OpenMath Content Dictionary: asymp1
Canonical URL:
http://www.openmath.org/cd/asymp1.ocd
CD File:
asymp1.ocd
CD as XML Encoded OpenMath:
asymp1.omcd
Defines:
O , Omega , asymptotic , o , omega , theta
Date:
1999-10-19
Version:
2
(Revision 1)
Review Date:
2017-12-31
Status:
experimental
This document is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
The copyright holder grants you permission to redistribute this
document freely as a verbatim copy. Furthermore, the copyright
holder permits you to develop any derived work from this document
provided that the following conditions are met.
a) The derived work acknowledges the fact that it is derived from
this document, and maintains a prominent reference in the
work to the original source.
b) The fact that the derived work is not the original OpenMath
document is stated prominently in the derived work. Moreover if
both this document and the derived work are Content Dictionaries
then the derived work must include a different CDName element,
chosen so that it cannot be confused with any works adopted by
the OpenMath Society. In particular, if there is a Content
Dictionary Group whose name is, for example, `math' containing
Content Dictionaries named `math1', `math2' etc., then you should
not name a derived Content Dictionary `mathN' where N is an integer.
However you are free to name it `private_mathN' or some such. This
is because the names `mathN' may be used by the OpenMath Society
for future extensions.
c) The derived work is distributed under terms that allow the
compilation of derived works, but keep paragraphs a) and b)
intact. The simplest way to do this is to distribute the derived
work under the OpenMath license, but this is not a requirement.
If you have questions about this license please contact the OpenMath
society at http://www.openmath.org .
Author: Bill Naylor
This CD provides a representation of various asymptotic set constructors (O, \Omega, etc.) The constructors represent sets of functions : R -> R.
Description:
The O symbol represents a unary function which constructs a set of certain
functions of type reals to reals. The condition f(n)=O(g(n))
is intended to express an upper bound condition on f.
Commented Mathematical property (CMP):
O(g) =
{ f:reals -> reals | exists c in positive reals and M in the naturals
such that
forall n geq M. |f(n)| leq c*g(n)}
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="asymp1" name="O"/>
<OMV name="g"/>
</OMA>
<OMA>
<OMS cd="set1" name="suchthat"/>
<OMA>
<OMS cd="setname3" name="function_set"/>
<OMS cd="setname1" name="R"/>
<OMS cd="setname1" name="R"/>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="f"/>
</OMBVAR>
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR>
<OMV name="c"/>
<OMV name="M"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="c"/>
<OMS cd="setname1" name="R"/>
</OMA>
<OMA>
<OMS cd="relation1" name="gt"/>
<OMV name="c"/>
<OMS cd="alg1" name="zero"/>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="M"/>
<OMS cd="setname1" name="N"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="n"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="n"/>
<OMS cd="setname1" name="N"/>
</OMA>
<OMA>
<OMS cd="relation1" name="geq"/>
<OMV name="n"/>
<OMV name="M"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="leq"/>
<OMA>
<OMS cd="arith1" name="abs"/>
<OMA>
<OMV name="f"/>
<OMV name="n"/>
</OMA>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMV name="c"/>
<OMA>
<OMV name="g"/>
<OMV name="n"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMBIND>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="asymp1">O</csymbol><ci>g</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<apply><csymbol cd="setname3">function_set</csymbol>
<csymbol cd="setname1">R</csymbol>
<csymbol cd="setname1">R</csymbol>
</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>f</ci></bvar>
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>c</ci></bvar>
<bvar><ci>M</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>c</ci><csymbol cd="setname1">R</csymbol></apply>
<apply><csymbol cd="relation1">gt</csymbol><ci>c</ci><csymbol cd="alg1">zero</csymbol></apply>
<apply><csymbol cd="set1">in</csymbol><ci>M</ci><csymbol cd="setname1">N</csymbol></apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>n</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>n</ci><csymbol cd="setname1">N</csymbol></apply>
<apply><csymbol cd="relation1">geq</csymbol><ci>n</ci><ci>M</ci></apply>
</apply>
<apply><csymbol cd="relation1">leq</csymbol>
<apply><csymbol cd="arith1">abs</csymbol><apply><ci>f</ci><ci>n</ci></apply></apply>
<apply><csymbol cd="arith1">times</csymbol>
<ci>c</ci>
<apply><ci>g</ci><ci>n</ci></apply>
</apply>
</apply>
</apply>
</bind>
</apply>
</bind>
</bind>
</apply>
</apply>
</math>
Prefix
eq
(
O
(
g )
,
suchthat
(
function_set
(
R ,
R )
,
lambda
[
f
] .
(
exists
[
c
M
] .
(
and
(
in
(
c ,
R )
,
gt
(
c ,
zero )
,
in
(
M ,
N )
,
forall
[
n
] .
(
implies
(
and
(
in
(
n ,
N )
,
geq
(
n ,
M )
)
,
leq
(
abs
(
f
(
n )
)
,
times
(
c ,
g
(
n )
)
)
)
)
)
)
)
)
)
Popcorn
asymp1.O($g) = set1.suchthat(setname3.function_set(setname1.R, setname1.R), fns1.lambda[$f -> quant1.exists[$c, $M -> set1.in($c, setname1.R) and $c > alg1.zero and set1.in($M, setname1.N) and quant1.forall[$n -> set1.in($n, setname1.N) and $n >= $M ==> arith1.abs($f($n)) <= $c * $g($n)]]])
Rendered Presentation MathML
O
(
g
)
=
{
f
∈
function_set
(
R
,
R
)
|
∃
c
,
M
.
c
∈
R
∧
c
>
0
∧
M
∈
N
∧
∀
n
.
n
∈
N
∧
n
≥
M
⇒
|
f
(
n
)
|
≤
c
g
(
n
)
}
Signatures:
sts
Description:
The o symbol represents a unary function which constructs a set
of certain functions of type reals to positive reals. The condition
f(n) = o(g(n)) is intended to express a lower bouund condition
on f. Formally we say that f(n) = o(g(n)) if and only if the
limit as n tends to infinity of f(n)/g(n) exists and is equal to 0.
Commented Mathematical property (CMP):
o(g) =
{f : reals -> reals | the limit as x tends to infinity of f(x)/g(x) is 0}
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="asymp1" name="o"/>
<OMV name="g"/>
</OMA>
<OMA>
<OMS cd="set1" name="suchthat"/>
<OMA>
<OMS cd="setname3" name="function_set"/>
<OMS cd="setname1" name="R"/>
<OMS cd="setname1" name="R"/>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="f"/>
</OMBVAR>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="limit1" name="limit"/>
<OMS cd="nums1" name="infinity"/>
<OMS cd="limit1" name="below"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="x"/>
</OMBVAR>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMA>
<OMV name="f"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMV name="g"/>
<OMV name="x"/>
</OMA>
</OMA>
</OMBIND>
</OMA>
<OMS cd="alg1" name="zero"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="asymp1">o</csymbol><ci>g</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<apply><csymbol cd="setname3">function_set</csymbol>
<csymbol cd="setname1">R</csymbol>
<csymbol cd="setname1">R</csymbol>
</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>f</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="limit1">limit</csymbol>
<csymbol cd="nums1">infinity</csymbol>
<csymbol cd="limit1">below</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><ci>f</ci><ci>x</ci></apply>
<apply><ci>g</ci><ci>x</ci></apply>
</apply>
</bind>
</apply>
<csymbol cd="alg1">zero</csymbol>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
asymp1.o($g) = set1.suchthat(setname3.function_set(setname1.R, setname1.R), fns1.lambda[$f -> limit1.limit(nums1.infinity, limit1.below, fns1.lambda[$x -> $f($x) / $g($x)]) = alg1.zero])
Rendered Presentation MathML
o
(
g
)
=
{
f
∈
function_set
(
R
,
R
)
|
limit
x
→
∞
-
f
(
x
)
g
(
x
)
=
0
}
Signatures:
sts
Description:
The theta symbol represents a unary function which constructs a set
of certain functions of type reals to positive reals. The theta
symbol represents a set of functions which all have the same 'rate of
growth'. Formally we say that f(x) = theta(g(x)) if and only if
there are constants c_1 not= 0 and c_2 not= 0 and x_0 such that for
all x > x_0 it is true that c_1*g(x) < f(x) < c_2*g(x).
Commented Mathematical property (CMP):
f(x) = theta(g(x)) if and only if
there are constants c_1 not= 0 and c_2 not= 0 and x_0 such that for
all x > x_0 it is true that c_1*g(x) < f(x) < c_2*g(x)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="asymp1" name="theta"/>
<OMV name="g"/>
</OMA>
<OMA>
<OMS cd="set1" name="suchthat"/>
<OMA>
<OMS cd="setname3" name="function_set"/>
<OMS cd="setname1" name="R"/>
<OMS cd="setname1" name="R"/>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="f"/>
</OMBVAR>
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR>
<OMV name="c_1"/>
<OMV name="c_2"/>
<OMV name="x_0"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="relation1" name="neq"/>
<OMV name="c_1"/>
<OMS cd="alg1" name="zero"/>
</OMA>
<OMA>
<OMS cd="relation1" name="neq"/>
<OMV name="c_2"/>
<OMS cd="alg1" name="zero"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="x"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="relation1" name="gt"/>
<OMV name="x"/>
<OMV name="x_0"/>
</OMA>
<OMA>
<OMS cd="relation1" name="lt"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMV name="c_1"/>
<OMA>
<OMV name="g"/>
<OMV name="x"/>
</OMA>
</OMA>
<OMA>
<OMV name="f"/>
<OMV name="x"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="lt"/>
<OMA>
<OMV name="f"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMV name="c_2"/>
<OMA>
<OMV name="g"/>
<OMV name="x"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMBIND>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="asymp1">theta</csymbol><ci>g</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<apply><csymbol cd="setname3">function_set</csymbol>
<csymbol cd="setname1">R</csymbol>
<csymbol cd="setname1">R</csymbol>
</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>f</ci></bvar>
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>c_1</ci></bvar>
<bvar><ci>c_2</ci></bvar>
<bvar><ci>x_0</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">neq</csymbol><ci>c_1</ci><csymbol cd="alg1">zero</csymbol></apply>
<apply><csymbol cd="relation1">neq</csymbol><ci>c_2</ci><csymbol cd="alg1">zero</csymbol></apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">gt</csymbol><ci>x</ci><ci>x_0</ci></apply>
<apply><csymbol cd="relation1">lt</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<ci>c_1</ci>
<apply><ci>g</ci><ci>x</ci></apply>
</apply>
<apply><ci>f</ci><ci>x</ci></apply>
</apply>
<apply><csymbol cd="relation1">lt</csymbol>
<apply><ci>f</ci><ci>x</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<ci>c_2</ci>
<apply><ci>g</ci><ci>x</ci></apply>
</apply>
</apply>
</apply>
</bind>
</apply>
</bind>
</bind>
</apply>
</apply>
</math>
Prefix
eq
(
theta
(
g )
,
suchthat
(
function_set
(
R ,
R )
,
lambda
[
f
] .
(
exists
[
c_1
c_2
x_0
] .
(
and
(
neq
(
c_1 ,
zero )
,
neq
(
c_2 ,
zero )
,
forall
[
x
] .
(
and
(
gt
(
x ,
x_0 )
,
lt
(
times
(
c_1 ,
g
(
x )
)
,
f
(
x )
)
,
lt
(
f
(
x )
,
times
(
c_2 ,
g
(
x )
)
)
)
)
)
)
)
)
)
Popcorn
asymp1.theta($g) = set1.suchthat(setname3.function_set(setname1.R, setname1.R), fns1.lambda[$f -> quant1.exists[$c_1, $c_2, $x_0 -> $c_1 != alg1.zero and $c_2 != alg1.zero and quant1.forall[$x -> $x > $x_0 and $c_1 * $g($x) < $f($x) and $f($x) < $c_2 * $g($x)]]])
Rendered Presentation MathML
theta
(
g
)
=
{
f
∈
function_set
(
R
,
R
)
|
∃
c_
1
,
c_
2
,
x_
0
.
c_
1
≠
0
∧
c_
2
≠
0
∧
∀
x
.
x
>
x_
0
∧
c_
1
g
(
x
)
<
f
(
x
)
∧
f
(
x
)
<
c_
2
g
(
x
)
}
Signatures:
sts
Description:
The asymptotic symbol represents a binary relation between two
functions of type reals to reals. The asymptotic relation between two
functions returns true if the two functions have the same rate of
growth and more precisely there ratio approaches 1 as the variable
approaches infinity. Formally we say that f(x) is asymptotic to g(x)
if and only if the limit as x tends to infinity of f(x)/g(x) = 1.
Commented Mathematical property (CMP):
f(x) is
asymptotic g(x) if and only if the limit as x tends to infinity of
f(x)/g(x) = 1
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="equivalent"/>
<OMA>
<OMS cd="asymp1" name="asymptotic"/>
<OMV name="f"/>
<OMV name="g"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="limit1" name="limit"/>
<OMS cd="nums1" name="infinity"/>
<OMS cd="limit1" name="below"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="x"/>
</OMBVAR>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMA>
<OMV name="f"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMV name="g"/>
<OMV name="x"/>
</OMA>
</OMA>
</OMBIND>
</OMA>
<OMS cd="alg1" name="one"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">equivalent</csymbol>
<apply><csymbol cd="asymp1">asymptotic</csymbol><ci>f</ci><ci>g</ci></apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="limit1">limit</csymbol>
<csymbol cd="nums1">infinity</csymbol>
<csymbol cd="limit1">below</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><ci>f</ci><ci>x</ci></apply>
<apply><ci>g</ci><ci>x</ci></apply>
</apply>
</bind>
</apply>
<csymbol cd="alg1">one</csymbol>
</apply>
</apply>
</math>
Prefix
Popcorn
logic1.equivalent(asymp1.asymptotic($f, $g), limit1.limit(nums1.infinity, limit1.below, fns1.lambda[$x -> $f($x) / $g($x)]) = alg1.one)
Rendered Presentation MathML
asymptotic
(
f
,
g
)
≡
(
limit
x
→
∞
-
f
(
x
)
g
(
x
)
=
1
)
Signatures:
sts
Description:
The omega symbol represents a unary function which constructs a set
of certain functions of type reals to positive reals. The omega
symbol represents a set of functions such that for any function in
the set omega(g(x)), f(x); it is not true that f(x) is in
o(g(x)). Formally we say that f(x) = omega(g(x)) if and only
if there is an epsilon > 0 and an infinite sequence x_1, x_2, x_3,
... such that for all j then abs(f(x_j)) > epsilon * g(x_j).
Commented Mathematical property (CMP):
f(x) is omega(g(x)) if and only if
it is not true that f(x) is o(g(x))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="asymp1" name="omega"/>
<OMV name="g"/>
</OMA>
<OMA>
<OMS cd="set1" name="suchthat"/>
<OMA>
<OMS cd="setname3" name="function_set"/>
<OMS cd="setname1" name="R"/>
<OMS cd="setname1" name="R"/>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="f"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="not"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMV name="f"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="asymp1" name="o"/>
<OMV name="g"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="asymp1">omega</csymbol><ci>g</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<apply><csymbol cd="setname3">function_set</csymbol>
<csymbol cd="setname1">R</csymbol>
<csymbol cd="setname1">R</csymbol>
</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>f</ci></bvar>
<apply><csymbol cd="logic1">not</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<apply><ci>f</ci><ci>x</ci></apply>
<apply><csymbol cd="asymp1">o</csymbol><ci>g</ci></apply>
</apply>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
asymp1.omega($g) = set1.suchthat(setname3.function_set(setname1.R, setname1.R), fns1.lambda[$f -> not(set1.in($f($x), asymp1.o($g)))])
Rendered Presentation MathML
omega
(
g
)
=
{
f
∈
function_set
(
R
,
R
)
|
¬
(
f
(
x
)
∈
o
(
g
)
)
}
Commented Mathematical property (CMP):
f(x) = omega(g(x)) if and only if there is an epsilon > 0 and an
infinite sequence x_1, x_2, x_3, ... such that for all j then
abs(f(x_j)) > epsilon * g(x_j).
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="equivalent"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="f"/>
<OMA>
<OMS cd="asymp1" name="omega"/>
<OMV name="g"/>
</OMA>
</OMA>
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR>
<OMV name="epsilon"/>
<OMV name="seq"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="relation1" name="gt"/>
<OMV name="epsilon"/>
<OMS cd="alg1" name="zero"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="j"/>
</OMBVAR>
<OMA>
<OMS cd="relation1" name="gt"/>
<OMA>
<OMS cd="arith1" name="abs"/>
<OMA>
<OMV name="f"/>
<OMA>
<OMS cd="linalg1" name="vector_selector"/>
<OMV name="j"/>
<OMV name="seq"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMV name="epsilon"/>
<OMA>
<OMV name="g"/>
<OMA>
<OMS cd="linalg1" name="vector_selector"/>
<OMV name="j"/>
<OMV name="seq"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">equivalent</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>f</ci>
<apply><csymbol cd="asymp1">omega</csymbol><ci>g</ci></apply>
</apply>
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>epsilon</ci></bvar>
<bvar><ci>seq</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">gt</csymbol><ci>epsilon</ci><csymbol cd="alg1">zero</csymbol></apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>j</ci></bvar>
<apply><csymbol cd="relation1">gt</csymbol>
<apply><csymbol cd="arith1">abs</csymbol>
<apply>
<ci>f</ci>
<apply><csymbol cd="linalg1">vector_selector</csymbol><ci>j</ci><ci>seq</ci></apply>
</apply>
</apply>
<apply><csymbol cd="arith1">times</csymbol>
<ci>epsilon</ci>
<apply>
<ci>g</ci>
<apply><csymbol cd="linalg1">vector_selector</csymbol><ci>j</ci><ci>seq</ci></apply>
</apply>
</apply>
</apply>
</bind>
</apply>
</bind>
</apply>
</math>
Prefix
Popcorn
logic1.equivalent(set1.in($f, asymp1.omega($g)), quant1.exists[$epsilon, $seq -> $epsilon > alg1.zero and quant1.forall[$j -> arith1.abs($f(linalg1.vector_selector($j, $seq))) > $epsilon * $g(linalg1.vector_selector($j, $seq))]])
Rendered Presentation MathML
f
∈
omega
(
g
)
≡
∃
epsilon
,
seq
.
epsilon
>
0
∧
∀
j
.
|
f
(
seq
j
)
|
>
epsilon
g
(
seq
j
)
Signatures:
sts
Description:
The Omega symbol represents a unary function which constructs a set
of certain functions of type reals to positive reals. The Omega
symbol represents a set of functions such that for any function in
the set Omega(g(x)), f(x); it is not true that f(x) is in
O(g(x)).
Commented Mathematical property (CMP):
f(x) is Omega(g(x)) if and only if
it is not true that f(x) is O(g(x))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="asymp1" name="Omega"/>
<OMV name="g"/>
</OMA>
<OMA>
<OMS cd="set1" name="suchthat"/>
<OMA>
<OMS cd="setname3" name="function_set"/>
<OMS cd="setname1" name="R"/>
<OMS cd="setname1" name="R"/>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="f"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="not"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMV name="f"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="asymp1" name="O"/>
<OMV name="g"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="asymp1">Omega</csymbol><ci>g</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<apply><csymbol cd="setname3">function_set</csymbol>
<csymbol cd="setname1">R</csymbol>
<csymbol cd="setname1">R</csymbol>
</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>f</ci></bvar>
<apply><csymbol cd="logic1">not</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<apply><ci>f</ci><ci>x</ci></apply>
<apply><csymbol cd="asymp1">O</csymbol><ci>g</ci></apply>
</apply>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
asymp1.Omega($g) = set1.suchthat(setname3.function_set(setname1.R, setname1.R), fns1.lambda[$f -> not(set1.in($f($x), asymp1.O($g)))])
Rendered Presentation MathML
Omega
(
g
)
=
{
f
∈
function_set
(
R
,
R
)
|
¬
(
f
(
x
)
∈
O
(
g
)
)
}
Signatures:
sts