<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="set1" name="cartesian_product"/>
<OMA><OMS cd="set1p" name="cartesian_product_n"/>
<OMS cd="setname1" name="Z"/>
<OMV name="m"/>
</OMA>
<OMA><OMS cd="set1p" name="cartesian_product_n"/>
<OMS cd="setname1" name="Z"/>
<OMV name="n"/>
</OMA>
</OMA>
<OMA><OMS cd="set1p" name="cartesian_product_n"/>
<OMS cd="setname1" name="Z"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMV name="m"/>
<OMV name="n"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="set1">cartesian_product</csymbol>
<apply><csymbol cd="set1p">cartesian_product_n</csymbol><csymbol cd="setname1">Z</csymbol><ci>m</ci></apply>
<apply><csymbol cd="set1p">cartesian_product_n</csymbol><csymbol cd="setname1">Z</csymbol><ci>n</ci></apply>
</apply>
<apply><csymbol cd="set1p">cartesian_product_n</csymbol>
<csymbol cd="setname1">Z</csymbol>
<apply><csymbol cd="arith1">plus</csymbol><ci>m</ci><ci>n</ci></apply>
</apply>
</apply>
</math>
set1.cartesian_product(set1p.cartesian_product_n(setname1.Z, $m), set1p.cartesian_product_n(setname1.Z, $n)) = set1p.cartesian_product_n(setname1.Z, $m + $n)