OpenMath Content Dictionary: groupname1
Canonical URL:
http://www.openmath.org/cd/groupname1.ocd
CD Base:
http://www.openmath.org/cd
CD File:
groupname1.ocd
CD as XML Encoded OpenMath:
groupname1.omcd
Defines:
cyclic_group , dihedral_group , generalized_quaternion_group , quaternion_group
Date:
2004-06-01
Version:
1
(Revision 2)
Review Date:
2006-06-01
Status:
experimental
Well known groups in group theory
Written by Arjeh M. Cohen 2003-04-15
Description:
This symbol represents the quaternion group of order 8.
Commented Mathematical property (CMP):
The quaternion group is isomorphic to the group generated by
a, b with presentation a^2 = b^2 = aba^(-1)b^(-1) and a^4 = 1.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="group2" name="isomorphic"/>
<OMS cd="groupname1" name="quaternion_group"/>
<OMA><OMS cd="group3" name="quotient_group"/>
<OMA><OMS cd="group3" name="free_group"/>
<OMV name="a"/> <OMV name="b"/>
</OMA>
<OMA><OMS cd="group1" name="normal_closure"/>
<OMA><OMS cd="group3" name="free_group"/>
<OMV name="a"/> <OMV name="b"/>
</OMA>
<OMA><OMS cd="fns2" name="apply_to_list"/>
<OMBIND><OMS cd="fns1" name="lambda"/>
<OMBVAR><OMV name="x"/> </OMBVAR>
<OMA><OMS cd="group1" name="expression"/>
<OMA><OMS cd="group3" name="free_group"/>
<OMV name="a"/> <OMV name="b"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMBIND>
<OMA><OMS cd="list1" name="list"/>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="a"/>
<OMI>4</OMI>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="a"/>
<OMI>2</OMI>
</OMA>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="b"/>
<OMI>-2</OMI>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="a"/>
<OMI>2</OMI>
</OMA>
<OMV name="b"/>
<OMV name="a"/>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="b"/>
<OMI>-1</OMI>
</OMA>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="a"/>
<OMI>-1</OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="group2">isomorphic</csymbol>
<csymbol cd="groupname1">quaternion_group</csymbol>
<apply><csymbol cd="group3">quotient_group</csymbol>
<apply><csymbol cd="group3">free_group</csymbol><ci>a</ci><ci>b</ci></apply>
<apply><csymbol cd="group1">normal_closure</csymbol>
<apply><csymbol cd="group3">free_group</csymbol><ci>a</ci><ci>b</ci></apply>
<apply><csymbol cd="fns2">apply_to_list</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="group1">expression</csymbol>
<apply><csymbol cd="group3">free_group</csymbol><ci>a</ci><ci>b</ci></apply>
<ci>x</ci>
</apply>
</bind>
<apply><csymbol cd="list1">list</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>a</ci><cn type="integer">4</cn></apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>a</ci><cn type="integer">2</cn></apply>
<apply><csymbol cd="arith1">power</csymbol><ci>b</ci><cn type="integer">-2</cn></apply>
</apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>a</ci><cn type="integer">2</cn></apply>
<ci>b</ci>
<ci>a</ci>
<apply><csymbol cd="arith1">power</csymbol><ci>b</ci><cn type="integer">-1</cn></apply>
<apply><csymbol cd="arith1">power</csymbol><ci>a</ci><cn type="integer">-1</cn></apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
isomorphic
(
quaternion_group ,
quotient_group
(
free_group
(
a ,
b )
,
normal_closure
(
free_group
(
a ,
b )
,
apply_to_list
(
lambda
[
x ] .
(
expression
(
free_group
(
a ,
b )
,
x )
)
,
list
(
power
(
a , 4)
,
times
(
power
(
a , 2)
,
power
(
b , -2)
)
,
times
(
power
(
a , 2)
,
b ,
a ,
power
(
b , -1)
,
power
(
a , -1)
)
)
)
)
)
)
Popcorn
group2.isomorphic(groupname1.quaternion_group, group3.quotient_group(group3.free_group($a, $b), group1.normal_closure(group3.free_group($a, $b), fns2.apply_to_list(fns1.lambda[$x -> group1.expression(group3.free_group($a, $b), $x)], [$a ^ 4 , $a ^ 2 * $b ^ -2 , $a ^ 2 * $b * $a * $b ^ -1 * $a ^ -1]))))
Rendered Presentation MathML
isomorphic
(
quaternion_group
,
quotient_group
(
free_group
(
a
,
b
)
,
normal_closure
(
free_group
(
a
,
b
)
,
apply_to_list
(
λ
x
.
expression
(
free_group
(
a
,
b
)
,
x
)
,
a
4
a
2
b
-2
a
2
b
a
b
-1
a
-1
)
)
)
)
Commented Mathematical property (CMP):
The center of Q has order 2.
Commented Mathematical property (CMP):
The derived subgroup of Q coincides with the center of Q.
Signatures:
sts
Description:
This symbol is a function with one argument, which should be a
positive integer n. When applied to n it represents the dihedral group of
order 2n. This is the group of all isometries (including reflections) of the
regular n-gon in the plane.
Commented Mathematical property (CMP):
The dihedral group of order 2n is isomorphic to the group generated by
a, b with presentation a^2 = b^n = 1 and a b a = b^(-1).
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="group2" name="isomorphic"/>
<OMA><OMS cd="groupname1" name="dihedral_group"/>
<OMV name="n"/>
</OMA>
<OMA><OMS cd="group3" name="quotient_group"/>
<OMA><OMS cd="group3" name="free_group"/>
<OMV name="a"/> <OMV name="b"/>
</OMA>
<OMA><OMS cd="group1" name="normal_closure"/>
<OMA><OMS cd="group3" name="free_group"/>
<OMV name="a"/> <OMV name="b"/>
</OMA>
<OMA><OMS cd="fns2" name="apply_to_list"/>
<OMBIND><OMS cd="fns1" name="lambda"/>
<OMBVAR><OMV name="x"/> </OMBVAR>
<OMA><OMS cd="group1" name="expression"/>
<OMA><OMS cd="group3" name="free_group"/>
<OMV name="a"/> <OMV name="b"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMBIND>
<OMA><OMS cd="list1" name="list"/>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="a"/>
<OMI>2</OMI>
</OMA>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="b"/>
<OMV name="n"/>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="a"/>
<OMV name="b"/>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="group2">isomorphic</csymbol>
<apply><csymbol cd="groupname1">dihedral_group</csymbol><ci>n</ci></apply>
<apply><csymbol cd="group3">quotient_group</csymbol>
<apply><csymbol cd="group3">free_group</csymbol><ci>a</ci><ci>b</ci></apply>
<apply><csymbol cd="group1">normal_closure</csymbol>
<apply><csymbol cd="group3">free_group</csymbol><ci>a</ci><ci>b</ci></apply>
<apply><csymbol cd="fns2">apply_to_list</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="group1">expression</csymbol>
<apply><csymbol cd="group3">free_group</csymbol><ci>a</ci><ci>b</ci></apply>
<ci>x</ci>
</apply>
</bind>
<apply><csymbol cd="list1">list</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>a</ci><cn type="integer">2</cn></apply>
<apply><csymbol cd="arith1">power</csymbol><ci>b</ci><ci>n</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<ci>a</ci>
<ci>b</ci>
<ci>a</ci>
<ci>b</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
isomorphic
(
dihedral_group
(
n )
,
quotient_group
(
free_group
(
a ,
b )
,
normal_closure
(
free_group
(
a ,
b )
,
apply_to_list
(
lambda
[
x ] .
(
expression
(
free_group
(
a ,
b )
,
x )
)
,
list
(
power
(
a , 2)
,
power
(
b ,
n )
,
times
(
a ,
b ,
a ,
b )
)
)
)
)
)
Popcorn
group2.isomorphic(groupname1.dihedral_group($n), group3.quotient_group(group3.free_group($a, $b), group1.normal_closure(group3.free_group($a, $b), fns2.apply_to_list(fns1.lambda[$x -> group1.expression(group3.free_group($a, $b), $x)], [$a ^ 2 , $b ^ $n , $a * $b * $a * $b]))))
Rendered Presentation MathML
isomorphic
(
dihedral_group
(
n
)
,
quotient_group
(
free_group
(
a
,
b
)
,
normal_closure
(
free_group
(
a
,
b
)
,
apply_to_list
(
λ
x
.
expression
(
free_group
(
a
,
b
)
,
x
)
,
(
a
2
,
b
n
,
a
b
a
b
)
)
)
)
)
Signatures:
sts
Description:
This symbol is a function with one argument, which should be
a natural number n. When applied to n
it represents the cyclic group of order n.
Signatures:
sts
Description:
This symbol is a function with one argument, which should be a
positive integer. When applied to n it represents the generalized quaternion group
of order 4n. This is the group with three generators a, b, and c and
relations c = a^2 = b^n, c*a = a*c , b*c = c*b, a*b = b*a*c, and c^2 = 1.
Signatures:
sts