OpenMath Content Dictionary: norm1 
            
               
                  Canonical URL: 
                
               
                  http://www.openmath.org/cd/norm1.ocd 
                
               
                  CD File: 
                
               
                  norm1.ocd
       
                
               
                  CD as XML Encoded OpenMath: 
                
               
                  norm1.omcd
       
                
               
                  Defines: 
                
               
                  Euclidean_norm , L_infinity_norm , L_norm 
                
               
                  Date: 
                
               2003-09-16 
               
                  Version: 
                
               1
    (Revision 2)
   
               
                  Review Date: 
                
               2017-12-31 
               
                  Status: 
                
               experimental 
             
            
     This document is distributed in the hope that it will be useful, 
     but WITHOUT ANY WARRANTY; without even the implied warranty of 
     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
     The copyright holder grants you permission to redistribute this 
     document freely as a verbatim copy. Furthermore, the copyright
     holder permits you to develop any derived work from this document
     provided that the following conditions are met.
       a) The derived work acknowledges the fact that it is derived from
          this document, and maintains a prominent reference in the 
          work to the original source.
       b) The fact that the derived work is not the original OpenMath 
          document is stated prominently in the derived work.  Moreover if
          both this document and the derived work are Content Dictionaries
          then the derived work must include a different CDName element,
          chosen so that it cannot be confused with any works adopted by
          the OpenMath Society.  In particular, if there is a Content 
          Dictionary Group whose name is, for example, `math' containing
          Content Dictionaries named `math1', `math2' etc., then you should 
          not name a derived Content Dictionary `mathN' where N is an integer.
          However you are free to name it `private_mathN' or some such.  This
          is because the names `mathN' may be used by the OpenMath Society
          for future extensions.
       c) The derived work is distributed under terms that allow the
          compilation of derived works, but keep paragraphs a) and b)
          intact.  The simplest way to do this is to distribute the derived
          work under the OpenMath license, but this is not a requirement.
     If you have questions about this license please contact the OpenMath
     society at http://www.openmath.org .
  
 
 
 
            
  Author: James Davenport
 
            
  This CD contains definitions of various norms.
            
               
                  Description: 
                
               
                  
       This symbol signifies the $L_p$ norm for any $p$ (the
       case of $L_\infty$ is handled specially).
   
                
             
            
               
                  Commented Mathematical property (CMP): 
                
               
      $L_p(v)=\left(\sum_{i=1}^{size v}|v_i|^p\right)^{1/p}$
    
             
            
               
                  Formal Mathematical property (FMP): 
                
               
                  
                     OpenMath XML (source) 
                     
     <OMOBJ xmlns="http://www.openmath.org/OpenMath">
       <OMA>
         <OMS name="eq" cd="relation1"/>
         <OMA>
           <OMS name="L_norm" cd="norm1"/>
	   <OMV name="p"/>
	   <OMV name="v"/>
         </OMA>
         <OMA>
           <OMS name="power" cd="arith1"/>
           <OMA>
             <OMS name="sum" cd="arith1"/>
             <OMA>
               <OMS name="integer_interval" cd="interval1"/>
	       <OMS name="one" cd="alg1"/>
               <OMA>
	         <OMS name="size" cd="set1"/>
	         <OMV name="v"/>
               </OMA>
             </OMA>
             <OMBIND>
               <OMS cd="fns1" name="lambda"/>
                 <OMBVAR>
                   <OMV name="i"/>
                 </OMBVAR>
                 <OMA>
                   <OMS cd="arith1" name="power"/>
                   <OMA>
		     <OMS name="abs" cd="arith1"/>
                     <OMA>
                       <OMS cd="linalg1" name="vector_selector"/>
                       <OMV name="v"/>
                       <OMV name="i"/>
                     </OMA>
                   </OMA>
	           <OMV name="p"/>
                 </OMA>
             </OMBIND>
           </OMA>
           <OMA>
             <OMS name="divide" cd="arith1"/>
	     <OMS name="one" cd="alg1"/>
	     <OMV name="p"/>
           </OMA>
         </OMA>
       </OMA>
     </OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="norm1">L_norm</csymbol><ci>p</ci><ci>v</ci></apply>
  <apply><csymbol cd="arith1">power</csymbol>
   <apply><csymbol cd="arith1">sum</csymbol>
    <apply><csymbol cd="interval1">integer_interval</csymbol>
     <csymbol cd="alg1">one</csymbol>
     <apply><csymbol cd="set1">size</csymbol><ci>v</ci></apply>
    </apply>
    <bind><csymbol cd="fns1">lambda</csymbol>
     <bvar><ci>i</ci></bvar>
     <apply><csymbol cd="arith1">power</csymbol>
      <apply><csymbol cd="arith1">abs</csymbol>
       <apply><csymbol cd="linalg1">vector_selector</csymbol><ci>v</ci><ci>i</ci></apply>
      </apply>
      <ci>p</ci>
     </apply>
    </bind>
   </apply>
   <apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>p</ci></apply>
  </apply>
 </apply>
</math> 
                   
                  Prefix 
                  
                  
                     Popcorn 
                     
       norm1.L_norm($p, $v) = arith1.sum(interval1.integer_interval(alg1.one, set1.size($v)), fns1.lambda[$i -> arith1.abs(linalg1.vector_selector($v, $i)) ^ $p]) ^ (alg1.one / $p)
     
                   
                  
                     Rendered Presentation MathML 
                     
                        
                           
                              
                                 
                                    L_norm 
                                     
                                    
                                       ( 
                                       p 
                                       , 
                                       v 
                                       ) 
                                     
                                  
                                 = 
                                 
                                    
                                       ∑ 
                                       
                                          
                                             i 
                                           
                                          = 
                                          1 
                                        
                                       
                                          size 
                                           
                                          
                                             ( 
                                             v 
                                             ) 
                                           
                                        
                                     
                                    
                                       
                                          | 
                                          
                                             i 
                                             v 
                                           
                                          | 
                                        
                                       p 
                                     
                                    
                                       
                                          1 
                                          p 
                                        
                                     
                                  
                               
                            
                        
                      
                   
                
             
            
               
                  Signatures: 
                
               
                  
	sts
       
                
             
            
            
               
                  Description: 
                
               
                  
       This symbol signifies the $L_\infty$ norm.
   
                
             
            
               
                  Commented Mathematical property (CMP): 
                
               
      $L_\infty(v)=\max_{i=1}^{size v}|v_i|$
    
             
            
               
                  Formal Mathematical property (FMP): 
                
               
                  
                     OpenMath XML (source) 
                     
     <OMOBJ xmlns="http://www.openmath.org/OpenMath">
       <OMA>
         <OMS name="eq" cd="relation1"/>
         <OMA>
           <OMS name="L_infinity_norm" cd="norm1"/>
	   <OMV name="v"/>
         </OMA>
         <OMA>
           <OMS cd="fns2" name="apply_to_list"/>
           <OMS cd="minmax1" name="max"/>
           <OMA>
             <OMS cd="list1" name="make_list"/>
             <OMI> 1 </OMI>
             <OMA>
	       <OMS name="size" cd="set1"/>
	       <OMV name="v"/>
             </OMA>
             <OMBIND>
               <OMS cd="fns1" name="lambda"/>
               <OMBVAR>
                 <OMV name="i"/>
               </OMBVAR>
               <OMA>
                 <OMS cd="arith1" name="abs"/>
                 <OMA>
                   <OMS cd="linalg1" name="vector_selector"/>
                   <OMV name="v"/>
                   <OMV name="i"/>
                 </OMA>
               </OMA>
             </OMBIND>
           </OMA>
         </OMA>
       </OMA>
     </OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="norm1">L_infinity_norm</csymbol><ci>v</ci></apply>
  <apply><csymbol cd="fns2">apply_to_list</csymbol>
   <csymbol cd="minmax1">max</csymbol>
   <apply><csymbol cd="list1">make_list</csymbol>
    <cn type="integer">1</cn>
    <apply><csymbol cd="set1">size</csymbol><ci>v</ci></apply>
    <bind><csymbol cd="fns1">lambda</csymbol>
     <bvar><ci>i</ci></bvar>
     <apply><csymbol cd="arith1">abs</csymbol>
      <apply><csymbol cd="linalg1">vector_selector</csymbol><ci>v</ci><ci>i</ci></apply>
     </apply>
    </bind>
   </apply>
  </apply>
 </apply>
</math> 
                   
                  Prefix 
                  
                  
                     Popcorn 
                     
       norm1.L_infinity_norm($v) = fns2.apply_to_list(minmax1.max, list1.make_list(1, set1.size($v), fns1.lambda[$i -> arith1.abs(linalg1.vector_selector($v, $i))]))
     
                   
                  
                     Rendered Presentation MathML 
                     
                        
                           
                              
                                 
                                    L_infinity_norm 
                                     
                                    
                                       ( 
                                       v 
                                       ) 
                                     
                                  
                                 = 
                                 
                                    apply_to_list 
                                     
                                    
                                       ( 
                                       max 
                                       , 
                                       
                                          make_list 
                                           
                                          
                                             ( 
                                              1  
                                             , 
                                             
                                                size 
                                                 
                                                
                                                   ( 
                                                   v 
                                                   ) 
                                                 
                                              
                                             , 
                                             
                                                λ 
                                                  
                                                
                                                   i 
                                                 
                                                . 
                                                
                                                   | 
                                                   
                                                      i 
                                                      v 
                                                    
                                                   | 
                                                 
                                              
                                             ) 
                                           
                                        
                                       ) 
                                     
                                  
                               
                            
                        
                      
                   
                
             
            
               
                  Signatures: 
                
               
                  
	sts
       
                
             
            
            
               
                  Description: 
                
               
                  
       This symbol signifies the Euclidean ($L_2$) norm. 
   
                
             
            
               
                  Commented Mathematical property (CMP): 
                
               
      $L_2(v)=$ Euclidean_norm(v)
    
             
            
               
                  Formal Mathematical property (FMP): 
                
               
                  
                     OpenMath XML (source) 
                     
     <OMOBJ xmlns="http://www.openmath.org/OpenMath">
       <OMA>
         <OMS name="eq" cd="relation1"/>
         <OMA>
           <OMS name="Euclidean_norm" cd="norm1"/>
	   <OMV name="v"/>
         </OMA>
           <OMS name="L_norm" cd="norm1"/>
	   <OMI> 2 </OMI>
	   <OMV name="v"/>
       </OMA>
     </OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="norm1">Euclidean_norm</csymbol><ci>v</ci></apply>
  <csymbol cd="norm1">L_norm</csymbol>
  <cn type="integer">2</cn>
  <ci>v</ci>
 </apply>
</math> 
                   
                  Prefix 
                  
                  
                     Popcorn 
                     
       norm1.Euclidean_norm($v) = norm1.L_norm = 2 = $v
     
                   
                  
                     Rendered Presentation MathML 
                     
                        
                           
                              
                                 
                                    Euclidean_norm 
                                     
                                    
                                       ( 
                                       v 
                                       ) 
                                     
                                  
                                 = 
                                 L_norm 
                                 = 
                                  2  
                                 = 
                                 v 
                               
                            
                        
                      
                   
                
             
            
               
                  Signatures: 
                
               
                  
	sts