
,
4
,
5
)
)
)
=
Alt
5
Signatures:
sts
Description:
This symbol represents a unary function whose argument should be a positive
integer.
When evaluated at the integer n, it represents the
permutation group generated by the permutation (1,2,...,n).
Signatures:
sts
Description:
This symbol represents a unary function whose argument should be a positive
integer.
When evaluated at the integer n, it represents the
dihedral group of all 2n permutations of {1,2,...,n} preserving the n-gon
1,2,...,n.
Commented Mathematical property (CMP):
The group is generated by the permutations (1,2,...,n) and
(1,n)(2,n-1)(3,n-3) ....(n/2-1/2,n/2+1/2) if n is odd and
by the permutations (1,2,...,n) and
(1,n)(2,n-1)(3,n-3) ....(n/2-1,n/2+1) if n is odd.
Example:
The dihedral group on 3 (letters) coincides with the symmetric group
on 3 (letters).
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="permgp2" name="dihedral_group"/>
<OMI>3</OMI>
</OMA>
<OMA><OMS cd="permgp2" name="symmetric_group"/>
<OMI>3</OMI>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="permgp2">dihedral_group</csymbol><cn type="integer">3</cn></apply>
<apply><csymbol cd="permgp2">symmetric_group</csymbol><cn type="integer">3</cn></apply>
</apply>
</math>
Prefix
Popcorn
permgp2.dihedral_group(3) = permgp2.symmetric_group(3)
Rendered Presentation MathML
Signatures:
sts
Description:
This symbol represents the quaternion group of order 8, viewed as a
permutation group by means of the regular representation
(multiplication from the right).
It is generated by (1,2,3,4)(5,8,6,7) and
(1,5,2,6)(3,7,4,8).
(In the usual notation, the 8 elements are 1, -1, i, -i, j, -j, k, -k.)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="permgp1" name="group"/>
<OMS cd="permutation1" name="right_compose"/>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>3</OMI><OMI>2</OMI><OMI>4</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>5</OMI><OMI>8</OMI><OMI>6</OMI><OMI>7</OMI>
</OMA>
</OMA>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>5</OMI><OMI>2</OMI><OMI>6</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>3</OMI><OMI>7</OMI><OMI>5</OMI><OMI>8</OMI>
</OMA>
</OMA>
</OMA>
<OMS cd="permgp2" name="quaternion_group"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="permgp1">group</csymbol>
<csymbol cd="permutation1">right_compose</csymbol>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">3</cn>
<cn type="integer">2</cn>
<cn type="integer">4</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">5</cn>
<cn type="integer">8</cn>
<cn type="integer">6</cn>
<cn type="integer">7</cn>
</apply>
</apply>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">5</cn>
<cn type="integer">2</cn>
<cn type="integer">6</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">3</cn>
<cn type="integer">7</cn>
<cn type="integer">5</cn>
<cn type="integer">8</cn>
</apply>
</apply>
</apply>
<csymbol cd="permgp2">quaternion_group</csymbol>
</apply>
</math>
Prefix
eq
(
group
(
right_compose ,
permutation
(
cycle
(1, 3, 2, 4)
,
cycle
(5, 8, 6, 7)
)
,
permutation
(
cycle
(1, 5, 2, 6)
,
cycle
(3, 7, 5, 8)
)
)
,
quaternion_group )
Popcorn
permgp1.group(permutation1.right_compose, permutation1.permutation(permutation1.cycle(1, 3, 2, 4), permutation1.cycle(5, 8, 6, 7)), permutation1.permutation(permutation1.cycle(1, 5, 2, 6), permutation1.cycle(3, 7, 5, 8))) = permgp2.quaternion_group
Rendered Presentation MathML
group
(
right_compose
,
permutation
(
cycle
(
1
,
3
,
2
,
4
)
,
cycle
(
5
,
8
,
6
,
7
)
)
,
permutation
(
cycle
(
1
,
5
,
2
,
6
)
,
cycle
(
3
,
7
,
5
,
8
)
)
)
=
quaternion_group
Signatures:
sts
Description:
This symbol represents the Klein Vierer group of order 4, viewed as a
permutation group of degree 4.
It consists of the identity, (1,2)(3,4), (1,3)(2,4), and (1,4)(2,3).
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="permgp1" name="group"/>
<OMS cd="permutation1" name="right_compose"/>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>2</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>3</OMI><OMI>4</OMI>
</OMA>
</OMA>
<OMA><OMS cd="permutation1" name="permutation"/>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>1</OMI><OMI>3</OMI>
</OMA>
<OMA><OMS cd="permutation1" name="cycle"/>
<OMI>2</OMI><OMI>4</OMI>
</OMA>
</OMA>
</OMA>
<OMS cd="permgp2" name="vierer_group"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="permgp1">group</csymbol>
<csymbol cd="permutation1">right_compose</csymbol>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">3</cn>
<cn type="integer">4</cn>
</apply>
</apply>
<apply><csymbol cd="permutation1">permutation</csymbol>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">1</cn>
<cn type="integer">3</cn>
</apply>
<apply><csymbol cd="permutation1">cycle</csymbol>
<cn type="integer">2</cn>
<cn type="integer">4</cn>
</apply>
</apply>
</apply>
<csymbol cd="permgp2">vierer_group</csymbol>
</apply>
</math>
Prefix
Popcorn
permgp1.group(permutation1.right_compose, permutation1.permutation(permutation1.cycle(1, 2), permutation1.cycle(3, 4)), permutation1.permutation(permutation1.cycle(1, 3), permutation1.cycle(2, 4))) = permgp2.vierer_group
Rendered Presentation MathML
group
(
right_compose
,
permutation
(
cycle
(
1
,
2
)
,
cycle
(
3
,
4
)
)
,
permutation
(
cycle
(
1
,
3
)
,
cycle
(
2
,
4
)
)
)
=
vierer_group
Signatures:
sts