OpenMath Content Dictionary: physical_consts1
Canonical URL:
http://www.openmath.org/cd/physical_consts1.ocd
CD Base:
http://www.openmath.org/cd
CD File:
physical_consts1.ocd
CD as XML Encoded OpenMath:
physical_consts1.omcd
Defines:
Avogadros_constant , Boltzmann_constant , Faradays_constant , Loschmidt_constant , Planck_constant , absolute_zero , gas_constant , gravitational_constant , light_year , magnetic_constant , mole , speed_of_light , zero_Celsius , zero_Fahrenheit
Date:
2005-05-28
Version:
3
(Revision 2)
Review Date:
2017-12-31
Status:
experimental
This document is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
The copyright holder grants you permission to redistribute this
document freely as a verbatim copy. Furthermore, the copyright
holder permits you to develop any derived work from this document
provided that the following conditions are met.
a) The derived work acknowledges the fact that it is derived from
this document, and maintains a prominent reference in the
work to the original source.
b) The fact that the derived work is not the original OpenMath
document is stated prominently in the derived work. Moreover if
both this document and the derived work are Content Dictionaries
then the derived work must include a different CDName element,
chosen so that it cannot be confused with any works adopted by
the OpenMath Society. In particular, if there is a Content
Dictionary Group whose name is, for example, `math' containing
Content Dictionaries named `math1', `math2' etc., then you should
not name a derived Content Dictionary `mathN' where N is an integer.
However you are free to name it `private_mathN' or some such. This
is because the names `mathN' may be used by the OpenMath Society
for future extensions.
c) The derived work is distributed under terms that allow the
compilation of derived works, but keep paragraphs a) and b)
intact. The simplest way to do this is to distribute the derived
work under the OpenMath license, but this is not a requirement.
If you have questions about this license please contact the OpenMath
society at http://www.openmath.org .
Author: OpenMath Consortium
SourceURL: https://github.com/OpenMath/CDs
This CD defines symbols which represent some elementary physical constants.
Role:
constant
Description:
This symbol represents the absolute zero of temperature, synonymous
with the object of that temperature having zero latent heat.
Signatures:
sts
Role:
constant
Description:
This symbol represents the zero of the Celsius temperature scale.
Signatures:
sts
Role:
constant
Description:
This symbol represents the zero of the Fahrenheit temperature scale.
Signatures:
sts
Role:
constant
Description:
This symbol represents the distant for which a beam of light would
take a year to traverse, in a vacuum.
Commented Mathematical property (CMP):
one light year is approximately 9221136415095314 metres
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="approx"/>
<OMS cd="physical_consts1" name="light_year"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMI> 9221136415095314 </OMI>
<OMS cd="units_metric1" name="metre"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">approx</csymbol>
<csymbol cd="physical_consts1">light_year</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<cn type="integer">9221136415095314</cn>
<csymbol cd="units_metric1">metre</csymbol>
</apply>
</apply>
</math>
Prefix
Popcorn
relation1.approx(physical_consts1.light_year, 9221136415095314 * units_metric1.metre)
Rendered Presentation MathML
light_year
≈
9221136415095314
metre
Signatures:
sts
Role:
constant
Description:
This symbol represents the speed of light in a vacuum. It is
approximately 299792458 metres per second.
Commented Mathematical property (CMP):
The speed of light is approximately 299792458 metres per second
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="approx"/>
<OMS cd="physical_consts1" name="speed_of_light"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMI> 299792458 </OMI>
<OMS cd="units_metric1" name="metres_per_second"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">approx</csymbol>
<csymbol cd="physical_consts1">speed_of_light</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<cn type="integer">299792458</cn>
<csymbol cd="units_metric1">metres_per_second</csymbol>
</apply>
</apply>
</math>
Prefix
Popcorn
relation1.approx(physical_consts1.speed_of_light, 299792458 * units_metric1.metres_per_second)
Rendered Presentation MathML
speed_of_light
≈
299792458
metres_per_second
Signatures:
sts
Role:
constant
Description:
This symbol represents the fundamental constant equal to the ratio of
the energy of a quantum of energy to its frequency. It is
approximately equal to 6.6260755*10^(-34) +/- 4.0*10^(-40) Joule seconds.
Commented Mathematical property (CMP):
The Planck constant is 6.6260755*10^(-34) +/- 4.0*10^(-40) Joule
seconds
this is equivalent to
There exists P s.t.
6.626075... -4.0... < P
and
6.626075... +4.0... > P
and
Planck constant = P*Joule*second
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR>
<OMV name="P"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="relation1" name="lt"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMA>
<OMS cd="bigfloat1" name="bigfloat"/>
<OMF dec="6.6260755"/><OMI>10</OMI><OMI>-34</OMI>
</OMA>
<OMA>
<OMS cd="bigfloat1" name="bigfloat"/>
<OMF dec="4.0"/><OMI>10</OMI><OMI>-40</OMI>
</OMA>
</OMA>
<OMV name="P"/>
</OMA>
<OMA>
<OMS cd="relation1" name="gt"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="bigfloat1" name="bigfloat"/>
<OMF dec="6.6260755"/><OMI>10</OMI><OMI>-34</OMI>
</OMA>
<OMA>
<OMS cd="bigfloat1" name="bigfloat"/>
<OMF dec="4.0"/><OMI>10</OMI><OMI>-40</OMI>
</OMA>
</OMA>
<OMV name="P"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMS cd="physical_consts1" name="Planck_constant"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMV name="P"/>
<OMV name="Joule"/>
<OMS cd="units_metric1" name="second"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>P</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">lt</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="bigfloat1">bigfloat</csymbol>
<cn type="real">6.6260755</cn>
<cn type="integer">10</cn>
<cn type="integer">-34</cn>
</apply>
<apply><csymbol cd="bigfloat1">bigfloat</csymbol>
<cn type="real">4.0</cn>
<cn type="integer">10</cn>
<cn type="integer">-40</cn>
</apply>
</apply>
<ci>P</ci>
</apply>
<apply><csymbol cd="relation1">gt</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="bigfloat1">bigfloat</csymbol>
<cn type="real">6.6260755</cn>
<cn type="integer">10</cn>
<cn type="integer">-34</cn>
</apply>
<apply><csymbol cd="bigfloat1">bigfloat</csymbol>
<cn type="real">4.0</cn>
<cn type="integer">10</cn>
<cn type="integer">-40</cn>
</apply>
</apply>
<ci>P</ci>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<csymbol cd="physical_consts1">Planck_constant</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<ci>P</ci>
<ci>Joule</ci>
<csymbol cd="units_metric1">second</csymbol>
</apply>
</apply>
</apply>
</bind>
</math>
Prefix
exists
[
P
] .
(
and
(
lt
(
minus
(
bigfloat
( 6.6260755 , 10, -34)
,
bigfloat
( 4.0 , 10, -40)
)
,
P )
,
gt
(
plus
(
bigfloat
( 6.6260755 , 10, -34)
,
bigfloat
( 4.0 , 10, -40)
)
,
P )
,
eq
(
Planck_constant ,
times
(
P ,
Joule ,
second )
)
)
)
Popcorn
quant1.exists[$P -> bigfloat1.bigfloat(6.6260755, 10, -34) - bigfloat1.bigfloat(4.0, 10, -40) < $P and bigfloat1.bigfloat(6.6260755, 10, -34) + bigfloat1.bigfloat(4.0, 10, -40) > $P and physical_consts1.Planck_constant = $P * $Joule * units_metric1.second]
Rendered Presentation MathML
∃
P
.
(
6.6260755
×
10
-34
-
4.0
×
10
-40
)
<
P
∧
(
6.6260755
×
10
-34
+
4.0
×
10
-40
)
>
P
∧
Planck_constant
=
P
Joule
second
Signatures:
sts
Role:
constant
Description:
This symbol represents the number of atoms in one gramme of carbon(12).
Signatures:
sts
Role:
constant
Description:
This symbol represents the constant of proportionality in Newtons law
of universal gravitation which states; Two bodies attract each other
with equal and opposite forces; the magnitude of this force is
proportional to the product of the two masses and is also proportional
to the inverse square of the distance between the centers of mass of
the two bodies. It is approximately equal to: 6.672*10^(-11) Newton
square metres per kilogramme squared.
Commented Mathematical property (CMP):
The gravitational constant is approximately 6.672*10^(-11) Newton
square metres per kilogramme squared
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="approx"/>
<OMS cd="physical_consts1" name="gravitational_constant"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="bigfloat1" name="bigfloat"/>
<OMF dec="6.672"/>
<OMI>10</OMI><OMI>-11</OMI>
</OMA>
<OMS cd="units_metric1" name="Newton"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="units_metric1" name="metre_sqrd"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMI>1000</OMI><OMS cd="units_metric1" name="gramme"/>
</OMA>
<OMI>2</OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">approx</csymbol>
<csymbol cd="physical_consts1">gravitational_constant</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="bigfloat1">bigfloat</csymbol>
<cn type="real">6.672</cn>
<cn type="integer">10</cn>
<cn type="integer">-11</cn>
</apply>
<csymbol cd="units_metric1">Newton</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<csymbol cd="units_metric1">metre_sqrd</csymbol>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<cn type="integer">1000</cn>
<csymbol cd="units_metric1">gramme</csymbol>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
relation1.approx(physical_consts1.gravitational_constant, bigfloat1.bigfloat(6.672, 10, -11) * units_metric1.Newton * units_metric1.metre_sqrd / (1000 * units_metric1.gramme) ^ 2)
Rendered Presentation MathML
gravitational_constant
≈
6.672
×
10
-11
Newton
metre_sqrd
(
1000
gramme
)
2
Signatures:
sts
Role:
constant
Description:
This symbol represents the number of atoms in 12 grammes of pure
carbon(12). It is approximately 6.0221367*10^(23) +/- 3.6*10^(17).
Commented Mathematical property (CMP):
Avogadros constant is 6.0221367*10^(23) +/- 3.6*10^(17).
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="relation1" name="lt"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMA>
<OMS cd="bigfloat1" name="bigfloat"/>
<OMF dec="6.0221367"/><OMI>10</OMI><OMI>23</OMI>
</OMA>
<OMA>
<OMS cd="bigfloat1" name="bigfloat"/>
<OMF dec="3.6"/><OMI>10</OMI><OMI>17</OMI>
</OMA>
</OMA>
<OMS cd="physical_consts1" name="Avogadros_constant"/>
</OMA>
<OMA>
<OMS cd="relation1" name="gt"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="bigfloat1" name="bigfloat"/>
<OMF dec="6.0221367"/><OMI>10</OMI><OMI>23</OMI>
</OMA>
<OMA>
<OMS cd="bigfloat1" name="bigfloat"/>
<OMF dec="3.6"/><OMI>10</OMI><OMI>17</OMI>
</OMA>
</OMA>
<OMS cd="physical_consts1" name="Avogadros_constant"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">lt</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="bigfloat1">bigfloat</csymbol>
<cn type="real">6.0221367</cn>
<cn type="integer">10</cn>
<cn type="integer">23</cn>
</apply>
<apply><csymbol cd="bigfloat1">bigfloat</csymbol>
<cn type="real">3.6</cn>
<cn type="integer">10</cn>
<cn type="integer">17</cn>
</apply>
</apply>
<csymbol cd="physical_consts1">Avogadros_constant</csymbol>
</apply>
<apply><csymbol cd="relation1">gt</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="bigfloat1">bigfloat</csymbol>
<cn type="real">6.0221367</cn>
<cn type="integer">10</cn>
<cn type="integer">23</cn>
</apply>
<apply><csymbol cd="bigfloat1">bigfloat</csymbol>
<cn type="real">3.6</cn>
<cn type="integer">10</cn>
<cn type="integer">17</cn>
</apply>
</apply>
<csymbol cd="physical_consts1">Avogadros_constant</csymbol>
</apply>
</apply>
</math>
Prefix
and
(
lt
(
minus
(
bigfloat
( 6.0221367 , 10, 23)
,
bigfloat
( 3.6 , 10, 17)
)
,
Avogadros_constant )
,
gt
(
plus
(
bigfloat
( 6.0221367 , 10, 23)
,
bigfloat
( 3.6 , 10, 17)
)
,
Avogadros_constant )
)
Popcorn
bigfloat1.bigfloat(6.0221367, 10, 23) - bigfloat1.bigfloat(3.6, 10, 17) < physical_consts1.Avogadros_constant and bigfloat1.bigfloat(6.0221367, 10, 23) + bigfloat1.bigfloat(3.6, 10, 17) > physical_consts1.Avogadros_constant
Rendered Presentation MathML
(
6.0221367
×
10
23
-
3.6
×
10
17
)
<
Avogadros_constant
∧
(
6.0221367
×
10
23
+
3.6
×
10
17
)
>
Avogadros_constant
Signatures:
sts
Role:
constant
Description:
This symbol represents the electric charge carried by one mole of
electrons. It is approximately 96485.309 +/- 0.029 Coulombs per mole.
Commented Mathematical property (CMP):
Faradays constant is 96485.309 +/- 0.029 Coulombs per mole.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR>
<OMV name="F"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="relation1" name="lt"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMF dec="96485.309"/><OMF dec="0.029"/>
</OMA>
<OMV name="F"/>
</OMA>
<OMA>
<OMS cd="relation1" name="gt"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMF dec="96485.309"/><OMF dec="0.029"/>
</OMA>
<OMV name="F"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMS cd="physical_consts1" name="Faradays_constant"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMV name="F"/>
<OMS cd="units_metric1" name="Coulomb"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>F</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">lt</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<cn type="real">96485.309</cn>
<cn type="real">0.029</cn>
</apply>
<ci>F</ci>
</apply>
<apply><csymbol cd="relation1">gt</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<cn type="real">96485.309</cn>
<cn type="real">0.029</cn>
</apply>
<ci>F</ci>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<csymbol cd="physical_consts1">Faradays_constant</csymbol>
<apply><csymbol cd="arith1">times</csymbol><ci>F</ci><csymbol cd="units_metric1">Coulomb</csymbol></apply>
</apply>
</apply>
</bind>
</math>
Prefix
Popcorn
quant1.exists[$F -> 96485.309 - 0.029 < $F and 96485.309 + 0.029 > $F and physical_consts1.Faradays_constant = $F * units_metric1.Coulomb]
Rendered Presentation MathML
∃
F
.
(
96485.309
-
0.029
)
<
F
∧
(
96485.309
+
0.029
)
>
F
∧
Faradays_constant
=
F
Coulomb
Signatures:
sts
Role:
constant
Description:
This symbol represents the constant which is equal to the ratio of the
pressure times the volume and the temperature of an ideal gas. It is
approximately 8.31451 +/- 7.0*10^(-05) Joules per mole per Kelvin.
Commented Mathematical property (CMP):
The gas constant is 8.31451 +/- 7.0*10^(-05) Joules per
mole per Kelvin.
Signatures:
sts
Role:
constant
Description:
This symbol represents the number of particles per unit volume of an
ideal gas at standard temperature and pressure. It is approximately
2.686763 * 10^(25) +/- 2.3 * 10^(20) per metre cubed.
Commented Mathematical property (CMP):
The Loschmidt constant is 2.686763 * 10^(25) +/- 2.3 *
10^(20) per metre cubed.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR>
<OMV name="L"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="relation1" name="lt"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMA>
<OMS cd="bigfloat1" name="bigfloat"/>
<OMF dec="2.686763"/><OMI>10</OMI><OMI>25</OMI>
</OMA>
<OMA>
<OMS cd="bigfloat1" name="bigfloat"/>
<OMF dec="2.3"/><OMI>10</OMI><OMI>20</OMI>
</OMA>
</OMA>
<OMV name="L"/>
</OMA>
<OMA>
<OMS cd="relation1" name="gt"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="bigfloat1" name="bigfloat"/>
<OMF dec="2.686763"/><OMI>10</OMI><OMI>25</OMI>
</OMA>
<OMA>
<OMS cd="bigfloat1" name="bigfloat"/>
<OMF dec="2.3"/><OMI>10</OMI><OMI>20</OMI>
</OMA>
</OMA>
<OMV name="L"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMS cd="physical_consts1" name="Loschmidt_constant"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMV name="L"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMS cd="units_metric1" name="metre"/>
<OMI>3</OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>L</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">lt</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="bigfloat1">bigfloat</csymbol>
<cn type="real">2.686763</cn>
<cn type="integer">10</cn>
<cn type="integer">25</cn>
</apply>
<apply><csymbol cd="bigfloat1">bigfloat</csymbol>
<cn type="real">2.3</cn>
<cn type="integer">10</cn>
<cn type="integer">20</cn>
</apply>
</apply>
<ci>L</ci>
</apply>
<apply><csymbol cd="relation1">gt</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="bigfloat1">bigfloat</csymbol>
<cn type="real">2.686763</cn>
<cn type="integer">10</cn>
<cn type="integer">25</cn>
</apply>
<apply><csymbol cd="bigfloat1">bigfloat</csymbol>
<cn type="real">2.3</cn>
<cn type="integer">10</cn>
<cn type="integer">20</cn>
</apply>
</apply>
<ci>L</ci>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<csymbol cd="physical_consts1">Loschmidt_constant</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<ci>L</ci>
<apply><csymbol cd="arith1">power</csymbol>
<csymbol cd="units_metric1">metre</csymbol>
<cn type="integer">3</cn>
</apply>
</apply>
</apply>
</apply>
</bind>
</math>
Prefix
exists
[
L
] .
(
and
(
lt
(
minus
(
bigfloat
( 2.686763 , 10, 25)
,
bigfloat
( 2.3 , 10, 20)
)
,
L )
,
gt
(
plus
(
bigfloat
( 2.686763 , 10, 25)
,
bigfloat
( 2.3 , 10, 20)
)
,
L )
,
eq
(
Loschmidt_constant ,
divide
(
L ,
power
(
metre , 3)
)
)
)
)
Popcorn
quant1.exists[$L -> bigfloat1.bigfloat(2.686763, 10, 25) - bigfloat1.bigfloat(2.3, 10, 20) < $L and bigfloat1.bigfloat(2.686763, 10, 25) + bigfloat1.bigfloat(2.3, 10, 20) > $L and physical_consts1.Loschmidt_constant = $L / units_metric1.metre ^ 3]
Rendered Presentation MathML
∃
L
.
(
2.686763
×
10
25
-
2.3
×
10
20
)
<
L
∧
(
2.686763
×
10
25
+
2.3
×
10
20
)
>
L
∧
Loschmidt_constant
=
L
metre
3
Signatures:
sts
Role:
constant
Description:
This symbol represents the ratio of the magnetic flux density in a
substance to the external field strength for vacuum. It is equal to
4 pi x 10^(-7) H/m.
Commented Mathematical property (CMP):
The magnetic constant is equal to 4 pi x 10^(-7) H/m.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMS cd="physical_consts1" name="magnetic_constant"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="pi"/>
<OMA>
<OMS cd="bigfloat1" name="bigfloat"/>
<OMI>4</OMI><OMI>10</OMI><OMI>-7</OMI>
</OMA>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMV name="H"/>
<OMS cd="units_metric1" name="metre"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<csymbol cd="physical_consts1">magnetic_constant</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<csymbol cd="nums1">pi</csymbol>
<apply><csymbol cd="bigfloat1">bigfloat</csymbol>
<cn type="integer">4</cn>
<cn type="integer">10</cn>
<cn type="integer">-7</cn>
</apply>
<apply><csymbol cd="arith1">divide</csymbol><ci>H</ci><csymbol cd="units_metric1">metre</csymbol></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
physical_consts1.magnetic_constant = nums1.pi * bigfloat1.bigfloat(4, 10, -7) * $H / units_metric1.metre
Rendered Presentation MathML
magnetic_constant
=
π
4
×
10
-7
H
metre
Signatures:
sts
Role:
constant
Description:
A constant which describes the relationship between temperature and kinetic energy for
molecules in an ideal gas. It is approximately 1.380658*10^(-23)
+/- 1.2*10^(-28) Joules per Kelvin.
Commented Mathematical property (CMP):
The Boltzmann constant is equal to 1.380658*10^(-23) +/- 1.2*10^(-28)
Joules per Kelvin.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR>
<OMV name="B"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="relation1" name="lt"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMA>
<OMS cd="bigfloat1" name="bigfloat"/>
<OMF dec="1.380658"/><OMI>10</OMI><OMI>-23</OMI>
</OMA>
<OMA>
<OMS cd="bigfloat1" name="bigfloat"/>
<OMF dec="1.2"/><OMI>10</OMI><OMI>-28</OMI>
</OMA>
</OMA>
<OMV name="B"/>
</OMA>
<OMA>
<OMS cd="relation1" name="gt"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="bigfloat1" name="bigfloat"/>
<OMF dec="1.380658"/><OMI>10</OMI><OMI>-23</OMI>
</OMA>
<OMA>
<OMS cd="bigfloat1" name="bigfloat"/>
<OMF dec="1.2"/><OMI>10</OMI><OMI>-28</OMI>
</OMA>
</OMA>
<OMV name="B"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMS cd="physical_consts1" name="Boltzmann_constant"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMV name="B"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMV name="Joules"/>
<OMS cd="units_metric1" name="degree_Kelvin"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>B</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">lt</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="bigfloat1">bigfloat</csymbol>
<cn type="real">1.380658</cn>
<cn type="integer">10</cn>
<cn type="integer">-23</cn>
</apply>
<apply><csymbol cd="bigfloat1">bigfloat</csymbol>
<cn type="real">1.2</cn>
<cn type="integer">10</cn>
<cn type="integer">-28</cn>
</apply>
</apply>
<ci>B</ci>
</apply>
<apply><csymbol cd="relation1">gt</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="bigfloat1">bigfloat</csymbol>
<cn type="real">1.380658</cn>
<cn type="integer">10</cn>
<cn type="integer">-23</cn>
</apply>
<apply><csymbol cd="bigfloat1">bigfloat</csymbol>
<cn type="real">1.2</cn>
<cn type="integer">10</cn>
<cn type="integer">-28</cn>
</apply>
</apply>
<ci>B</ci>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<csymbol cd="physical_consts1">Boltzmann_constant</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<ci>B</ci>
<apply><csymbol cd="arith1">divide</csymbol><ci>Joules</ci><csymbol cd="units_metric1">degree_Kelvin</csymbol></apply>
</apply>
</apply>
</apply>
</bind>
</math>
Prefix
exists
[
B
] .
(
and
(
lt
(
minus
(
bigfloat
( 1.380658 , 10, -23)
,
bigfloat
( 1.2 , 10, -28)
)
,
B )
,
gt
(
plus
(
bigfloat
( 1.380658 , 10, -23)
,
bigfloat
( 1.2 , 10, -28)
)
,
B )
,
eq
(
Boltzmann_constant ,
times
(
B ,
divide
(
Joules ,
degree_Kelvin )
)
)
)
)
Popcorn
quant1.exists[$B -> bigfloat1.bigfloat(1.380658, 10, -23) - bigfloat1.bigfloat(1.2, 10, -28) < $B and bigfloat1.bigfloat(1.380658, 10, -23) + bigfloat1.bigfloat(1.2, 10, -28) > $B and physical_consts1.Boltzmann_constant = $B * $Joules / units_metric1.degree_Kelvin]
Rendered Presentation MathML
∃
B
.
(
1.380658
×
10
-23
-
1.2
×
10
-28
)
<
B
∧
(
1.380658
×
10
-23
+
1.2
×
10
-28
)
>
B
∧
Boltzmann_constant
=
B
Joules
degree_Kelvin
Signatures:
sts