OpenMath Content Dictionary: plangeo3
Canonical URL:
http://www.openmath.org/cd/plangeo3.ocd
CD Base:
http://www.openmath.org/cd
CD File:
plangeo3.ocd
CD as XML Encoded OpenMath:
plangeo3.omcd
Defines:
altitude , angle , arc , are_on_circle , center , center_of , center_of_gravity , circle , distance , is_midpoint , midpoint , parallel , perpbisector , perpendicular , perpline , polarline , radius , radius_of , tangent
Date:
2004-06-01
Version:
0
(Revision 3)
Review Date:
2006-06-01
Status:
experimental
This CD defines symbols for planar Euclidean geometry related to distance.
Description:
The distance between two affine points is the Euclidean distance.
The distance between two geometric objects O and O' is the infimum of the
distances between two affine points, one on O and one on O'.
Example:
The distance between two points A and B.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo3" name="distance"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML"><apply><csymbol cd="plangeo3">distance</csymbol><ci>A</ci><ci>B</ci></apply></math>
Prefix
Popcorn
plangeo3.distance($A, $B)
Rendered Presentation MathML
Signatures:
sts
Description:
perpendicular is a binary boolean function with input two lines,
halflines or segments.
Its value is true whenever the two inputs are perpendicular to each other.
Example:
Testing perpendicularity of two lines L and M.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo3" name="perpendicular"/>
<OMV name="L"/>
<OMV name="M"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML"><apply><csymbol cd="plangeo3">perpendicular</csymbol><ci>L</ci><ci>M</ci></apply></math>
Prefix
Popcorn
plangeo3.perpendicular($L, $M)
Rendered Presentation MathML
perpendicular
(
L
,
M
)
Signatures:
sts
Description:
parallel is a binary boolean function with input two lines,
halflines or segments.
Its value is true whenever the two inputs are parallel.
Example:
Testing parallelism of two lines L and M.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo3" name="parallel"/>
<OMV name="L"/>
<OMV name="M"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML"><apply><csymbol cd="plangeo3">parallel</csymbol><ci>L</ci><ci>M</ci></apply></math>
Prefix
Popcorn
plangeo3.parallel($L, $M)
Rendered Presentation MathML
Signatures:
sts
Description:
The symbol represents a circle.
The circle may be subject to constraints.
Example:
The circle C with center A and radius 1 is given by
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo3" name="circle"/>
<OMV name="C"/>
<OMA>
<OMS cd="plangeo3" name="center"/>
<OMV name="C"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="plangeo3" name="radius"/>
<OMV name="C"/>
<OMI>1</OMI>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="plangeo3">circle</csymbol>
<ci>C</ci>
<apply><csymbol cd="plangeo3">center</csymbol><ci>C</ci><ci>A</ci></apply>
<apply><csymbol cd="plangeo3">radius</csymbol><ci>C</ci><cn type="integer">1</cn></apply>
</apply>
</math>
Prefix
Popcorn
plangeo3.circle($C, plangeo3.center($C, $A), plangeo3.radius($C, 1))
Rendered Presentation MathML
circle
(
C
,
center
(
C
,
A
)
,
radius
(
C
,
1
)
)
Signatures:
sts
Description:
The radius of a circle.
Example:
The assertion that the radius of the circle C is 1:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo3" name="radius"/>
<OMV name="C"/>
<OMI>1</OMI>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="plangeo3">radius</csymbol><ci>C</ci><cn type="integer">1</cn></apply>
</math>
Prefix
Popcorn
plangeo3.radius($C, 1)
Rendered Presentation MathML
Signatures:
sts
Description:
Gives the radius of a circle.
Example:
The radius of the circle C is given by
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo3" name="radius_of"/>
<OMV name="C"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML"><apply><csymbol cd="plangeo3">radius_of</csymbol><ci>C</ci></apply></math>
Prefix
Popcorn
plangeo3.radius_of($C)
Rendered Presentation MathML
Signatures:
sts
Description:
Defines the center of a circle.
Example:
The circle C with center A and radius 1 is given by
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo3" name="circle"/>
<OMV name="C"/>
<OMA>
<OMS cd="plangeo3" name="center"/>
<OMV name="C"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="plangeo3" name="radius"/>
<OMV name="C"/>
<OMI>1</OMI>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="plangeo3">circle</csymbol>
<ci>C</ci>
<apply><csymbol cd="plangeo3">center</csymbol><ci>C</ci><ci>A</ci></apply>
<apply><csymbol cd="plangeo3">radius</csymbol><ci>C</ci><cn type="integer">1</cn></apply>
</apply>
</math>
Prefix
Popcorn
plangeo3.circle($C, plangeo3.center($C, $A), plangeo3.radius($C, 1))
Rendered Presentation MathML
circle
(
C
,
center
(
C
,
A
)
,
radius
(
C
,
1
)
)
Signatures:
sts
Description:
Gives the center of the circle
Example:
If C is the circle of the previous example then the following gives A.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo3" name="center_of"/>
<OMV name="C"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML"><apply><csymbol cd="plangeo3">center_of</csymbol><ci>C</ci></apply></math>
Prefix
Popcorn
plangeo3.center_of($C)
Rendered Presentation MathML
Signatures:
sts
Description:
The statement that a set of points is on one circle.
Example:
This example states that A, B, C, and D lie on one circle.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo3" name="are_on_circle"/>
<OMV name="A"/>
<OMV name="B"/>
<OMV name="C"/>
<OMV name="D"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="plangeo3">are_on_circle</csymbol>
<ci>A</ci>
<ci>B</ci>
<ci>C</ci>
<ci>D</ci>
</apply>
</math>
Prefix
Popcorn
plangeo3.are_on_circle($A, $B, $C, $D)
Rendered Presentation MathML
are_on_circle
(
A
,
B
,
C
,
D
)
Signatures:
sts
Description:
Angle of a corner, always measured in positive (anti-clockwise) direction.
Example:
Notice that
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo3" name="angle"/>
<OMA>
<OMS cd="plangeo2" name="corner"/>
<OMV name="A"/>
<OMV name="B"/>
<OMV name="C"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="plangeo3">angle</csymbol>
<apply><csymbol cd="plangeo2">corner</csymbol><ci>A</ci><ci>B</ci><ci>C</ci></apply>
</apply>
</math>
Prefix
Popcorn
plangeo3.angle(plangeo2.corner($A, $B, $C))
Rendered Presentation MathML
angle
(
corner
(
A
,
B
,
C
)
)
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo3" name="angle"/>
<OMA>
<OMS cd="plangeo2" name="corner"/>
<OMV name="C"/>
<OMV name="B"/>
<OMV name="A"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="plangeo3">angle</csymbol>
<apply><csymbol cd="plangeo2">corner</csymbol><ci>C</ci><ci>B</ci><ci>A</ci></apply>
</apply>
</math>
Prefix
Popcorn
plangeo3.angle(plangeo2.corner($C, $B, $A))
Rendered Presentation MathML
angle
(
corner
(
C
,
B
,
A
)
)
are not the same.
Signatures:
sts
Description:
The midpoint between two points or two endpoints of a segment.
Example:
The midpoint of two points A and B
is the same as the midpoint of the segment S on A and B.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo3" name="midpoint"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML"><apply><csymbol cd="plangeo3">midpoint</csymbol><ci>A</ci><ci>B</ci></apply></math>
Prefix
Popcorn
plangeo3.midpoint($A, $B)
Rendered Presentation MathML
equals
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo3" name="midpoint"/>
<OMA>
<OMS cd="plangeo2" name="segment"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="plangeo3">midpoint</csymbol>
<apply><csymbol cd="plangeo2">segment</csymbol><ci>A</ci><ci>B</ci></apply>
</apply>
</math>
Prefix
Popcorn
plangeo3.midpoint(plangeo2.segment($A, $B))
Rendered Presentation MathML
midpoint
(
segment
(
A
,
B
)
)
Signatures:
sts
Description:
The statement that one point is the midpoint of two others.
Example:
This example states that C is the midpoint of A and B.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo3" name="is_midpoint"/>
<OMV name="C"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="plangeo3">is_midpoint</csymbol><ci>C</ci><ci>A</ci><ci>B</ci></apply>
</math>
Prefix
Popcorn
plangeo3.is_midpoint($C, $A, $B)
Rendered Presentation MathML
is_midpoint
(
C
,
A
,
B
)
Signatures:
sts
Description:
Center of gravity of a number of points.
Example:
The center of gravity G of three points A, B and C is defined as follows.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo1" name="point"/>
<OMV name="G"/>
<OMA>
<OMS cd="plangeo3" name="center_of_gravity"/>
<OMV name="A"/>
<OMV name="B"/>
<OMV name="C"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="plangeo1">point</csymbol>
<ci>G</ci>
<apply><csymbol cd="plangeo3">center_of_gravity</csymbol><ci>A</ci><ci>B</ci><ci>C</ci></apply>
</apply>
</math>
Prefix
Popcorn
plangeo1.point($G, plangeo3.center_of_gravity($A, $B, $C))
Rendered Presentation MathML
point
(
G
,
center_of_gravity
(
A
,
B
,
C
)
)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="plangeo3" name="center_of_gravity"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
<OMA>
<OMS cd="plangeo3" name="midpoint"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="plangeo3">center_of_gravity</csymbol><ci>A</ci><ci>B</ci></apply>
<apply><csymbol cd="plangeo3">midpoint</csymbol><ci>A</ci><ci>B</ci></apply>
</apply>
</math>
Prefix
Popcorn
plangeo3.center_of_gravity($A, $B) = plangeo3.midpoint($A, $B)
Rendered Presentation MathML
center_of_gravity
(
A
,
B
)
=
midpoint
(
A
,
B
)
Signatures:
sts
Description:
Given two distinct points A and B, this is the line of all points at
equal
distance to both A and B.
Example:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo3" name="perpbisector"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML"><apply><csymbol cd="plangeo3">perpbisector</csymbol><ci>A</ci><ci>B</ci></apply></math>
Prefix
Popcorn
plangeo3.perpbisector($A, $B)
Rendered Presentation MathML
Signatures:
sts
Description:
Given a point p and a line L, this defines the segment starting at p
and ending in the unique point of L closest to p.
Example:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo3" name="altitude"/>
<OMV name="p"/>
<OMV name="L"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML"><apply><csymbol cd="plangeo3">altitude</csymbol><ci>p</ci><ci>L</ci></apply></math>
Prefix
Popcorn
plangeo3.altitude($p, $L)
Rendered Presentation MathML
Signatures:
sts
Description:
Given a point p and a line L, this defines the line through p
perpendicular to L.
Example:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo3" name="perpline"/>
<OMV name="p"/>
<OMV name="L"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML"><apply><csymbol cd="plangeo3">perpline</csymbol><ci>p</ci><ci>L</ci></apply></math>
Prefix
Popcorn
plangeo3.perpline($p, $L)
Rendered Presentation MathML
Signatures:
sts
Description:
Given a point p
and a circle C this defines the polar line of p with respect to C.
Commented Mathematical property (CMP):
If p is incident with the circle C, the polar line of p with
respect to C is the tangent line at p with respect to C.
Example:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo3" name="polarline"/>
<OMV name="p"/>
<OMV name="C"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML"><apply><csymbol cd="plangeo3">polarline</csymbol><ci>p</ci><ci>C</ci></apply></math>
Prefix
Popcorn
plangeo3.polarline($p, $C)
Rendered Presentation MathML
Signatures:
sts
Description:
Given a line L and a circle C this boolean checks whether
L is a tangent line to C.
Example:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo3" name="tangent"/>
<OMV name="L"/>
<OMV name="C"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML"><apply><csymbol cd="plangeo3">tangent</csymbol><ci>L</ci><ci>C</ci></apply></math>
Prefix
Popcorn
plangeo3.tangent($L, $C)
Rendered Presentation MathML
Signatures:
sts
Description:
an arc of a circle M from A to B is the set of points of M that are
encountered when traversing the circle clockwise from A to B.
Example:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo3" name="arc"/>
<OMA>
<OMS cd="plangeo3" name="circle"/>
<OMV name="M"/>
</OMA>
<OMA>
<OMS cd="plangeo1" name="point"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="plangeo1" name="point"/>
<OMV name="B"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="plangeo3">arc</csymbol>
<apply><csymbol cd="plangeo3">circle</csymbol><ci>M</ci></apply>
<apply><csymbol cd="plangeo1">point</csymbol><ci>A</ci></apply>
<apply><csymbol cd="plangeo1">point</csymbol><ci>B</ci></apply>
</apply>
</math>
Prefix
Popcorn
plangeo3.arc(plangeo3.circle($M), plangeo1.point($A), plangeo1.point($B))
Rendered Presentation MathML
arc
(
circle
(
M
)
,
point
(
A
)
,
point
(
B
)
)
Signatures:
sts