OpenMath Content Dictionary: ring3
Canonical URL:
http://www.openmath.org/cd/ring3.ocd
CD Base:
http://www.openmath.org/cd
CD File:
ring3.ocd
CD as XML Encoded OpenMath:
ring3.omcd
Defines:
ideal , kernel , principal_ideal , direct_power , direct_product , free_ring , integers , invertibles , is_ideal , m_poly_ring , matrix_ring , multiplicative_group , poly_ring , quotient_ring
Date:
2004-06-01
Version:
1
(Revision 1)
Review Date:
2006-06-01
Status:
experimental
A CD of
functions for basic constructions in ring theory.
The quaternion definition is still very shaky.
Written by Arjeh M. Cohen 2004-02-25
Description:
The binary boolean function whose value is true if and only if the second
argument is an ideal of the second.
Commented Mathematical property (CMP):
If is_ideal(S,I) then I is a nonempty set of elements of S and I
is a subgroup of the additive group of S and
closed under multiplication by elements of S.
Signatures:
sts
Description:
This symbol represents a
binary function. The first argument is a ring R and the second argument is a
list or a set. When evaluated on R and such a second argument, the function
represents the ideal in R generated by the entries of the list or set.
Example:
The ideal in the free ring on the letters a, b generated by a*b-b*a:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="ring3" name="ideal"/>
<OMA><OMS cd="ring3" name="free_ring"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="a"/> <OMV name="b"/>
</OMA>
</OMA>
<OMA><OMS cd="list1" name="list"/>
<OMA><OMS cd="arith1" name="minus"/>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="a"/> <OMV name="b"/>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="b"/> <OMV name="a"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="ring3">ideal</csymbol>
<apply><csymbol cd="ring3">free_ring</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>a</ci><ci>b</ci></apply>
</apply>
<apply><csymbol cd="list1">list</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="arith1">times</csymbol><ci>a</ci><ci>b</ci></apply>
<apply><csymbol cd="arith1">times</csymbol><ci>b</ci><ci>a</ci></apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
ring3.ideal(ring3.free_ring([$a , $b]), [$a * $b - $b * $a])
Rendered Presentation MathML
ideal
(
free_ring
(
(
a
,
b
)
)
,
a
b
-
b
a
)
Signatures:
sts
Description:
This symbol represents a
unary function. Its argument is a ring homomorphism f : R -> S. When evaluated on f, the function
represents the kernel in R of f, that is, the subset {x in R | f(x) = 0}.
Commented Mathematical property (CMP):
The kernel of a ring homomorphism is an ideal.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="logic1" name="implies"/>
<OMA><OMS cd="ring2" name="is_homomorphism"/>
<OMV name="R"/> <OMV name="S"/> <OMV name="f"/>
</OMA>
<OMA><OMS cd="ring3" name="is_ideal"/>
<OMV name="R"/>
<OMA><OMS cd="ring3" name="kernel"/>
<OMV name="f"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="ring2">is_homomorphism</csymbol><ci>R</ci><ci>S</ci><ci>f</ci></apply>
<apply><csymbol cd="ring3">is_ideal</csymbol>
<ci>R</ci>
<apply><csymbol cd="ring3">kernel</csymbol><ci>f</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
ring2.is_homomorphism($R, $S, $f) ==> ring3.is_ideal($R, ring3.kernel($f))
Rendered Presentation MathML
is_homomorphism
(
R
,
S
,
f
)
⇒
is_ideal
(
R
,
kernel
(
f
)
)
Signatures:
sts
Description:
This symbol represents a
binary function. The first argument is a ring R and the second argument is an
element of R. When evaluated on R and such a second argument, the function
represents the ideal in R generated by the second argument.
Example:
The ideal in the free ring over the rationals on the letters a, b generated by a*b-b*a:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="ring3" name="principal_ideal"/>
<OMA><OMS cd="ring3" name="free_ring"/>
<OMS cd="fieldname1" name="Q"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="a"/> <OMV name="b"/>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="minus"/>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="a"/> <OMV name="b"/>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="b"/> <OMV name="a"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="ring3">principal_ideal</csymbol>
<apply><csymbol cd="ring3">free_ring</csymbol>
<csymbol cd="fieldname1">Q</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>a</ci><ci>b</ci></apply>
</apply>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="arith1">times</csymbol><ci>a</ci><ci>b</ci></apply>
<apply><csymbol cd="arith1">times</csymbol><ci>b</ci><ci>a</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
ring3.principal_ideal(ring3.free_ring(fieldname1.Q, [$a , $b]), $a * $b - $b * $a)
Rendered Presentation MathML
principal_ideal
(
free_ring
(
Q
,
(
a
,
b
)
)
,
a
b
-
b
a
)
Signatures:
sts
Description:
This symbol represents a binary function. The first argument should be a ring
and the second a list or a
set. When evaluated on such arguments R and L, the function represents the
free ring over R generated by the elements (or entries) of L.
This ring can also be viewed as the ring of non-commutative polynomials over R
with variables the elements of L.
Example:
The free ring over R on the letters a, b:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="ring3" name="free_ring"/>
<OMV name="R"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="a"/> <OMV name="b"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="ring3">free_ring</csymbol>
<ci>R</ci>
<apply><csymbol cd="list1">list</csymbol><ci>a</ci><ci>b</ci></apply>
</apply>
</math>
Prefix
Popcorn
ring3.free_ring($R, [$a , $b])
Rendered Presentation MathML
free_ring
(
R
,
(
a
,
b
)
)
Signatures:
sts
Description:
This symbol represents a binary function. The first argument should be a ring
and the second a variable. When evaluated on such arguments R and X, the function represents the
free commutative ring over R generated by X.
This ring can also be viewed as the ring of polynomials over R
with indeterminate X.
Example:
The polynomial ring over R with indeterminate X:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="ring3" name="poly_ring"/>
<OMV name="R"/>
<OMV name="X"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML"><apply><csymbol cd="ring3">poly_ring</csymbol><ci>R</ci><ci>X</ci></apply></math>
Prefix
Popcorn
ring3.poly_ring($R, $X)
Rendered Presentation MathML
Signatures:
sts
Description:
This symbol represents a binary function. The first argument should be a ring
and the second a list or a
set. When evaluated on such arguments R and L, the function represents the
free commutative ring over R generated by the elements (or entries) of L.
This ring can also be viewed as the ring of polynomials over R
with variables the elements of L.
Example:
The polynomial ring over R with variables a, b:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="ring3" name="m_poly_ring"/>
<OMV name="R"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="a"/> <OMV name="b"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="ring3">m_poly_ring</csymbol>
<ci>R</ci>
<apply><csymbol cd="list1">list</csymbol><ci>a</ci><ci>b</ci></apply>
</apply>
</math>
Prefix
Popcorn
ring3.m_poly_ring($R, [$a , $b])
Rendered Presentation MathML
m_poly_ring
(
R
,
(
a
,
b
)
)
Signatures:
sts
Description:
This symbol represents a binary function. The first argument is a positive
integer n, the second is a
ring R. When evaluated on such argument n and R, the function represents the
ring of n x n matrices over R.
Commented Mathematical property (CMP):
The ring of 1 x 1 matrices over R is isomorphic to R.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="ring2" name="isomorphic"/>
<OMA><OMS cd="ring3" name="matrix_ring"/>
<OMI>1</OMI> <OMV name="R"/>
</OMA>
<OMV name="R"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="ring2">isomorphic</csymbol>
<apply><csymbol cd="ring3">matrix_ring</csymbol><cn type="integer">1</cn><ci>R</ci></apply>
<ci>R</ci>
</apply>
</math>
Prefix
Popcorn
ring2.isomorphic(ring3.matrix_ring(1, $R), $R)
Rendered Presentation MathML
isomorphic
(
matrix_ring
(
1
,
R
)
,
R
)
Signatures:
sts
Description:
This is a symbol with two or more arguments, all of which are rings.
It denotes the ring that is the direct product of its arguments.
Signatures:
sts
Description:
This is a symbol with two arguments.
The first argument should be a ring S
and the second argument a positive integer n.
It denotes the direct product of n copies of S.
Example:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="ring3" name="direct_product"/>
<OMA><OMS cd="ring1" name="ring"/>
<OMS cd="setname1" name="Z"/>
<OMS cd="arith1" name="plus"/>
<OMS cd="arith1" name="unary_minus"/>
<OMI>0</OMI>
</OMA>
<OMA><OMS cd="ring1" name="ring"/>
<OMS cd="setname1" name="Z"/>
<OMS cd="arith1" name="plus"/>
<OMS cd="arith1" name="unary_minus"/>
<OMI>0</OMI>
</OMA>
</OMA>
<OMA><OMS cd="ring3" name="direct_power"/>
<OMA><OMS cd="ring1" name="ring"/>
<OMS cd="setname1" name="Z"/>
<OMS cd="arith1" name="plus"/>
<OMS cd="arith1" name="unary_minus"/>
<OMI>0</OMI>
</OMA>
<OMI>2</OMI>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="ring3">direct_product</csymbol>
<apply><csymbol cd="ring1">ring</csymbol>
<csymbol cd="setname1">Z</csymbol>
<csymbol cd="arith1">plus</csymbol>
<csymbol cd="arith1">unary_minus</csymbol>
<cn type="integer">0</cn>
</apply>
<apply><csymbol cd="ring1">ring</csymbol>
<csymbol cd="setname1">Z</csymbol>
<csymbol cd="arith1">plus</csymbol>
<csymbol cd="arith1">unary_minus</csymbol>
<cn type="integer">0</cn>
</apply>
</apply>
<apply><csymbol cd="ring3">direct_power</csymbol>
<apply><csymbol cd="ring1">ring</csymbol>
<csymbol cd="setname1">Z</csymbol>
<csymbol cd="arith1">plus</csymbol>
<csymbol cd="arith1">unary_minus</csymbol>
<cn type="integer">0</cn>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
</math>
Prefix
eq
(
direct_product
(
ring
(
Z ,
plus ,
unary_minus , 0)
,
ring
(
Z ,
plus ,
unary_minus , 0)
)
,
direct_power
(
ring
(
Z ,
plus ,
unary_minus , 0)
, 2)
)
Popcorn
ring3.direct_product(ring1.ring(setname1.Z, arith1.plus, arith1.unary_minus, 0), ring1.ring(setname1.Z, arith1.plus, arith1.unary_minus, 0)) = ring3.direct_power(ring1.ring(setname1.Z, arith1.plus, arith1.unary_minus, 0), 2)
Rendered Presentation MathML
direct_product
(
ring
(
Z
,
+
,
-
,
0
)
,
ring
(
Z
,
+
,
-
,
0
)
)
=
direct_power
(
ring
(
Z
,
+
,
-
,
0
)
,
2
)
Signatures:
sts
Description:
This is a binary function, whose first argument is
a ring R and whose second argument is an ideal I of R.
When applied to R and I,
it denotes the quotient ring of R
by I.
Example:
The carrier of the ring of integers modulo 2 is introduced as Zm(2) in the CD
setname2. The ring can also be defined as follows.
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="ring3" name="quotient_ring"/><!-- (Z/2Z) -->
<OMA><OMS cd="ring1" name="ring"/><!-- Z -->
<OMS cd="setname1" name="Z"/>
<OMS cd="arith1" name="plus"/>
<OMI>0</OMI>
<OMS cd="arith1" name="minus"/>
<OMS cd="arith1" name="times"/>
<OMI>1</OMI>
</OMA>
<OMA><OMS cd="ring3" name="ideal"/><!-- 2Z -->
<OMA><OMS cd="ring1" name="ring"/><!-- Z -->
<OMS cd="setname1" name="Z"/>
<OMS cd="arith1" name="plus"/>
<OMI>0</OMI>
<OMS cd="arith1" name="minus"/>
<OMS cd="arith1" name="times"/>
<OMI>1</OMI>
</OMA>
<OMA><OMS cd="list1" name="list"/>
<OMI>2</OMI>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="ring3">quotient_ring</csymbol>
<apply><csymbol cd="ring1">ring</csymbol>
<csymbol cd="setname1">Z</csymbol>
<csymbol cd="arith1">plus</csymbol>
<cn type="integer">0</cn>
<csymbol cd="arith1">minus</csymbol>
<csymbol cd="arith1">times</csymbol>
<cn type="integer">1</cn>
</apply>
<apply><csymbol cd="ring3">ideal</csymbol>
<apply><csymbol cd="ring1">ring</csymbol>
<csymbol cd="setname1">Z</csymbol>
<csymbol cd="arith1">plus</csymbol>
<cn type="integer">0</cn>
<csymbol cd="arith1">minus</csymbol>
<csymbol cd="arith1">times</csymbol>
<cn type="integer">1</cn>
</apply>
<apply><csymbol cd="list1">list</csymbol><cn type="integer">2</cn></apply>
</apply>
</apply>
</math>
Prefix
quotient_ring
(
ring
(
Z ,
plus , 0,
minus ,
times , 1)
,
ideal
(
ring
(
Z ,
plus , 0,
minus ,
times , 1)
,
list
(2)
)
)
Popcorn
ring3.quotient_ring(ring1.ring(setname1.Z, arith1.plus, 0, arith1.minus, arith1.times, 1), ring3.ideal(ring1.ring(setname1.Z, arith1.plus, 0, arith1.minus, arith1.times, 1), [2]))
Rendered Presentation MathML
quotient_ring
(
ring
(
Z
,
+
,
0
,
-
,
×
,
1
)
,
ideal
(
ring
(
Z
,
+
,
0
,
-
,
×
,
1
)
,
(
2
)
)
)
Example:
The ring
(Z/2Z)[x]/(x^2+x+1)
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="ring3" name="quotient_ring"/><!-- (Z/2Z)[x]/(x^2+x+1) -->
<OMA><OMS cd="ring3" name="poly_ring"/><!-- (Z/2Z)[x] -->
<OMA><OMS cd="setname2" name="Zm"/><!-- (Z/2Z) -->
<OMI>2</OMI>
</OMA>
<OMV name="x"/><!-- [x] -->
</OMA>
<OMA><OMS cd="ring3" name="ideal"/><!-- (x^2+x+1) -->
<OMA><OMS cd="ring3" name="poly_ring"/><!-- (Z/2Z)[x] -->
<OMA><OMS cd="setname2" name="Zm"/><!-- (Z/2Z) -->
<OMI>2</OMI>
</OMA>
<OMV name="x"/>
</OMA>
<OMA><OMS cd="list1" name="list"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="x"/>
<OMI>2</OMI>
</OMA>
<OMV name="x"/>
<OMI>1</OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="ring3">quotient_ring</csymbol>
<apply><csymbol cd="ring3">poly_ring</csymbol>
<apply><csymbol cd="setname2">Zm</csymbol><cn type="integer">2</cn></apply>
<ci>x</ci>
</apply>
<apply><csymbol cd="ring3">ideal</csymbol>
<apply><csymbol cd="ring3">poly_ring</csymbol>
<apply><csymbol cd="setname2">Zm</csymbol><cn type="integer">2</cn></apply>
<ci>x</ci>
</apply>
<apply><csymbol cd="list1">list</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><cn type="integer">2</cn></apply>
<ci>x</ci>
<cn type="integer">1</cn>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
ring3.quotient_ring(ring3.poly_ring(setname2.Zm(2), $x), ring3.ideal(ring3.poly_ring(setname2.Zm(2), $x), [$x ^ 2 + $x + 1]))
Rendered Presentation MathML
quotient_ring
(
poly_ring
(
Z
2
,
x
)
,
ideal
(
poly_ring
(
Z
2
,
x
)
,
x
2
+
x
+
1
)
)
Using the xref mechanism it can also be represented as
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="ring3" name="quotient_ring"/><!-- (Z/2Z)[x]/(x^2+x+1) -->
<OMA id="domain"><OMS cd="ring3" name="poly_ring"/><!-- (Z/2Z)[x] -->
<OMA><OMS cd="setname2" name="Zm"/><!-- (Z/2Z) -->
<OMI>2</OMI>
</OMA>
<OMV name="x"/><!-- [x] -->
</OMA>
<OMA><OMS cd="ring3" name="principal_ideal"/><!-- (x^2+x+1) -->
<OMR href="#domain"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="x"/> <OMI>2</OMI>
</OMA>
<OMV name="x"/>
<OMI>1</OMI>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="ring3">quotient_ring</csymbol>
<apply id="domain"><csymbol cd="ring3">poly_ring</csymbol>
<apply><csymbol cd="setname2">Zm</csymbol><cn type="integer">2</cn></apply>
<ci>x</ci>
</apply>
<apply><csymbol cd="ring3">principal_ideal</csymbol>
<share src="#domain"/>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><cn type="integer">2</cn></apply>
<ci>x</ci>
<cn type="integer">1</cn>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
ring3.quotient_ring(ring3.poly_ring(setname2.Zm(2), $x):domain, ring3.principal_ideal(#domain, $x ^ 2 + $x + 1))
Rendered Presentation MathML
quotient_ring
(
poly_ring
(
Z
2
,
x
)
,
principal_ideal
(
poly_ring
(
Z
2
,
x
)
,
x
2
+
x
+
1
)
)
Signatures:
sts
Description:
This is a unary function, whose argument is
a ring R. When applied to R,
it denotes the group of invertible elements of R with respect to the
multiplication on R.
Commented Mathematical property (CMP):
The multiplicative group of the ring R is the group of invertible
elements of the multiplicative monoid of R.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="ring3" name="invertibles"/>
<OMV name="R"/>
</OMA>
<OMA><OMS cd="group3" name="invertibles"/>
<OMA><OMS cd="ring1" name="multiplicative_monoid"/>
<OMV name="R"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="ring3">invertibles</csymbol><ci>R</ci></apply>
<apply><csymbol cd="group3">invertibles</csymbol>
<apply><csymbol cd="ring1">multiplicative_monoid</csymbol><ci>R</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
ring3.invertibles($R) = group3.invertibles(ring1.multiplicative_monoid($R))
Rendered Presentation MathML
invertibles
(
R
)
=
invertibles
(
multiplicative_monoid
(
R
)
)
Signatures:
sts
Description:
This is a unary function, whose argument is
a ring R. When applied to R,
it denotes the set of invertible elements of R with respect to the
multiplication on R.
Commented Mathematical property (CMP):
The carrier of the
multiplicative group of the ring R is the set of invertible
elements of R.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="ring3" name="invertibles"/>
<OMV name="R"/>
</OMA>
<OMA><OMS cd="group1" name="carrier"/>
<OMA><OMS cd="ring3" name="multiplicative_group"/>
<OMV name="R"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="ring3">invertibles</csymbol><ci>R</ci></apply>
<apply><csymbol cd="group1">carrier</csymbol>
<apply><csymbol cd="ring3">multiplicative_group</csymbol><ci>R</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
ring3.invertibles($R) = group1.carrier(ring3.multiplicative_group($R))
Rendered Presentation MathML
invertibles
(
R
)
=
carrier
(
multiplicative_group
(
R
)
)
Signatures:
sts
Description:
This is a symbol representing the ring of integers.
Commented Mathematical property (CMP):
The ring of integers is (Z, +,0,-,*,1), where +,-,* are the standard
arithmetic operations.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="relation1" name="eq"/>
<OMS cd="ring3" name="integers"/>
<OMA><OMS cd="ring1" name="ring"/>
<OMA><OMS cd="setname1" name="Z"/>
<OMS cd="arith1" name="plus"/>
<OMI>0</OMI>
<OMS cd="arith1" name="minus"/>
<OMS cd="arith1" name="times"/>
<OMI>1</OMI>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<csymbol cd="ring3">integers</csymbol>
<apply><csymbol cd="ring1">ring</csymbol>
<apply><csymbol cd="setname1">Z</csymbol>
<csymbol cd="arith1">plus</csymbol>
<cn type="integer">0</cn>
<csymbol cd="arith1">minus</csymbol>
<csymbol cd="arith1">times</csymbol>
<cn type="integer">1</cn>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
ring3.integers = ring1.ring(setname1.Z(arith1.plus, 0, arith1.minus, arith1.times, 1))
Rendered Presentation MathML
Signatures:
sts