OpenMath Content Dictionary: group3
Canonical URL:
http://www.openmath.org/cd/group3.ocd
CD Base:
http://www.openmath.org/cd
CD File:
group3.ocd
CD as XML Encoded OpenMath:
group3.omcd
Defines:
GL , GLn , SL , SLn , alternating_group , alternatingn , automorphism_group , center , centralizer , derived_subgroup , direct_power , direct_product , free_group , invertibles , normalizer , quotient_group , sylow_subgroup , symmetric_group , symmetric_groupn
Date:
2004-06-01
Version:
1
(Revision 2)
Review Date:
2006-06-01
Status:
experimental
A CD of group constructions
Written by Arjeh M. Cohen 2004-02-20.
Description:
This is a function with a single argument which must be a group.
It refers to the automorphism group of its argument.
Signatures:
sts
Description:
This is an n-ary function whose arguments must be groups.
It refers to the direct product of its arguments.
Signatures:
sts
Description:
This is a binary function whose first argument should be a group
G and whose second argument should be a natural number n.
It refers to the direct product of n copies of G.
Signatures:
sts
Description:
This symbol represents a binary function with two arguments,
the first is a group G and the second a prime number p.
When applied to G and p, it represents a Sylow p-subgroup of G
(which is unique up to conjugacy in G).
Signatures:
sts
Description:
The unary function whose value is the subgroup of argument
generated by all products of the form xyx^-1y^-1.
Commented Mathematical property (CMP):
d in the derived subgroup of G if and only if
there exist lists x,y of elements of G of equal length
such that d
is the product x_1 y_1 x_1^(-1) y_1^(-1) ... x_n y_n x_n^(-1) y_n^(-1).
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="logic1" name="equivalent"/>
<OMA><OMS cd="set1" name="in"/>
<OMV name="d"/>
<OMA><OMS cd="group3" name="derived_subgroup"/>
<OMV name="G"/>
</OMA>
</OMA>
<OMBIND><OMS cd="quant1" name="exists"/>
<OMBVAR><OMV name="x"/><OMV name="y"/><OMV name="n"/></OMBVAR>
<OMA><OMS cd="logic1" name="and"/>
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="list3" name="length"/>
<OMV name="x"/>
</OMA>
<OMV name="n"/>
</OMA>
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="list3" name="length"/>
<OMV name="y"/>
</OMA>
<OMV name="n"/>
</OMA>
<OMBIND><OMS cd="quant1" name="forall"/>
<OMBVAR><OMV name="i"/> </OMBVAR>
<OMA><OMS cd="logic1" name="and"/>
<OMA><OMS cd="set1" name="in"/>
<OMA><OMS cd="list3" name="entry"/>
<OMV name="x"/> <OMV name="i"/>
</OMA>
<OMA><OMS cd="group1" name="carrier"/>
<OMV name="G"/>
</OMA>
</OMA>
<OMA><OMS cd="set1" name="in"/>
<OMA><OMS cd="list3" name="entry"/>
<OMV name="y"/> <OMV name="i"/>
</OMA>
<OMA><OMS cd="group1" name="carrier"/>
<OMV name="G"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="group1" name="expression"/>
<OMV name="G"/>
<OMA><OMS cd="fns2" name="apply_to_list"/>
<OMS cd="arith1" name="times"/>
<OMA><OMS cd="list1" name="map"/>
<OMBIND><OMS cd="fns1" name="lambda"/>
<OMBVAR><OMV name="i"/> </OMBVAR>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="list3" name="entry"/>
<OMV name="x"/> <OMV name="i"/>
</OMA>
<OMA><OMS cd="list3" name="entry"/>
<OMV name="y"/> <OMV name="i"/>
</OMA>
<OMA><OMS cd="arith1" name="power"/>
<OMA><OMS cd="list3" name="entry"/>
<OMV name="x"/> <OMV name="i"/>
</OMA>
<OMI>-1</OMI>
</OMA>
<OMA><OMS cd="arith1" name="power"/>
<OMA><OMS cd="list3" name="entry"/>
<OMV name="y"/> <OMV name="i"/>
</OMA>
<OMI>-1</OMI>
</OMA>
</OMA>
</OMBIND>
<OMA><OMS cd="interval1" name="integer_interval"/>
<OMI>1</OMI>
<OMV name="n"/>
</OMA>
</OMA>
</OMA>
</OMA>
<OMV name="d"/>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">equivalent</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>d</ci>
<apply><csymbol cd="group3">derived_subgroup</csymbol><ci>G</ci></apply>
</apply>
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<bvar><ci>n</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="list3">length</csymbol><ci>x</ci></apply>
<ci>n</ci>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="list3">length</csymbol><ci>y</ci></apply>
<ci>n</ci>
</apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>i</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="list3">entry</csymbol><ci>x</ci><ci>i</ci></apply>
<apply><csymbol cd="group1">carrier</csymbol><ci>G</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="list3">entry</csymbol><ci>y</ci><ci>i</ci></apply>
<apply><csymbol cd="group1">carrier</csymbol><ci>G</ci></apply>
</apply>
</apply>
</bind>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="group1">expression</csymbol>
<ci>G</ci>
<apply><csymbol cd="fns2">apply_to_list</csymbol>
<csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="list1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>i</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="list3">entry</csymbol><ci>x</ci><ci>i</ci></apply>
<apply><csymbol cd="list3">entry</csymbol><ci>y</ci><ci>i</ci></apply>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="list3">entry</csymbol><ci>x</ci><ci>i</ci></apply>
<cn type="integer">-1</cn>
</apply>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="list3">entry</csymbol><ci>y</ci><ci>i</ci></apply>
<cn type="integer">-1</cn>
</apply>
</apply>
</bind>
<apply><csymbol cd="interval1">integer_interval</csymbol><cn type="integer">1</cn><ci>n</ci></apply>
</apply>
</apply>
</apply>
<ci>d</ci>
</apply>
</apply>
</bind>
</apply>
</math>
Prefix
equivalent
(
in
(
d ,
derived_subgroup
(
G )
)
,
exists
[
x
y
n ] .
(
and
(
eq
(
length
(
x )
,
n )
,
eq
(
length
(
y )
,
n )
,
forall
[
i ] .
(
and
(
in
(
entry
(
x ,
i )
,
carrier
(
G )
)
,
in
(
entry
(
y ,
i )
,
carrier
(
G )
)
)
)
,
eq
(
expression
(
G ,
apply_to_list
(
times ,
map
(
lambda
[
i ] .
(
times
(
entry
(
x ,
i )
,
entry
(
y ,
i )
,
power
(
entry
(
x ,
i )
, -1)
,
power
(
entry
(
y ,
i )
, -1)
)
)
,
integer_interval
(1,
n )
)
)
)
,
d )
)
)
)
Popcorn
logic1.equivalent(set1.in($d, group3.derived_subgroup($G)), quant1.exists[$x, $y, $n -> list3.length($x) = $n and list3.length($y) = $n and quant1.forall[$i -> set1.in(list3.entry($x, $i), group1.carrier($G)) and set1.in(list3.entry($y, $i), group1.carrier($G))] and group1.expression($G, fns2.apply_to_list(arith1.times, list1.map(fns1.lambda[$i -> list3.entry($x, $i) * list3.entry($y, $i) * list3.entry($x, $i) ^ -1 * list3.entry($y, $i) ^ -1], interval1.integer_interval(1, $n)))) = $d])
Rendered Presentation MathML
d
∈
derived_subgroup
(
G
)
≡
∃
x
,
y
,
n
.
length
(
x
)
=
n
∧
length
(
y
)
=
n
∧
∀
i
.
entry
(
x
,
i
)
∈
carrier
(
G
)
∧
entry
(
y
,
i
)
∈
carrier
(
G
)
∧
expression
(
G
,
apply_to_list
(
×
,
list
(
entry
(
x
,
i
)
entry
(
y
,
i
)
entry
(
x
,
i
)
-1
entry
(
y
,
i
)
-1
|
i
∈
[
1
,
n
]
)
)
)
=
d
Signatures:
sts
Description:
The binary function whose value is the factor group of the first
argument by the second, assuming the second is normal in the first.
Signatures:
sts
Description:
This symbols represents a unary function whose argument should be a group G.
Its value is the biggest subgroup of G all of whose elements
commute with all elements of G.
Commented Mathematical property (CMP):
d is in the center of G if and only if
for all g in G we have g d= d g.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="logic1" name="equivalent"/>
<OMA><OMS cd="set1" name="in"/>
<OMV name="d"/>
<OMA><OMS cd="group3" name="center"/>
<OMV name="G"/>
</OMA>
</OMA>
<OMBIND><OMS cd="quant1" name="forall"/>
<OMBVAR><OMV name="g"/></OMBVAR>
<OMA><OMS cd="logic1" name="implies"/>
<OMA><OMS cd="set1" name="in"/>
<OMV name="g"/>
<OMA><OMS cd="group1" name="carrier"/>
<OMV name="G"/>
</OMA>
</OMA>
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMA><OMS cd="group1" name="multiplication"/>
<OMV name="G"/>
</OMA>
<OMV name="d"/> <OMV name="g"/>
</OMA>
<OMA><OMA><OMS cd="group1" name="multiplication"/>
<OMV name="G"/>
</OMA>
<OMV name="g"/> <OMV name="d"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">equivalent</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>d</ci>
<apply><csymbol cd="group3">center</csymbol><ci>G</ci></apply>
</apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>g</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>g</ci>
<apply><csymbol cd="group1">carrier</csymbol><ci>G</ci></apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="group1">multiplication</csymbol><ci>G</ci></apply>
<ci>d</ci>
<ci>g</ci>
</apply>
<apply>
<apply><csymbol cd="group1">multiplication</csymbol><ci>G</ci></apply>
<ci>g</ci>
<ci>d</ci>
</apply>
</apply>
</apply>
</bind>
</apply>
</math>
Prefix
Popcorn
logic1.equivalent(set1.in($d, group3.center($G)), quant1.forall[$g -> set1.in($g, group1.carrier($G)) ==> group1.multiplication($G)($d, $g) = group1.multiplication($G)($g, $d)])
Rendered Presentation MathML
d
∈
center
(
G
)
≡
∀
g
.
g
∈
carrier
(
G
)
⇒
(
multiplication
(
G
)
)
(
d
,
g
)
=
(
multiplication
(
G
)
)
(
g
,
d
)
Signatures:
sts
Description:
This symbols represents a binary function whose first argument should be a
group G and whose second argument should be an element g or a list of elements
L of the group G.
Its value is the subgroup of G of all elements
commuting with g or, if the second argument is a list, all elements of L.
Commented Mathematical property (CMP):
d is in the centralizer of g in G if and only if
g d= d g.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="logic1" name="equivalent"/>
<OMA><OMS cd="set1" name="in"/>
<OMV name="d"/>
<OMA><OMS cd="group3" name="centralizer"/>
<OMV name="G"/> <OMV name="g"/>
</OMA>
</OMA>
<OMA><OMS cd="logic1" name="and"/>
<OMA><OMS cd="set1" name="in"/>
<OMV name="d"/>
<OMA><OMS cd="group1" name="carrier"/>
<OMV name="G"/>
</OMA>
</OMA>
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMA><OMS cd="group1" name="multiplication"/>
<OMV name="G"/>
</OMA>
<OMV name="d"/> <OMV name="g"/>
</OMA>
<OMA><OMA><OMS cd="group1" name="multiplication"/>
<OMV name="G"/>
</OMA>
<OMV name="g"/> <OMV name="d"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">equivalent</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>d</ci>
<apply><csymbol cd="group3">centralizer</csymbol><ci>G</ci><ci>g</ci></apply>
</apply>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>d</ci>
<apply><csymbol cd="group1">carrier</csymbol><ci>G</ci></apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="group1">multiplication</csymbol><ci>G</ci></apply>
<ci>d</ci>
<ci>g</ci>
</apply>
<apply>
<apply><csymbol cd="group1">multiplication</csymbol><ci>G</ci></apply>
<ci>g</ci>
<ci>d</ci>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
logic1.equivalent(set1.in($d, group3.centralizer($G, $g)), set1.in($d, group1.carrier($G)) and group1.multiplication($G)($d, $g) = group1.multiplication($G)($g, $d))
Rendered Presentation MathML
d
∈
centralizer
(
G
,
g
)
≡
(
d
∈
carrier
(
G
)
∧
(
multiplication
(
G
)
)
(
d
,
g
)
=
(
multiplication
(
G
)
)
(
g
,
d
)
)
Signatures:
sts
Description:
This symbol represents a unary function. The argument is a list or a
set. When evaluated on such an argument, the function represents the
free group generated by the entries of the list or set.
Example:
The free group on the letters a, b:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="group3" name="free_group"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="a"/> <OMV name="b"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="group3">free_group</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>a</ci><ci>b</ci></apply>
</apply>
</math>
Prefix
Popcorn
group3.free_group([$a , $b])
Rendered Presentation MathML
free_group
(
(
a
,
b
)
)
Signatures:
sts
Description:
This symbol is a function with one argument, which should be a
vector space or a module V. When applied to
V it represents the group of all invertible linear transformations of V.
Signatures:
sts
Description:
This symbol is a function with one argument, which should be a a
module V over a commutative ring. When applied to V it represents the
group of all invertible linear transformations of V of determinant 1.
Signatures:
sts
Description:
This symbol is a function with two arguments. The first should be a positive
integer n, the second a
field F. When applied to
n and F it represents the group of all invertible linear transformations of
the vector space over F of dimension n.
Signatures:
sts
Description:
This symbol is a function with two arguments. The first should
be a positive integer n, the second a field F. When applied to n and F it
represents the group of all invertible linear transformations of the vector
space over F of dimension n having determinant 1.
Signatures:
sts
Description:
This symbols represents a binary function whose first argument should be a
group G and whose second argument should be a set of elements
or a subgroup L of the group G.
Its value is the subgroup of G of all elements
normalizing L.
Commented Mathematical property (CMP):
d is in the normalizer of X in G if and only if
g X= X g.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="logic1" name="equivalent"/>
<OMA><OMS cd="set1" name="in"/>
<OMV name="d"/>
<OMA><OMS cd="group3" name="normalizer"/>
<OMV name="G"/> <OMV name="X"/>
</OMA>
</OMA>
<OMA><OMS cd="logic1" name="and"/>
<OMA><OMS cd="set1" name="in"/>
<OMV name="d"/>
<OMA><OMS cd="group1" name="carrier"/>
<OMV name="G"/>
</OMA>
</OMA>
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMA><OMS cd="group1" name="multiplication"/>
<OMV name="G"/>
</OMA>
<OMV name="d"/> <OMV name="X"/>
</OMA>
<OMA><OMA><OMS cd="group1" name="multiplication"/>
<OMV name="G"/>
</OMA>
<OMV name="X"/> <OMV name="d"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">equivalent</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>d</ci>
<apply><csymbol cd="group3">normalizer</csymbol><ci>G</ci><ci>X</ci></apply>
</apply>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>d</ci>
<apply><csymbol cd="group1">carrier</csymbol><ci>G</ci></apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="group1">multiplication</csymbol><ci>G</ci></apply>
<ci>d</ci>
<ci>X</ci>
</apply>
<apply>
<apply><csymbol cd="group1">multiplication</csymbol><ci>G</ci></apply>
<ci>X</ci>
<ci>d</ci>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
logic1.equivalent(set1.in($d, group3.normalizer($G, $X)), set1.in($d, group1.carrier($G)) and group1.multiplication($G)($d, $X) = group1.multiplication($G)($X, $d))
Rendered Presentation MathML
d
∈
normalizer
(
G
,
X
)
≡
(
d
∈
carrier
(
G
)
∧
(
multiplication
(
G
)
)
(
d
,
X
)
=
(
multiplication
(
G
)
)
(
X
,
d
)
)
Signatures:
sts
Description:
This symbol is a function with one argument, which should be a set X. When applied to a
set X it represents the group of all permutations on X .
Signatures:
sts
Description:
This symbol is a function with one argument, which should be
a natural number n. When applied to n
it represents the group of all permutations on the set {1,2,... ,n}.
Commented Mathematical property (CMP):
The carrier set of symmetric_groupn(k) consists of all permutations with
support in the integers {1,...,k}.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="group1" name="carrier"/>
<OMA><OMS cd="group3" name="symmetric_groupn"/>
<OMV name="n"/>
</OMA>
</OMA>
<OMA><OMS cd="permutation1" name="permutationsn"/>
<OMV name="n"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="group1">carrier</csymbol>
<apply><csymbol cd="group3">symmetric_groupn</csymbol><ci>n</ci></apply>
</apply>
<apply><csymbol cd="permutation1">permutationsn</csymbol><ci>n</ci></apply>
</apply>
</math>
Prefix
Popcorn
group1.carrier(group3.symmetric_groupn($n)) = permutation1.permutationsn($n)
Rendered Presentation MathML
carrier
(
symmetric_groupn
(
n
)
)
=
permutationsn
(
n
)
Signatures:
sts
Description:
This symbol is a function with one argument, which should be a
set X. When applied to a set X it represents the group of all even
permutations on
X .
Signatures:
sts
Description:
This symbol is a function with one argument, which should be
a natural number n. When applied to n
it represents the group of all even permutations on the set {1,2, ...,n}.
Signatures:
sts
Description:
This symbol is a function with one argument, which should be
a monoid M. When applied to M
it represents the group of all invertible elements of M.
Signatures:
sts