OpenMath Content Dictionary: poly1p
Canonical URL:
http://www.math.kobe-u.ac.jp/OCD/poly1p.tfb
CD File:
poly1p.ocd
CD as XML Encoded OpenMath:
poly1p.omcd
Defines:
index , indexed_variable , multi_power , sorted_set_of_indexed_variables , vector_of_indexed_variables
Date:
2002-08-08
Version:
1
(Revision 2)
Review Date:
2017-12-31
Status:
experimental
Author: Nobuki Takayama
This CD defines symbols for concerning multi-index and indexed variables.
Description:
multi_power is for using the multi-index notation.
Commented Mathematical property (CMP):
$\prod_{i=1}^n x_i ^ {e_i}$
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="poly1p" name="multi_power"/>
<OMV name="x"/>
<OMV name="e"/>
</OMA>
<OMA><OMS cd="arith1" name="product"/>
<OMA><OMS cd="interval1" name="integer_interval"/>
<OMI> 1 </OMI>
<OMA><OMS cd="linalg4" name="size"/>
<OMV name="x"/>
</OMA>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="i"/>
</OMBVAR>
<OMA><OMS cd="arith1" name="power"/>
<OMA><OMS cd="linalg1" name="vector_selector"/>
<OMV name="i"/>
<OMV name="x"/>
</OMA>
<OMA><OMS cd="linalg1" name="vector_selector"/>
<OMV name="i"/>
<OMV name="e"/>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="poly1p">multi_power</csymbol><ci>x</ci><ci>e</ci></apply>
<apply><csymbol cd="arith1">product</csymbol>
<apply><csymbol cd="interval1">integer_interval</csymbol>
<cn type="integer">1</cn>
<apply><csymbol cd="linalg4">size</csymbol><ci>x</ci></apply>
</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>i</ci></bvar>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="linalg1">vector_selector</csymbol><ci>i</ci><ci>x</ci></apply>
<apply><csymbol cd="linalg1">vector_selector</csymbol><ci>i</ci><ci>e</ci></apply>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
poly1p.multi_power($x, $e) = arith1.product(interval1.integer_interval(1, linalg4.size($x)), fns1.lambda[$i -> linalg1.vector_selector($i, $x) ^ linalg1.vector_selector($i, $e)])
Rendered Presentation MathML
multi_power
(
x
,
e
)
=
∏
i
=
1
size
(
x
)
x
i
e
i
Signatures:
sts
Description:
index returns the index of a given indexed variable.
Signatures:
sts
Description:
indexed_variable(x,i) returns the variable x_i
Commented Mathematical property (CMP):
index(indexed_variable(x,i)) = i
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="poly1p" name="index"/>
<OMA><OMS cd="poly1p" name="indexed_variable"/>
<OMV name="x"/>
<OMV name="i"/>
</OMA>
</OMA>
<OMV name="i"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="poly1p">index</csymbol>
<apply><csymbol cd="poly1p">indexed_variable</csymbol><ci>x</ci><ci>i</ci></apply>
</apply>
<ci>i</ci>
</apply>
</math>
Prefix
Popcorn
poly1p.index(poly1p.indexed_variable($x, $i)) = $i
Rendered Presentation MathML
index
(
indexed_variable
(
x
,
i
)
)
=
i
Commented Mathematical property (CMP):
index(indexed_variable(x,[1,2])) = [1,2]
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="poly1p" name="index"/>
<OMA><OMS cd="poly1p" name="indexed_variable"/>
<OMV name="x"/>
<OMA><OMS cd="linalg2" name="vector"/>
<OMI> 1 </OMI>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
<OMA><OMS cd="linalg2" name="vector"/>
<OMI> 1 </OMI>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="poly1p">index</csymbol>
<apply><csymbol cd="poly1p">indexed_variable</csymbol>
<ci>x</ci>
<apply><csymbol cd="linalg2">vector</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
<apply><csymbol cd="linalg2">vector</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
</apply>
</apply>
</math>
Prefix
Popcorn
poly1p.index(poly1p.indexed_variable($x, linalg2.vector(1, 2))) = linalg2.vector(1, 2)
Rendered Presentation MathML
index
(
indexed_variable
(
x
,
(
1
,
2
)
)
)
=
(
1
,
2
)
Signatures:
sts
Description:
vector_of_indexed_variables(x,n) returns the vector of variables
(x_1, ..., x_n).
vector_of_indexed_variables(x,[m,n]) returns the vector of variables
(x_{1,1}, ..., x_{m,n}).
Any vector of numbers can be given as an argument.
Commented Mathematical property (CMP):
i-th element of vector_of_indexed_variable(x,n) is
indexed_variable(x,i)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="linalg1" name="vector_selector"/>
<OMV name="i"/>
<OMA><OMS cd="poly1p" name="vector_of_indexed_variables"/>
<OMV name="x"/>
<OMV name="n"/>
</OMA>
</OMA>
<OMA><OMS cd="poly1p" name="indexed_variable"/>
<OMV name="x"/>
<OMV name="i"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="linalg1">vector_selector</csymbol>
<ci>i</ci>
<apply><csymbol cd="poly1p">vector_of_indexed_variables</csymbol><ci>x</ci><ci>n</ci></apply>
</apply>
<apply><csymbol cd="poly1p">indexed_variable</csymbol><ci>x</ci><ci>i</ci></apply>
</apply>
</math>
Prefix
Popcorn
linalg1.vector_selector($i, poly1p.vector_of_indexed_variables($x, $n)) = poly1p.indexed_variable($x, $i)
Rendered Presentation MathML
vector_of_indexed_variables
(
x
,
n
)
i
=
indexed_variable
(
x
,
i
)
Signatures:
sts
Description:
sorted_set_of_indexed_variables(x,s) returns the vector of variables
indexed by the sorted set s.
Commented Mathematical property (CMP):
m-element of sorted_set_of_indexed_variables(x,s) is
indexed_variable(x,m)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="set1p" name="index_set_selector"/>
<OMV name="m"/>
<OMA><OMS cd="poly1p" name="sorted_set_of_indexed_variables"/>
<OMV name="x"/>
<OMV name="s"/>
</OMA>
</OMA>
<OMA><OMS cd="poly1p" name="indexed_variable"/>
<OMV name="x"/>
<OMV name="m"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="set1p">index_set_selector</csymbol>
<ci>m</ci>
<apply><csymbol cd="poly1p">sorted_set_of_indexed_variables</csymbol><ci>x</ci><ci>s</ci></apply>
</apply>
<apply><csymbol cd="poly1p">indexed_variable</csymbol><ci>x</ci><ci>m</ci></apply>
</apply>
</math>
Prefix
Popcorn
set1p.index_set_selector($m, poly1p.sorted_set_of_indexed_variables($x, $s)) = poly1p.indexed_variable($x, $m)
Rendered Presentation MathML
index_set_selector
(
m
,
sorted_set_of_indexed_variables
(
x
,
s
)
)
=
indexed_variable
(
x
,
m
)
Signatures:
sts