OpenMath Content Dictionary: relation3
Canonical URL:
http://www.openmath.org/cd/relation3.ocd
CD Base:
http://www.openmath.org/cd
CD File:
relation3.ocd
CD as XML Encoded OpenMath:
relation3.omcd
Defines:
class , classes , equivalence_closure , is_equivalence , is_reflexive , is_relation , is_symmetric , is_transitive , reflexive_closure , symmetric_closure , transitive_closure
Date:
2001-03-12
Version:
2
Review Date:
2003-04-01
Status:
official
Author: OpenMath Consortium
SourceURL: https://github.com/OpenMath/CDs
This CD holds the basic equivalence relation notions.
Description:
This symbol is a boolean function of two arguments, S and R.
The first argument should be a set. When applied to S and R, the function
returns true if and only if the second argument is a subset of the Cartesian
product of S with itself.
Commented Mathematical property (CMP):
R a subset of S x S if and only if is_relation (S,R).
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="logic1" name="equivalent"/>
<OMA><OMS cd="set1" name="subset"/>
<OMV name="R"/>
<OMA><OMS cd="set1" name="cartesian_product"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA><OMS cd="relation3" name="is_relation"/>
<OMV name="S"/>
<OMV name="R"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">equivalent</csymbol>
<apply><csymbol cd="set1">subset</csymbol>
<ci>R</ci>
<apply><csymbol cd="set1">cartesian_product</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="relation3">is_relation</csymbol><ci>S</ci><ci>R</ci></apply>
</apply>
</math>
Prefix
Popcorn
logic1.equivalent(set1.subset($R, set1.cartesian_product($S)), relation3.is_relation($S, $R))
Rendered Presentation MathML
R
⊂
S
≡
is_relation
(
S
,
R
)
Signatures:
sts
Description:
This symbol represents a binary function whose first argument is a set S,
whose second argument is a relation R on S.
When applied to S and R, it represents the smallest equivalence relation
(with respect to inclusion) on S containing R.
Signatures:
sts
Description:
This symbol represents a binary function whose first argument is a set S,
whose second argument is a relation R on S.
When applied to S and R, it represents the smallest transitive relation
(with respect to inclusion) on S containing R.
Signatures:
sts
Description:
This symbol represents a binary function whose first argument is a set S,
whose second argument is a relation R on S.
When applied to S and R, it represents the smallest reflexive relation
(with respect to inclusion) on S containing R.
Signatures:
sts
Description:
This symbol represents a binary function whose first argument is a set S,
whose second argument is a relation R on S.
When applied to S and R, it represents the smallest symmetric relation
(with respect to inclusion) on S containing R.
Signatures:
sts
Description:
This symbol represents the boolean binary function which returns
true if and only if the second argument is a transitive relation on the first.
Commented Mathematical property (CMP):
R is transitive on S if and only if, for all a,b,c in S with
(a,b) in R and (b,c) in R, wehave (a,c) in R.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="logic1" name="equivalent"/>
<OMA><OMS cd="relation3" name="is_transitive"/>
<OMV name="S"/> <OMV name="R"/>
</OMA>
<OMBIND><OMS cd="quant1" name="forall"/>
<OMBVAR> <OMV name="a"/> <OMV name="b"/><OMV name="c"/>
</OMBVAR>
<OMA><OMS cd="logic1" name="implies"/>
<OMA><OMS cd="logic1" name="and"/>
<OMA><OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMV name="S"/>
</OMA>
<OMA><OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMV name="S"/>
</OMA>
<OMA><OMS cd="set1" name="in"/>
<OMV name="c"/>
<OMV name="S"/>
</OMA>
<OMA><OMS cd="set1" name="in"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="a"/> <OMV name="b"/>
</OMA>
<OMV name="R"/>
</OMA>
<OMA><OMS cd="set1" name="in"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="b"/> <OMV name="c"/>
</OMA>
<OMV name="R"/>
</OMA>
</OMA>
<OMA><OMS cd="set1" name="in"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="a"/> <OMV name="c"/>
</OMA>
<OMV name="R"/>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">equivalent</csymbol>
<apply><csymbol cd="relation3">is_transitive</csymbol><ci>S</ci><ci>R</ci></apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<bvar><ci>c</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>a</ci><ci>S</ci></apply>
<apply><csymbol cd="set1">in</csymbol><ci>b</ci><ci>S</ci></apply>
<apply><csymbol cd="set1">in</csymbol><ci>c</ci><ci>S</ci></apply>
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>a</ci><ci>b</ci></apply>
<ci>R</ci>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>b</ci><ci>c</ci></apply>
<ci>R</ci>
</apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>a</ci><ci>c</ci></apply>
<ci>R</ci>
</apply>
</apply>
</bind>
</apply>
</math>
Prefix
equivalent
(
is_transitive
(
S ,
R )
,
forall
[
a
b
c
] .
(
implies
(
and
(
in
(
a ,
S )
,
in
(
b ,
S )
,
in
(
c ,
S )
,
in
(
list
(
a ,
b )
,
R )
,
in
(
list
(
b ,
c )
,
R )
)
,
in
(
list
(
a ,
c )
,
R )
)
)
)
Popcorn
logic1.equivalent(relation3.is_transitive($S, $R), quant1.forall[$a, $b, $c -> set1.in($a, $S) and set1.in($b, $S) and set1.in($c, $S) and set1.in([$a , $b], $R) and set1.in([$b , $c], $R) ==> set1.in([$a , $c], $R)])
Rendered Presentation MathML
is_transitive
(
S
,
R
)
≡
∀
a
,
b
,
c
.
a
∈
S
∧
b
∈
S
∧
c
∈
S
∧
(
a
,
b
)
∈
R
∧
(
b
,
c
)
∈
R
⇒
(
a
,
c
)
∈
R
Signatures:
sts
Description:
This symbol represents the boolean binary function which returns
true if and only if the second argument is a reflexive relation on the first.
Commented Mathematical property (CMP):
is_reflexive(S,R) if and only if, for all, a in S, we have (a,a) in R.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="logic1" name="equivalent"/>
<OMA><OMS cd="relation3" name="is_reflexive"/>
<OMV name="S"/> <OMV name="R"/>
</OMA>
<OMBIND><OMS cd="quant1" name="forall"/>
<OMBVAR> <OMV name="a"/>
</OMBVAR>
<OMA><OMS cd="logic1" name="implies"/>
<OMA><OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMV name="S"/>
</OMA>
<OMA><OMS cd="set1" name="set"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="a"/> <OMV name="a"/>
</OMA>
<OMV name="R"/>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">equivalent</csymbol>
<apply><csymbol cd="relation3">is_reflexive</csymbol><ci>S</ci><ci>R</ci></apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>a</ci><ci>S</ci></apply>
<apply><csymbol cd="set1">set</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>a</ci><ci>a</ci></apply>
<ci>R</ci>
</apply>
</apply>
</bind>
</apply>
</math>
Prefix
Popcorn
logic1.equivalent(relation3.is_reflexive($S, $R), quant1.forall[$a -> set1.in($a, $S) ==> {[$a , $a] , $R}])
Rendered Presentation MathML
is_reflexive
(
S
,
R
)
≡
∀
a
.
a
∈
S
⇒
{
(
a
,
a
)
,
R
}
Signatures:
sts
Description:
This symbol represents the boolean binary function which returns
true if and only if the second argument is a symmetric relation on the first.
Commented Mathematical property (CMP):
is_symmetric(S,R) if and only if, for all a, b in S with (a,b) in R,
we have (b,a) in R.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="logic1" name="equivalent"/>
<OMA><OMS cd="relation3" name="is_symmetric"/>
<OMV name="S"/> <OMV name="R"/>
</OMA>
<OMBIND><OMS cd="quant1" name="forall"/>
<OMBVAR> <OMV name="a"/> <OMV name="b"/>
</OMBVAR>
<OMA><OMS cd="logic1" name="implies"/>
<OMA><OMS cd="logic1" name="and"/>
<OMA><OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMV name="S"/>
</OMA>
<OMA><OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMV name="S"/>
</OMA>
<OMA><OMS cd="set1" name="in"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="a"/> <OMV name="b"/>
</OMA>
<OMV name="R"/>
</OMA>
</OMA>
<OMA><OMS cd="set1" name="in"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="b"/> <OMV name="a"/>
</OMA>
<OMV name="R"/>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">equivalent</csymbol>
<apply><csymbol cd="relation3">is_symmetric</csymbol><ci>S</ci><ci>R</ci></apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>a</ci><ci>S</ci></apply>
<apply><csymbol cd="set1">in</csymbol><ci>b</ci><ci>S</ci></apply>
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>a</ci><ci>b</ci></apply>
<ci>R</ci>
</apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>b</ci><ci>a</ci></apply>
<ci>R</ci>
</apply>
</apply>
</bind>
</apply>
</math>
Prefix
equivalent
(
is_symmetric
(
S ,
R )
,
forall
[
a
b
] .
(
implies
(
and
(
in
(
a ,
S )
,
in
(
b ,
S )
,
in
(
list
(
a ,
b )
,
R )
)
,
in
(
list
(
b ,
a )
,
R )
)
)
)
Popcorn
logic1.equivalent(relation3.is_symmetric($S, $R), quant1.forall[$a, $b -> set1.in($a, $S) and set1.in($b, $S) and set1.in([$a , $b], $R) ==> set1.in([$b , $a], $R)])
Rendered Presentation MathML
is_symmetric
(
S
,
R
)
≡
∀
a
,
b
.
a
∈
S
∧
b
∈
S
∧
(
a
,
b
)
∈
R
⇒
(
b
,
a
)
∈
R
Signatures:
sts
Description:
This symbol represents the boolean binary function which returns
true if and only if the second argument is an equivalence relation on the first.
Commented Mathematical property (CMP):
R is an equivalence relation on S if and only if R is a symmetric, reflexive,
transitive relation on S.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="logic1" name="equivalent"/>
<OMA><OMS cd="relation3" name="is_equivalence"/>
<OMV name="S"/> <OMV name="R"/>
</OMA>
<OMA><OMS cd="logic1" name="and"/>
<OMA><OMS cd="relation3" name="is_relation"/>
<OMV name="S"/> <OMV name="R"/>
</OMA>
<OMA><OMS cd="relation3" name="is_symmetric"/>
<OMV name="S"/> <OMV name="R"/>
</OMA>
<OMA><OMS cd="relation3" name="is_reflexive"/>
<OMV name="S"/> <OMV name="R"/>
</OMA>
<OMA><OMS cd="relation3" name="is_transitive"/>
<OMV name="S"/> <OMV name="R"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">equivalent</csymbol>
<apply><csymbol cd="relation3">is_equivalence</csymbol><ci>S</ci><ci>R</ci></apply>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation3">is_relation</csymbol><ci>S</ci><ci>R</ci></apply>
<apply><csymbol cd="relation3">is_symmetric</csymbol><ci>S</ci><ci>R</ci></apply>
<apply><csymbol cd="relation3">is_reflexive</csymbol><ci>S</ci><ci>R</ci></apply>
<apply><csymbol cd="relation3">is_transitive</csymbol><ci>S</ci><ci>R</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
logic1.equivalent(relation3.is_equivalence($S, $R), relation3.is_relation($S, $R) and relation3.is_symmetric($S, $R) and relation3.is_reflexive($S, $R) and relation3.is_transitive($S, $R))
Rendered Presentation MathML
is_equivalence
(
S
,
R
)
≡
(
is_relation
(
S
,
R
)
∧
is_symmetric
(
S
,
R
)
∧
is_reflexive
(
S
,
R
)
∧
is_transitive
(
S
,
R
)
)
Signatures:
sts
Description:
This symbol represents a ternary function whose first argument is a set S,
whose second argument is a relation R on S, and whose third argument is an
element a of S.
When applied to S, R, and a, it represents the set of all elements in S
related to a by R, that is, the set {b in S | (a,b) in R}.
Commented Mathematical property (CMP):
class(S,R,a) = {b in S | (a,b) in R}.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="relation3" name="class"/>
<OMV name="S"/> <OMV name="R"/> <OMV name="a"/>
</OMA>
<OMA><OMS cd="set1" name="suchthat"/>
<OMV name="S"/>
<OMBIND><OMS cd="fns1" name="lambda"/>
<OMBVAR> <OMV name="b"/></OMBVAR>
<OMA><OMS cd="set1" name="in"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="a"/> <OMV name="b"/>
</OMA>
<OMV name="R"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="relation3">class</csymbol><ci>S</ci><ci>R</ci><ci>a</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<ci>S</ci>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>a</ci><ci>b</ci></apply>
<ci>R</ci>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
relation3.class($S, $R, $a) = set1.suchthat($S, fns1.lambda[$b -> set1.in([$a , $b], $R)])
Rendered Presentation MathML
class
(
S
,
R
,
a
)
=
{
b
∈
S
|
(
a
,
b
)
∈
R
}
Signatures:
sts
Description:
This symbol represents a binary function whose first argument is a set S,
whose second argument is a relation R on S.
When applied to S and R, it represents the set of all elements in S
of the form class(S,R,a) for a in S.
Commented Mathematical property (CMP):
The classes of an equivalence relation R on S partition S.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="logic1" name="implies"/>
<OMA><OMS cd="relation3" name="is_equivalence"/>
<OMV name="S"/> <OMV name="R"/>
</OMA>
<OMBIND><OMS cd="quant1" name="forall"/>
<OMBVAR> <OMV name="a"/> <OMV name="b"/></OMBVAR>
<OMA><OMS cd="logic1" name="implies"/>
<OMA><OMS cd="set1" name="in"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="a"/> <OMV name="b"/>
</OMA>
<OMA><OMS cd="set1" name="cartesian_product"/>
<OMV name="S"/> <OMV name="S"/>
</OMA>
</OMA>
<OMA><OMS cd="logic1" name="or"/>
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="set1" name="intersect"/>
<OMA><OMS cd="relation3" name="class"/>
<OMV name="S"/><OMV name="R"/><OMV name="a"/>
</OMA>
<OMA><OMS cd="relation3" name="class"/>
<OMV name="S"/> <OMV name="R"/> <OMV name="b"/>
</OMA>
</OMA>
<OMS cd="set1" name="emptyset"/>
</OMA>
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="relation3" name="class"/>
<OMV name="S"/><OMV name="R"/><OMV name="a"/>
</OMA>
<OMA><OMS cd="relation3" name="class"/>
<OMV name="S"/> <OMV name="R"/> <OMV name="b"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="relation3">is_equivalence</csymbol><ci>S</ci><ci>R</ci></apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>a</ci><ci>b</ci></apply>
<apply><csymbol cd="set1">cartesian_product</csymbol><ci>S</ci><ci>S</ci></apply>
</apply>
<apply><csymbol cd="logic1">or</csymbol>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="set1">intersect</csymbol>
<apply><csymbol cd="relation3">class</csymbol><ci>S</ci><ci>R</ci><ci>a</ci></apply>
<apply><csymbol cd="relation3">class</csymbol><ci>S</ci><ci>R</ci><ci>b</ci></apply>
</apply>
<csymbol cd="set1">emptyset</csymbol>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="relation3">class</csymbol><ci>S</ci><ci>R</ci><ci>a</ci></apply>
<apply><csymbol cd="relation3">class</csymbol><ci>S</ci><ci>R</ci><ci>b</ci></apply>
</apply>
</apply>
</apply>
</bind>
</apply>
</math>
Prefix
implies
(
is_equivalence
(
S ,
R )
,
forall
[
a
b ] .
(
implies
(
in
(
list
(
a ,
b )
,
cartesian_product
(
S ,
S )
)
,
or
(
eq
(
intersect
(
class
(
S ,
R ,
a )
,
class
(
S ,
R ,
b )
)
,
emptyset )
,
eq
(
class
(
S ,
R ,
a )
,
class
(
S ,
R ,
b )
)
)
)
)
)
Popcorn
relation3.is_equivalence($S, $R) ==> quant1.forall[$a, $b -> set1.in([$a , $b], set1.cartesian_product($S, $S)) ==> set1.intersect(relation3.class($S, $R, $a), relation3.class($S, $R, $b)) = set1.emptyset > relation3.class($S, $R, $a) = relation3.class($S, $R, $b)]
Rendered Presentation MathML
is_equivalence
(
S
,
R
)
⇒
∀
a
,
b
.
(
a
,
b
)
∈
S
×
S
⇒
(
class
(
S
,
R
,
a
)
∩
class
(
S
,
R
,
b
)
=
∅
)
∨
(
class
(
S
,
R
,
a
)
=
class
(
S
,
R
,
b
)
)
Commented Mathematical property (CMP):
The classes of a reflexive relation R on S cover S, as a in S belongs to class(S,R,a).
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="logic1" name="implies"/>
<OMA><OMS cd="relation3" name="is_reflexive"/>
<OMV name="S"/> <OMV name="R"/>
</OMA>
<OMBIND><OMS cd="quant1" name="forall"/>
<OMBVAR> <OMV name="a"/></OMBVAR>
<OMA><OMS cd="logic1" name="implies"/>
<OMA><OMS cd="set1" name="in"/>
<OMV name="a"/> <OMV name="S"/>
</OMA>
<OMA><OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA><OMS cd="relation3" name="class"/>
<OMV name="S"/><OMV name="R"/><OMV name="a"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="relation3">is_reflexive</csymbol><ci>S</ci><ci>R</ci></apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>a</ci><ci>S</ci></apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="relation3">class</csymbol><ci>S</ci><ci>R</ci><ci>a</ci></apply>
</apply>
</apply>
</bind>
</apply>
</math>
Prefix
Popcorn
relation3.is_reflexive($S, $R) ==> quant1.forall[$a -> set1.in($a, $S) ==> set1.in($a, relation3.class($S, $R, $a))]
Rendered Presentation MathML
is_reflexive
(
S
,
R
)
⇒
∀
a
.
a
∈
S
⇒
a
∈
class
(
S
,
R
,
a
)
Signatures:
sts