OpenMath Content Dictionary: linalgsym1
Canonical URL:
http://www.openmath.org/cd/linalgsym1.ocd
CD Base:
http://www.openmath.org/cd
CD File:
linalgsym1.ocd
CD as XML Encoded OpenMath:
linalgsym1.omcd
Defines:
Hermitian , anti_Hermitian , skew_symmetric , symmetric
Date:
2004-05-11
Version:
3
(Revision 1)
Review Date:
2006-03-30
Status:
experimental
This document is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
The copyright holder grants you permission to redistribute this
document freely as a verbatim copy. Furthermore, the copyright
holder permits you to develop any derived work from this document
provided that the following conditions are met.
a) The derived work acknowledges the fact that it is derived from
this document, and maintains a prominent reference in the
work to the original source.
b) The fact that the derived work is not the original OpenMath
document is stated prominently in the derived work. Moreover if
both this document and the derived work are Content Dictionaries
then the derived work must include a different CDName element,
chosen so that it cannot be confused with any works adopted by
the OpenMath Society. In particular, if there is a Content
Dictionary Group whose name is, for example, `math' containing
Content Dictionaries named `math1', `math2' etc., then you should
not name a derived Content Dictionary `mathN' where N is an integer.
However you are free to name it `private_mathN' or some such. This
is because the names `mathN' may be used by the OpenMath Society
for future extensions.
c) The derived work is distributed under terms that allow the
compilation of derived works, but keep paragraphs a) and b)
intact. The simplest way to do this is to distribute the derived
work under the OpenMath license, but this is not a requirement.
If you have questions about this license please contact the OpenMath
society at http://www.openmath.org .
This CD contains symbols which represent a number of special types of
matrix related to symmetry.
November 2004, A.M. Cohen removed the symmetry alien parts from this CD and
renamed it from linalg5 to linalgsym1.
Role:
application
Description:
This symbol represents a symmetric matrix, it takes one argument. The
argument should be a vector of vectors of elements of the matrix. For
j>=i the ij'th element of the matrix is the (j-i+1)'th element of the i'th
element of the argument. This determines the upper triangle of the
matrix, the lower triangle is specified by the rule M = transpose M.
Commented Mathematical property (CMP):
the sum of a symmetric matrix and its transpose is symmetric
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="linalgsym1" name="symmetric"/>
<OMV name="VV1"/>
</OMA>
<OMA>
<OMS cd="linalg1" name="transpose"/>
<OMA>
<OMS cd="linalgsym1" name="symmetric"/>
<OMV name="VV1"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="linalgsym1" name="symmetric"/>
<OMV name="VV2"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="linalgsym1">symmetric</csymbol><ci>VV1</ci></apply>
<apply><csymbol cd="linalg1">transpose</csymbol>
<apply><csymbol cd="linalgsym1">symmetric</csymbol><ci>VV1</ci></apply>
</apply>
</apply>
<apply><csymbol cd="linalgsym1">symmetric</csymbol><ci>VV2</ci></apply>
</apply>
</math>
Prefix
Popcorn
linalgsym1.symmetric($VV1) + linalg1.transpose(linalgsym1.symmetric($VV1)) = linalgsym1.symmetric($VV2)
Rendered Presentation MathML
symmetric
(
VV
1
)
+
symmetric
(
VV
1
)
T
=
symmetric
(
VV
2
)
Commented Mathematical property (CMP):
for a symmetric matrix M, M = transpose M
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="linalgsym1" name="symmetric"/>
<OMV name="VV"/>
</OMA>
<OMA>
<OMS cd="linalg1" name="transpose"/>
<OMA>
<OMS cd="linalgsym1" name="symmetric"/>
<OMV name="VV"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="linalgsym1">symmetric</csymbol><ci>VV</ci></apply>
<apply><csymbol cd="linalg1">transpose</csymbol>
<apply><csymbol cd="linalgsym1">symmetric</csymbol><ci>VV</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
linalgsym1.symmetric($VV) = linalg1.transpose(linalgsym1.symmetric($VV))
Rendered Presentation MathML
symmetric
(
VV
)
=
symmetric
(
VV
)
T
Commented Mathematical property (CMP):
the dimension of a symmetric matrix = the length of the vector
which defines it
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="linalg3" name="rowcount"/>
<OMA>
<OMS cd="linalgsym1" name="symmetric"/>
<OMV name="VV"/>
</OMA>
</OMA>
<OMA>
<OMS cd="linalg3" name="size"/>
<OMV name="VV"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="linalg3">rowcount</csymbol>
<apply><csymbol cd="linalgsym1">symmetric</csymbol><ci>VV</ci></apply>
</apply>
<apply><csymbol cd="linalg3">size</csymbol><ci>VV</ci></apply>
</apply>
</math>
Prefix
Popcorn
linalg3.rowcount(linalgsym1.symmetric($VV)) = linalg3.size($VV)
Rendered Presentation MathML
rowcount
(
symmetric
(
VV
)
)
=
size
(
VV
)
Example:
An example to represent the symmetric matrix:
[[1,2,3,4]
[2,5,6,7]
[3,6,8,9]
[4,7,9,10]]
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="linalgsym1" name="symmetric"/>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMI> 1 </OMI>
<OMI> 2 </OMI>
<OMI> 3 </OMI>
<OMI> 4 </OMI>
</OMA>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMI> 5 </OMI>
<OMI> 6 </OMI>
<OMI> 7 </OMI>
</OMA>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMI> 8 </OMI>
<OMI> 9 </OMI>
</OMA>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMI> 10 </OMI>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="linalgsym1">symmetric</csymbol>
<apply><csymbol cd="linalg2">vector</csymbol>
<apply><csymbol cd="linalg2">vector</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
<cn type="integer">3</cn>
<cn type="integer">4</cn>
</apply>
<apply><csymbol cd="linalg2">vector</csymbol>
<cn type="integer">5</cn>
<cn type="integer">6</cn>
<cn type="integer">7</cn>
</apply>
<apply><csymbol cd="linalg2">vector</csymbol>
<cn type="integer">8</cn>
<cn type="integer">9</cn>
</apply>
<apply><csymbol cd="linalg2">vector</csymbol><cn type="integer">10</cn></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
linalgsym1.symmetric(linalg2.vector(linalg2.vector(1, 2, 3, 4), linalg2.vector(5, 6, 7), linalg2.vector(8, 9), linalg2.vector(10)))
Rendered Presentation MathML
symmetric
(
(
(
1
,
2
,
3
,
4
)
,
(
5
,
6
,
7
)
,
(
8
,
9
)
,
(
10
)
)
)
Signatures:
sts
Role:
application
Description:
This symbol represents a skew-symmetric matrix, it takes one
argument. The argument should be a vector of vectors of elements of
the matrix. For j>i the ij'th element of the matrix is the (j-i+1)'th
element of the i'th element of the argument. This determines the
elements above the diagonal of the matrix, the elements below the
diagonal of the matrix must conform to the rule M = - transpose
M. This rule implies that the elements on the diagonal must be equal
to 0, therefore we do not include these in the argument.
Commented Mathematical property (CMP):
The elements on the diagonal of a skew-symmetric matrix are zero
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="linalg1" name="matrix_selector"/>
<OMV name="i"/>
<OMV name="i"/>
<OMA>
<OMS cd="linalgsym1" name="skew_symmetric"/>
<OMV name="VV"/>
</OMA>
</OMA>
<OMS cd="alg1" name="zero"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="linalg1">matrix_selector</csymbol>
<ci>i</ci>
<ci>i</ci>
<apply><csymbol cd="linalgsym1">skew_symmetric</csymbol><ci>VV</ci></apply>
</apply>
<csymbol cd="alg1">zero</csymbol>
</apply>
</math>
Prefix
Popcorn
linalg1.matrix_selector($i, $i, linalgsym1.skew_symmetric($VV)) = alg1.zero
Rendered Presentation MathML
skew_symmetric
(
VV
)
i
i
=
0
Commented Mathematical property (CMP):
for a skew-symmetric matrix M, M = - transpose M
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="linalgsym1" name="skew_symmetric"/>
<OMV name="VV"/>
</OMA>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMA>
<OMS cd="linalg1" name="transpose"/>
<OMA>
<OMS cd="linalgsym1" name="skew_symmetric"/>
<OMV name="VV"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="linalgsym1">skew_symmetric</csymbol><ci>VV</ci></apply>
<apply><csymbol cd="arith1">unary_minus</csymbol>
<apply><csymbol cd="linalg1">transpose</csymbol>
<apply><csymbol cd="linalgsym1">skew_symmetric</csymbol><ci>VV</ci></apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
linalgsym1.skew_symmetric($VV) = -(linalg1.transpose(linalgsym1.skew_symmetric($VV)))
Rendered Presentation MathML
skew_symmetric
(
VV
)
=
-
skew_symmetric
(
VV
)
T
Example:
An example to represent the skew-symmetric matrix:
[[ 0, 2, 3, 4]
[-2, 0, 6, 7]
[-3,-6, 0, 9]
[-4,-7,-9, 0]]
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="linalgsym1" name="skew_symmetric"/>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMI> 2 </OMI>
<OMI> 3 </OMI>
<OMI> 4 </OMI>
</OMA>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMI> 6 </OMI>
<OMI> 7 </OMI>
</OMA>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMI> 9 </OMI>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="linalgsym1">skew_symmetric</csymbol>
<apply><csymbol cd="linalg2">vector</csymbol>
<apply><csymbol cd="linalg2">vector</csymbol>
<cn type="integer">2</cn>
<cn type="integer">3</cn>
<cn type="integer">4</cn>
</apply>
<apply><csymbol cd="linalg2">vector</csymbol>
<cn type="integer">6</cn>
<cn type="integer">7</cn>
</apply>
<apply><csymbol cd="linalg2">vector</csymbol><cn type="integer">9</cn></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
linalgsym1.skew_symmetric(linalg2.vector(linalg2.vector(2, 3, 4), linalg2.vector(6, 7), linalg2.vector(9)))
Rendered Presentation MathML
skew_symmetric
(
(
(
2
,
3
,
4
)
,
(
6
,
7
)
,
(
9
)
)
)
Signatures:
sts
Role:
application
Description:
This symbol represents a Hermitian matrix, it takes one
argument. The argument should be a vector of vectors of values which
determine the upper triangle of the matrix. The lower triangle of the
matrix is specified by the following relation: M^* = transpose(M),
were M^* denotes the matrix consisting of all the complex conjugates
of M.
Commented Mathematical property (CMP):
The complex conjugate of a Hermitian matrix equals its transpose
Commented Mathematical property (CMP):
The diagonal elements of a Hermitian matrix will be real
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="linalg1" name="matrix_selector"/>
<OMV name="i"/>
<OMV name="i"/>
<OMA>
<OMS cd="linalgsym1" name="Hermitian"/>
<OMV name="VV"/>
</OMA>
</OMA>
<OMS cd="setname1" name="R"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="linalg1">matrix_selector</csymbol>
<ci>i</ci>
<ci>i</ci>
<apply><csymbol cd="linalgsym1">Hermitian</csymbol><ci>VV</ci></apply>
</apply>
<csymbol cd="setname1">R</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.in(linalg1.matrix_selector($i, $i, linalgsym1.Hermitian($VV)), setname1.R)
Rendered Presentation MathML
Hermitian
(
VV
)
i
i
∈
R
Example:
An example to describe the Hermitian matrix:
[[1 , 2+2i]
[2-2i, 3]]
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="linalgsym1" name="Hermitian"/>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMI>1</OMI>
<OMA>
<OMS cd="complex1" name="complex_cartesian"/>
<OMI> 2 </OMI><OMI> 2 </OMI>
</OMA>
</OMA>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMI>3</OMI>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="linalgsym1">Hermitian</csymbol>
<apply><csymbol cd="linalg2">vector</csymbol>
<apply><csymbol cd="linalg2">vector</csymbol>
<cn type="integer">1</cn>
<apply><csymbol cd="complex1">complex_cartesian</csymbol>
<cn type="integer">2</cn>
<cn type="integer">2</cn>
</apply>
</apply>
<apply><csymbol cd="linalg2">vector</csymbol><cn type="integer">3</cn></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
linalgsym1.Hermitian(linalg2.vector(linalg2.vector(1, 2 | 2), linalg2.vector(3)))
Rendered Presentation MathML
Hermitian
(
(
(
1
,
2
+
2
i
)
,
(
3
)
)
)
Signatures:
sts
Role:
application
Description:
This symbol represents an anti-Hermitian matrix, it takes one
argument. The argument should be a vector of vectors of values which
determine the upper triangle of the matrix. The lower triangle of the
matrix is specified by the following relation: - M^* = transpose(M),
were M^* denotes the matrix consisting of all the complex conjugates
of M. These rules imply that the main diagonal is zero, therefore the
argument should not include it.
Commented Mathematical property (CMP):
The complex conjugate of an anti-Hermitian matrix equals minus its transpose
Commented Mathematical property (CMP):
an anti-hermitian matrix will have zero on the diagonal
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="linalg1" name="matrix_selector"/>
<OMV name="i"/>
<OMV name="i"/>
<OMA>
<OMS cd="linalgsym1" name="anti_Hermitian"/>
<OMV name="VV"/>
</OMA>
</OMA>
<OMS cd="alg1" name="zero"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="linalg1">matrix_selector</csymbol>
<ci>i</ci>
<ci>i</ci>
<apply><csymbol cd="linalgsym1">anti_Hermitian</csymbol><ci>VV</ci></apply>
</apply>
<csymbol cd="alg1">zero</csymbol>
</apply>
</math>
Prefix
Popcorn
linalg1.matrix_selector($i, $i, linalgsym1.anti_Hermitian($VV)) = alg1.zero
Rendered Presentation MathML
anti_Hermitian
(
VV
)
i
i
=
0
Example:
An example to describe the anti-Hermitian matrix:
[[0 , 1+i]
[-1+i , 0 ]]
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="linalgsym1" name="anti_Hermitian"/>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMA>
<OMS cd="complex1" name="complex_cartesian"/>
<OMI> 1 </OMI><OMI> 1 </OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="linalgsym1">anti_Hermitian</csymbol>
<apply><csymbol cd="linalg2">vector</csymbol>
<apply><csymbol cd="linalg2">vector</csymbol>
<apply><csymbol cd="complex1">complex_cartesian</csymbol>
<cn type="integer">1</cn>
<cn type="integer">1</cn>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
linalgsym1.anti_Hermitian(linalg2.vector(linalg2.vector(1 | 1)))
Rendered Presentation MathML
anti_Hermitian
(
(
(
1
+
i
)
)
)
Signatures:
sts