OpenMath Content Dictionary: weylalgebra1
-
Canonical URL:
-
http://www.math.kobe-u.ac.jp/OCD/weylalgebra1.tfb
-
CD File:
-
weylalgebra1.ocd
-
CD as XML Encoded OpenMath:
-
weylalgebra1.omcd
-
Defines:
-
act, act_of_poly, diff, diffop, gr, partialdiff, times
-
Date:
- 2003-11-28
-
Version:
- 1
(Revision 2)
-
Review Date:
- 2017-12-31
-
Status:
- experimental
Author: Yasushi Tamura and Nobuki Takayama
This CD defines elements of the ring of differential operators
with coefficients in the polynomial ring.
-
Description:
-
constructor of a differential operator from a polynomial or
from an element of the finitely generated free algebra.
The inverse of gr.
-
Commented Mathematical property (CMP):
-
d/dq q = q d/dq + 1
-
Formal Mathematical property (FMP):
-
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="weylalgebra1" name="diffop"/>
<OMA><OMS cd="freealg1" name="times"/>
<OMV name="dq"/>
<OMV name="q"/>
</OMA>
<OMA><OMS cd="list1" name="list"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="q"/>
</OMA>
<OMA><OMS cd="list1" name="list"/>
<OMV name="dq"/>
</OMA>
</OMA>
</OMA>
<OMA><OMS cd="weylalgebra1" name="diffop"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="q"/>
<OMV name="dq"/>
</OMA>
<OMI> 1 </OMI>
</OMA>
<OMA><OMS cd="list1" name="list"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="q"/>
</OMA>
<OMA><OMS cd="list1" name="list"/>
<OMV name="dq"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="weylalgebra1">diffop</csymbol>
<apply><csymbol cd="freealg1">times</csymbol><ci>dq</ci><ci>q</ci></apply>
<apply><csymbol cd="list1">list</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>q</ci></apply>
<apply><csymbol cd="list1">list</csymbol><ci>dq</ci></apply>
</apply>
</apply>
<apply><csymbol cd="weylalgebra1">diffop</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">times</csymbol><ci>q</ci><ci>dq</ci></apply>
<cn type="integer">1</cn>
</apply>
<apply><csymbol cd="list1">list</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>q</ci></apply>
<apply><csymbol cd="list1">list</csymbol><ci>dq</ci></apply>
</apply>
</apply>
</apply>
</math>
weylalgebra1.diffop(freealg1.times($dq, $q), [[$q] , [$dq]]) = weylalgebra1.diffop($q * $dq + 1, [[$q] , [$dq]])
-
Signatures:
-
sts
-
Description:
-
the symbol polynomial of a given differential operator.
The inverse of diffop.
-
Commented Mathematical property (CMP):
-
$\gr( q \partial_{q} + 1) = q p + 1 $
-
Formal Mathematical property (FMP):
-
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="weylalgebra1" name="gr"/>
<OMA><OMS cd="weylalgebra1" name="diffop"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="q"/>
<OMV name="dq"/>
</OMA>
<OMI> 1 </OMI>
</OMA>
<OMA><OMS cd="list1" name="list"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="q"/>
</OMA>
<OMA><OMS cd="list1" name="list"/>
<OMV name="dq"/>
</OMA>
</OMA>
</OMA>
<OMA><OMS cd="list1" name="list"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="dq"/>
</OMA>
<OMA><OMS cd="list1" name="list"/>
<OMV name="p"/>
</OMA>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="plus"/>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="q"/>
<OMV name="p"/>
</OMA>
<OMI> 1 </OMI>
</OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="weylalgebra1">gr</csymbol>
<apply><csymbol cd="weylalgebra1">diffop</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">times</csymbol><ci>q</ci><ci>dq</ci></apply>
<cn type="integer">1</cn>
</apply>
<apply><csymbol cd="list1">list</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>q</ci></apply>
<apply><csymbol cd="list1">list</csymbol><ci>dq</ci></apply>
</apply>
</apply>
<apply><csymbol cd="list1">list</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>dq</ci></apply>
<apply><csymbol cd="list1">list</csymbol><ci>p</ci></apply>
</apply>
</apply>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">times</csymbol><ci>q</ci><ci>p</ci></apply>
<cn type="integer">1</cn>
</apply>
</apply>
</math>
weylalgebra1.gr(weylalgebra1.diffop($q * $dq + 1, [[$q] , [$dq]]), [[$dq] , [$p]]) = $q * $p + 1
-
Signatures:
-
sts
-
Description:
-
Differentiation of a given function in one variable.
-
Example:
-
$\frac{d x^2}{dx} = 2 x$
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="weylalgebra1" name="diff"/>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="x"/>
<OMI> 2 </OMI>
</OMA>
<OMV name="x"/>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMI> 2 </OMI>
<OMV name="x"/>
</OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="weylalgebra1">diff</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><cn type="integer">2</cn></apply>
<ci>x</ci>
</apply>
<apply><csymbol cd="arith1">times</csymbol><cn type="integer">2</cn><ci>x</ci></apply>
</apply>
</math>
weylalgebra1.diff($x ^ 2, $x) = 2 * $x
-
Signatures:
-
sts
-
Description:
-
partial differentiation of a given function.
-
Commented Mathematical property (CMP):
-
$\frac{\partial^{2} x^{2} y}{\partial x^{2}} = 2 y $
-
Formal Mathematical property (FMP):
-
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="weylalgebra1" name="partialdiff"/>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="x"/>
<OMV name="x"/>
</OMA>
<OMV name="y"/>
</OMA>
<OMA><OMS cd="list1" name="list"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="x"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMI> 2 </OMI>
<OMV name="y"/>
</OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="weylalgebra1">partialdiff</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">times</csymbol><ci>x</ci><ci>x</ci></apply>
<ci>y</ci>
</apply>
<apply><csymbol cd="list1">list</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>x</ci><cn type="integer">2</cn></apply>
</apply>
</apply>
<apply><csymbol cd="arith1">times</csymbol><cn type="integer">2</cn><ci>y</ci></apply>
</apply>
</math>
weylalgebra1.partialdiff($x * $x * $y, [[$x , 2]]) = 2 * $y
-
Signatures:
-
sts
-
Description:
-
multiplication in D
-
Commented Mathematical property (CMP):
-
$\partial_{q} q = \partial{q} q + 1 $
-
Formal Mathematical property (FMP):
-
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="weylalgebra1" name="times"/>
<OMV name="dq"/>
<OMV name="q"/>
</OMA>
<OMA><OMS cd="arith1" name="plus"/>
<OMA><OMS cd="weylalgebra1" name="times"/>
<OMV name="q"/>
<OMV name="dq"/>
</OMA>
<OMI> 1 </OMI>
</OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="weylalgebra1">times</csymbol><ci>dq</ci><ci>q</ci></apply>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="weylalgebra1">times</csymbol><ci>q</ci><ci>dq</ci></apply>
<cn type="integer">1</cn>
</apply>
</apply>
</math>
weylalgebra1.times($dq, $q) = weylalgebra1.times($q, $dq) + 1
-
Signatures:
-
sts
-
Description:
-
action of a differential operator to a function.
-
Commented Mathematical property (CMP):
-
$ x^{m} \partial_{x}^{n} \partial_{y}^{r} \cdot f
= x^{m} \frac{partial^{n+r} f}{\partial x^{n} \partial y^{r}}
$
-
Formal Mathematical property (FMP):
-
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="weylalgebra1" name="act"/>
<OMA><OMS cd="weylalgebra1" name="diffop"/>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="x"/>
<OMV name="m"/>
</OMA>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="dx"/>
<OMV name="n"/>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="dy"/>
<OMV name="r"/>
</OMA>
</OMA>
<OMA><OMS cd="list1" name="list"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="x"/>
<OMV name="y"/>
</OMA>
<OMA><OMS cd="list1" name="list"/>
<OMV name="dx"/>
<OMV name="dy"/>
</OMA>
</OMA>
</OMA>
<OMV name="f"/>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="x"/>
<OMV name="m"/>
</OMA>
<OMA><OMS cd="weylalgebra1" name="partialdiff"/>
<OMV name="f"/>
<OMA><OMS cd="list1" name="list"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="x"/>
<OMV name="n"/>
</OMA>
<OMA><OMS cd="list1" name="list"/>
<OMV name="y"/>
<OMV name="r"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="weylalgebra1">act</csymbol>
<apply><csymbol cd="weylalgebra1">diffop</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>m</ci></apply>
<apply><csymbol cd="arith1">power</csymbol><ci>dx</ci><ci>n</ci></apply>
</apply>
<apply><csymbol cd="arith1">power</csymbol><ci>dy</ci><ci>r</ci></apply>
</apply>
<apply><csymbol cd="list1">list</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>x</ci><ci>y</ci></apply>
<apply><csymbol cd="list1">list</csymbol><ci>dx</ci><ci>dy</ci></apply>
</apply>
</apply>
<ci>f</ci>
</apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>m</ci></apply>
<apply><csymbol cd="weylalgebra1">partialdiff</csymbol>
<ci>f</ci>
<apply><csymbol cd="list1">list</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>x</ci><ci>n</ci></apply>
<apply><csymbol cd="list1">list</csymbol><ci>y</ci><ci>r</ci></apply>
</apply>
</apply>
</apply>
</apply>
</math>
eq
(
act
(
diffop
(
times
(
times
(
power
(
x,
m)
,
power
(
dx,
n)
)
,
power
(
dy,
r)
)
,
list
(
list
(
x,
y)
,
list
(
dx,
dy)
)
)
,
f)
,
times
(
power
(
x,
m)
,
partialdiff
(
f,
list
(
list
(
x,
n)
,
list
(
y,
r)
)
)
)
)
weylalgebra1.act(weylalgebra1.diffop($x ^ $m * $dx ^ $n * $dy ^ $r, [[$x , $y] , [$dx , $dy]]), $f) = $x ^ $m * weylalgebra1.partialdiff($f, [[$x , $n] , [$y , $r]])
-
Signatures:
-
sts
-
Description:
-
action of a polynomial as a differential operator to a function.
act_of_poly is equivalent to the composition of act and diffop.
-
Commented Mathematical property (CMP):
-
$ x^{m} \partial_{x}^{n} \partial_{y}^{r} \cdot f
= x^{m} \frac{partial^{n+r} f}{\partial x^{n} \partial y^{r}}
$
-
Formal Mathematical property (FMP):
-
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="weylalgebra" name="act_of_poly"/>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="x"/>
<OMV name="m"/>
</OMA>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="dx"/>
<OMV name="n"/>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="dy"/>
<OMV name="r"/>
</OMA>
</OMA>
<OMA><OMS cd="list1" name="list"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="x"/>
<OMV name="y"/>
</OMA>
<OMA><OMS cd="list1" name="list"/>
<OMV name="dx"/>
<OMV name="dy"/>
</OMA>
</OMA>
<OMV name="f"/>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="x"/>
<OMV name="m"/>
</OMA>
<OMA><OMS cd="weylalgebra" name="partialdiff"/>
<OMV name="f"/>
<OMA><OMS cd="list1" name="list"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="x"/>
<OMV name="n"/>
</OMA>
<OMA><OMS cd="list1" name="list"/>
<OMV name="y"/>
<OMV name="r"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="weylalgebra">act_of_poly</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>m</ci></apply>
<apply><csymbol cd="arith1">power</csymbol><ci>dx</ci><ci>n</ci></apply>
</apply>
<apply><csymbol cd="arith1">power</csymbol><ci>dy</ci><ci>r</ci></apply>
</apply>
<apply><csymbol cd="list1">list</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>x</ci><ci>y</ci></apply>
<apply><csymbol cd="list1">list</csymbol><ci>dx</ci><ci>dy</ci></apply>
</apply>
<ci>f</ci>
</apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>m</ci></apply>
<apply><csymbol cd="weylalgebra">partialdiff</csymbol>
<ci>f</ci>
<apply><csymbol cd="list1">list</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>x</ci><ci>n</ci></apply>
<apply><csymbol cd="list1">list</csymbol><ci>y</ci><ci>r</ci></apply>
</apply>
</apply>
</apply>
</apply>
</math>
eq
(
act_of_poly
(
times
(
times
(
power
(
x,
m)
,
power
(
dx,
n)
)
,
power
(
dy,
r)
)
,
list
(
list
(
x,
y)
,
list
(
dx,
dy)
)
,
f)
,
times
(
power
(
x,
m)
,
partialdiff
(
f,
list
(
list
(
x,
n)
,
list
(
y,
r)
)
)
)
)
weylalgebra.act_of_poly($x ^ $m * $dx ^ $n * $dy ^ $r, [[$x , $y] , [$dx , $dy]], $f) = $x ^ $m * weylalgebra.partialdiff($f, [[$x , $n] , [$y , $r]])
-
Signatures:
-
sts