OpenMath Content Dictionary: hypergeon0
Canonical URL:
http://www.math.kobe-u.ac.jp/OCD/hypergeon0.tfb
CD File:
hypergeon0.ocd
CD as XML Encoded OpenMath:
hypergeon0.omcd
Defines:
cartesian_product_n , kernel , minus_part , multi_power , plus_part , where
Date:
2003-11-30
Version:
1
(Revision 3)
Review Date:
2017-12-31
Status:
experimental
Author: Nobuki Takayama
This CD defines some supplementary symbols necessary for hypergeon1
and hypergeon2 (hypergeometric series of n variables).
These symbols may be included in CD's linalg, logic, poly, and set.
Description:
The argument is a vector. It replaces negative elements in the vector
to zero.
Signatures:
sts
Description:
The argument is a vector. It replaces positive elements in the vector
to zero and negative elements to their absolute values.
Commented Mathematical property (CMP):
$u = u_{+} - u_{-}$
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMV name="u"/>
<OMA><OMS cd="arith1" name="sub"/>
<OMA><OMS cd="hypergeon0" name="plus_part"/>
<OMV name="u"/>
</OMA>
<OMA><OMS cd="hypergeon0" name="minus_part"/>
<OMV name="u"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<ci>u</ci>
<apply><csymbol cd="arith1">sub</csymbol>
<apply><csymbol cd="hypergeon0">plus_part</csymbol><ci>u</ci></apply>
<apply><csymbol cd="hypergeon0">minus_part</csymbol><ci>u</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
$u = arith1.sub(hypergeon0.plus_part($u), hypergeon0.minus_part($u))
Rendered Presentation MathML
u
=
sub
(
plus_part
(
u
)
,
minus_part
(
u
)
)
Signatures:
sts
Description:
It returns the kernel of the map defined by a matrix in a specified
domain.
Commented Mathematical property (CMP):
$\kernel(D,A) = \{ x \in D | A x = 0 \}$
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="hypergeon0" name="kernel"/>
<OMV name="d"/>
<OMV name="a"/>
</OMA>
<OMA><OMS cd="set1" name="suchthat"/>
<OMV name="d"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="x"/>
</OMBVAR>
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="a"/>
<OMV name="x"/>
</OMA>
<OMA><OMS cd="linalg5" name="zero"/>
<OMA><OMS cd="linalg4" name="size"/>
<OMV name="x"/>
</OMA>
<OMI> 1 </OMI>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="hypergeon0">kernel</csymbol><ci>d</ci><ci>a</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<ci>d</ci>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">times</csymbol><ci>a</ci><ci>x</ci></apply>
<apply><csymbol cd="linalg5">zero</csymbol>
<apply><csymbol cd="linalg4">size</csymbol><ci>x</ci></apply>
<cn type="integer">1</cn>
</apply>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
hypergeon0.kernel($d, $a) = set1.suchthat($d, fns1.lambda[$x -> $a * $x = linalg5.zero(linalg4.size($x), 1)])
Rendered Presentation MathML
kernel
(
d
,
a
)
=
{
x
∈
d
|
a
x
=
zero
(
size
(
x
)
,
1
)
}
Signatures:
sts
Description:
The word "where" is often used in mathematical expressions
to set variables or to say side conditions.
CDname logic1.implies can be used for these purposes, but
"where" will be more intuitive and more friendly expression
for authors.
Commented Mathematical property (CMP):
$x^n=x x x \where{n=3}$
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="hypergeon0" name="where"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="n"/>
</OMBVAR>
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="x"/>
<OMV name="n"/>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="x"/>
<OMV name="x"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMA>
</OMBIND>
<OMA><OMS cd="relation1" name="eq"/>
<OMV name="n"/>
<OMI> 3 </OMI>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="hypergeon0">where</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>n</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>n</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">times</csymbol><ci>x</ci><ci>x</ci></apply>
<ci>x</ci>
</apply>
</apply>
</bind>
<apply><csymbol cd="relation1">eq</csymbol><ci>n</ci><cn type="integer">3</cn></apply>
</apply>
</math>
Prefix
Popcorn
hypergeon0.where(fns1.lambda[$n -> $x ^ $n = $x * $x * $x], $n = 3)
Rendered Presentation MathML
where
(
λ
n
.
x
n
=
x
x
x
,
n
=
3
)
Signatures:
sts
Description:
multi_power is for using the multi-index notation.
Commented Mathematical property (CMP):
$x^e = \prod_{i=1}^n x_i ^ {e_i}$
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="hypergeon0" name="multi_power"/>
<OMV name="x"/>
<OMV name="e"/>
</OMA>
<OMA><OMS cd="arith1" name="product"/>
<OMA><OMS cd="interval1" name="integer_interval"/>
<OMI> 1 </OMI>
<OMA><OMS cd="linalg4" name="size"/>
<OMV name="x"/>
</OMA>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="i"/>
</OMBVAR>
<OMA><OMS cd="arith1" name="power"/>
<OMA><OMS cd="linalg1" name="vector_selector"/>
<OMV name="i"/>
<OMV name="x"/>
</OMA>
<OMA><OMS cd="linalg1" name="vector_selector"/>
<OMV name="i"/>
<OMV name="e"/>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="hypergeon0">multi_power</csymbol><ci>x</ci><ci>e</ci></apply>
<apply><csymbol cd="arith1">product</csymbol>
<apply><csymbol cd="interval1">integer_interval</csymbol>
<cn type="integer">1</cn>
<apply><csymbol cd="linalg4">size</csymbol><ci>x</ci></apply>
</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>i</ci></bvar>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="linalg1">vector_selector</csymbol><ci>i</ci><ci>x</ci></apply>
<apply><csymbol cd="linalg1">vector_selector</csymbol><ci>i</ci><ci>e</ci></apply>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
hypergeon0.multi_power($x, $e) = arith1.product(interval1.integer_interval(1, linalg4.size($x)), fns1.lambda[$i -> linalg1.vector_selector($i, $x) ^ linalg1.vector_selector($i, $e)])
Rendered Presentation MathML
multi_power
(
x
,
e
)
=
∏
i
=
1
size
(
x
)
x
i
e
i
Signatures:
sts
Description:
the cartesian product of n copies of the first argument.
Binary function.
Commented Mathematical property (CMP):
$ Z^m \times Z^n = Z^{m+n} $
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="set1" name="cartesian_product"/>
<OMA><OMS cd="hypergeon0" name="cartesian_product_n"/>
<OMS cd="setname1" name="Z"/>
<OMV name="m"/>
</OMA>
<OMA><OMS cd="hypergeon0" name="cartesian_product_n"/>
<OMS cd="setname1" name="Z"/>
<OMV name="n"/>
</OMA>
</OMA>
<OMA><OMS cd="hypergeon0" name="cartesian_product_n"/>
<OMS cd="setname1" name="Z"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMV name="m"/>
<OMV name="n"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="set1">cartesian_product</csymbol>
<apply><csymbol cd="hypergeon0">cartesian_product_n</csymbol><csymbol cd="setname1">Z</csymbol><ci>m</ci></apply>
<apply><csymbol cd="hypergeon0">cartesian_product_n</csymbol><csymbol cd="setname1">Z</csymbol><ci>n</ci></apply>
</apply>
<apply><csymbol cd="hypergeon0">cartesian_product_n</csymbol>
<csymbol cd="setname1">Z</csymbol>
<apply><csymbol cd="arith1">plus</csymbol><ci>m</ci><ci>n</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.cartesian_product(hypergeon0.cartesian_product_n(setname1.Z, $m), hypergeon0.cartesian_product_n(setname1.Z, $n)) = hypergeon0.cartesian_product_n(setname1.Z, $m + $n)
Rendered Presentation MathML
cartesian_product_n
(
Z
,
m
)
×
cartesian_product_n
(
Z
,
n
)
=
cartesian_product_n
(
Z
,
m
+
n
)
Signatures:
sts