OpenMath Content Dictionary: ring4
Canonical URL:
http://www.openmath.org/cd/ring4.ocd
CD Base:
http://www.openmath.org/cd
CD File:
ring4.ocd
CD as XML Encoded OpenMath:
ring4.omcd
Defines:
is_domain , is_field , is_maximal_ideal , is_prime_ideal , is_zero_divisor
Date:
2004-06-01
Version:
1
(Revision 1)
Review Date:
2006-06-01
Status:
experimental
A CD of
functions for further basic properties of rings
Written by Arjeh M. Cohen 2004-02-25
Description:
The binary boolean function whose value is true iff the second
argument is a maximal ideal of the first.
Signatures:
sts
Description:
The binary boolean function whose value is true iff the second
argument is a prime ideal of the first.
Signatures:
sts
Description:
This symbol represents a boolean
unary function. The argument is a ring R.
When evaluated on R, the function returns true if R is a domain
and false otherwise. A domain is a commutative ring without zero divisors.
Signatures:
sts
Description:
This is unary boolean function whose argument should be a ring R.
The value is true if and only if the ring is commutative and every nonzero
element has
a multiplicative
inverse.
Commented Mathematical property (CMP):
If is_commutative(G) and for all a in carrier(G)
there is b in carrier(G) such that a*b = identity(G), then is_field(G).
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="logic1" name="implies"/>
<OMA><OMS cd="logic1" name="and"/>
<OMA><OMS cd="ring1" name="is_commutative"/>
<OMV name="G"/>
</OMA>
<OMBIND><OMS cd="quant1" name="forall"/>
<OMBVAR> <OMV name="a"/> </OMBVAR>
<OMA><OMS cd="logic1" name="implies"/>
<OMA><OMS cd="logic1" name="and"/>
<OMA><OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA><OMS cd="ring1" name="carrier"/>
<OMV name="G"/>
</OMA>
</OMA>
<OMA><OMS cd="relation1" name="neq"/>
<OMV name="a"/>
<OMA><OMS cd="ring1" name="zero"/>
<OMV name="G"/>
</OMA>
</OMA>
</OMA>
<OMBIND><OMS cd="quant1" name="exists"/>
<OMBVAR> <OMV name="b"/> </OMBVAR>
<OMA><OMS cd="logic1" name="and"/>
<OMA><OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA><OMS cd="ring1" name="carrier"/>
<OMV name="G"/>
</OMA>
</OMA>
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMA><OMS cd="ring1" name="multiplication"/>
<OMV name="G"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA><OMS cd="ring1" name="identity"/>
<OMV name="G"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMBIND>
</OMA>
<OMA><OMS cd="ring4" name="is_field"/>
<OMV name="G"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="ring1">is_commutative</csymbol><ci>G</ci></apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="ring1">carrier</csymbol><ci>G</ci></apply>
</apply>
<apply><csymbol cd="relation1">neq</csymbol>
<ci>a</ci>
<apply><csymbol cd="ring1">zero</csymbol><ci>G</ci></apply>
</apply>
</apply>
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="ring1">carrier</csymbol><ci>G</ci></apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="ring1">multiplication</csymbol><ci>G</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply><csymbol cd="ring1">identity</csymbol><ci>G</ci></apply>
</apply>
</apply>
</bind>
</apply>
</bind>
</apply>
<apply><csymbol cd="ring4">is_field</csymbol><ci>G</ci></apply>
</apply>
</math>
Prefix
implies
(
and
(
is_commutative
(
G )
,
forall
[
a ] .
(
implies
(
and
(
in
(
a ,
carrier
(
G )
)
,
neq
(
a ,
zero
(
G )
)
)
,
exists
[
b ] .
(
and
(
in
(
b ,
carrier
(
G )
)
,
eq
(
multiplication
(
G )
(
a ,
b )
,
identity
(
G )
)
)
)
)
)
)
,
is_field
(
G )
)
Popcorn
ring1.is_commutative($G) and quant1.forall[$a -> set1.in($a, ring1.carrier($G)) and $a != ring1.zero($G) ==> quant1.exists[$b -> set1.in($b, ring1.carrier($G)) and ring1.multiplication($G)($a, $b) = ring1.identity($G)]] ==> ring4.is_field($G)
Rendered Presentation MathML
is_commutative
(
G
)
∧
∀
a
.
a
∈
carrier
(
G
)
∧
a
≠
zero
(
G
)
⇒
∃
b
.
b
∈
carrier
(
G
)
∧
(
multiplication
(
G
)
)
(
a
,
b
)
=
identity
(
G
)
⇒
is_field
(
G
)
Signatures:
sts
Description:
This symbol represents a boolean
binary function. The first argument is a ring R, the second is an element x of R.
When evaluated on R and x, the function returns true if x a zero divisor and
nonzero in R.
Commented Mathematical property (CMP):
An element x of a ring R
is a zero divisor if and only if it
nonzero and there is a nonzero y in R such that x * y = 0 or y * x = 0.
Signatures:
sts