OpenMath Content Dictionary: polyr

Canonical URL:
http://www.openmath.org/cd/polyd.ocd
CD Base:
http://www.openmath.org/cd
CD File:
polyr.ocd
CD as XML Encoded OpenMath:
polyr.omcd
Defines:
poly_r_rep, polynomial_r, polynomial_ring_r, term
Date:
2004-03-30
Version:
3 (Revision 1)
Review Date:
2017-12-31
Status:
experimental


     This document is distributed in the hope that it will be useful, 
     but WITHOUT ANY WARRANTY; without even the implied warranty of 
     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

     The copyright holder grants you permission to redistribute this 
     document freely as a verbatim copy. Furthermore, the copyright
     holder permits you to develop any derived work from this document
     provided that the following conditions are met.
       a) The derived work acknowledges the fact that it is derived from
          this document, and maintains a prominent reference in the 
          work to the original source.
       b) The fact that the derived work is not the original OpenMath 
          document is stated prominently in the derived work.  Moreover if
          both this document and the derived work are Content Dictionaries
          then the derived work must include a different CDName element,
          chosen so that it cannot be confused with any works adopted by
          the OpenMath Society.  In particular, if there is a Content 
          Dictionary Group whose name is, for example, `math' containing
          Content Dictionaries named `math1', `math2' etc., then you should 
          not name a derived Content Dictionary `mathN' where N is an integer.
          However you are free to name it `private_mathN' or some such.  This
          is because the names `mathN' may be used by the OpenMath Society
          for future extensions.
       c) The derived work is distributed under terms that allow the
          compilation of derived works, but keep paragraphs a) and b)
          intact.  The simplest way to do this is to distribute the derived
          work under the OpenMath license, but this is not a requirement.
     If you have questions about this license please contact the OpenMath
     society at http://www.openmath.org.
  Author: OpenMath Consortium
  SourceURL: https://github.com/OpenMath/CDs
            

This CD contains operators to deal with polynomials and more precisely Recursive Polynomials. Note that polynomials are regarded as univariates in their most significant variable (as defined by the order in PolynomialRingR: the first variable to appear is the most significant), with monomials in decreasing order of exponent, and coefficients being polynomials in the rest of the variables. This means that polynomials have a unique representation, except for the fact that yz \in Z[x,y,z] could also be represented as x^0yz. This latter is discouraged, but currently not expressly forbidden.

Original OpenMath v1.1 Poly 1997
Update to Current Format 1999-07-07 DPC
Move the names of rings to setname1.ocd 1999-11-09 JHD
Delete those items moved to the new poly.ocd 1999-11-14 JHD
Convert to recursive polynomials 1999-11-20 JHD
     Definition of data-structure constructors
     The polynomial x^2*y^6 + 3*y^5 can be conceptually encoded as
     poly_r_rep(x,
           term(2,poly_r_rep(y,
                            term(6,1))),
           term(0,poly_r_rep(y,
                            term(5,3))))
     It lies in polynomial_ring_r(Z,x,y) (and other rings, of course)

     The polynomial 2*y^3*z^5 + x + 1 can be conceptually encoded as
     poly_r_rep(x,
           term(1,1),
           term(0,poly_r_rep(y,
                            term(3,poly_r_rep(z,
                                             term(5,2))),
                            term(0,1))))

term

Role:
application
Description:

A constructor for monomials, that is products of powers and elements of the base ring. First argument is from N (the exponent of the variable implied by an outer poly_r_rep) second argument is a coefficient (from the ground field, or a polynomial in lesser variables).

Signatures:
sts


[Next: poly_r_rep] [Last: polynomial_ring_r] [Top]

poly_r_rep

Role:
application
Description:

A constructor for the representation of polynomials. The first argument is the polynomial variable, the rest are monomials (in decreasing order of exponent).

Example:
The polynomial x^2*y^6 + 3*x^0*y^5 = x^2*y^6 + 3*y^5 may be encoded as:
poly_r_rep ( x , term ( 2 , poly_r_rep ( y , term ( 6 , 1 ) ) ) , term ( 0 , poly_r_rep ( y , term ( 5 , 3 ) ) ) )
Signatures:
sts


[Next: polynomial_r] [Previous: term] [Top]

polynomial_r

Role:
application
Description:

The constructor of Recursive Polynomials. The first argument is the polynomial ring containing the polynomial and the second is a "poly_r_rep".

Example:
The polynomial x^2*y^6 + 3*x^0*y^5 = x^2*y^6 + 3*y^5 in the polynomial ring with the integers as the coefficient ring and variables x,y in that order may be encoded as:
polynomial_r ( polynomial_ring_r ( Z , x , y ) , poly_r_rep ( x , term ( 2 , poly_r_rep ( y , term ( 6 , 1 ) ) ) , term ( 0 , poly_r_rep ( y , term ( 5 , 3 ) ) ) ) )
Signatures:
sts


[Next: polynomial_ring_r] [Previous: poly_r_rep] [Top]
    Polynomial ring constructor

polynomial_ring_r

Role:
application
Description:

The constructor of a recursive polynomial ring. The first argument is a ring (the ring of the coefficients), the rest are the variables (in order).

Example:
polynomial_ring_r ( Z , x , y )
Signatures:
sts


[First: term] [Previous: polynomial_r] [Top]