OpenMath Content Dictionary: linalg1p
-
Canonical URL:
-
http://www.math.kobe-u.ac.jp/OCD/linalg1p.tfb
-
CD File:
-
linalg1p.ocd
-
CD as XML Encoded OpenMath:
-
linalg1p.omcd
-
Defines:
-
kernel, minus_part, ones, plus_part
-
Date:
- 2002-07-30
-
Version:
- 1
(Revision 1)
-
Review Date:
- 2017-12-31
-
Status:
- experimental
Author: Nobuki Takayama
This CD defines symbols for linear algebra used for hypergeon1
(hypergeometric series of n variables).
-
Description:
-
The argument is a vector. It replaces negative elements in the vector
to zero.
-
Signatures:
-
sts
-
Description:
-
The argument is a vector. It replaces positive elements in the vector
to zero and negative elements to their absolute values.
-
Commented Mathematical property (CMP):
- $u = u_{+} - u_{-}$
-
Formal Mathematical property (FMP):
-
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMV name="u"/>
<OMA><OMS cd="arith1" name="sub"/>
<OMA><OMS cd="linalg1p" name="plus_part"/>
<OMV name="u"/>
</OMA>
<OMA><OMS cd="linalg1p" name="minus_part"/>
<OMV name="u"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<ci>u</ci>
<apply><csymbol cd="arith1">sub</csymbol>
<apply><csymbol cd="linalg1p">plus_part</csymbol><ci>u</ci></apply>
<apply><csymbol cd="linalg1p">minus_part</csymbol><ci>u</ci></apply>
</apply>
</apply>
</math>
$u = arith1.sub(linalg1p.plus_part($u), linalg1p.minus_part($u))
-
Signatures:
-
sts
-
Description:
-
It returns a vector of a specifed size of which elements are one.
1-ary function.
-
Commented Mathematical property (CMP):
- for all $i$, ${\vec 1}[i] = 1$
-
Signatures:
-
sts
-
Description:
-
It returns the kernel of the map defined by a matrix in a specified
domain.
-
Commented Mathematical property (CMP):
- $\{ x \in D | A x = 0 \}$
-
Formal Mathematical property (FMP):
-
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="linalg1p" name="kernel"/>
<OMV name="d"/>
<OMV name="a"/>
</OMA>
<OMA><OMS cd="set1" name="suchthat"/>
<OMV name="d"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="x"/>
</OMBVAR>
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="a"/>
<OMV name="x"/>
</OMA>
<OMA><OMS cd="linalg5" name="zero"/>
<OMA><OMS cd="linalg4" name="size"/>
<OMV name="x"/>
</OMA>
<OMI> 1 </OMI>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="linalg1p">kernel</csymbol><ci>d</ci><ci>a</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<ci>d</ci>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">times</csymbol><ci>a</ci><ci>x</ci></apply>
<apply><csymbol cd="linalg5">zero</csymbol>
<apply><csymbol cd="linalg4">size</csymbol><ci>x</ci></apply>
<cn type="integer">1</cn>
</apply>
</apply>
</bind>
</apply>
</apply>
</math>
linalg1p.kernel($d, $a) = set1.suchthat($d, fns1.lambda[$x -> $a * $x = linalg5.zero(linalg4.size($x), 1)])
-
Signatures:
-
sts