OpenMath Content Dictionary: semigroup3
Canonical URL:
http://www.openmath.org/cd/semigroup3.ocd
CD Base:
http://www.openmath.org/cd
CD File:
semigroup3.ocd
CD as XML Encoded OpenMath:
semigroup3.omcd
Defines:
automorphism_group , cyclic_semigroup , direct_power , direct_product , free_semigroup , left_regular_representation , maps_semigroup
Date:
2004-06-01
Version:
3
(Revision 1)
Review Date:
2006-06-01
Status:
experimental
Semigroup constructions
Initiated by Arjeh M. Cohen 2003-10-02
Description:
This symbol denotes the cyclic semigroup with a cycle of length l and a
tail of length k.
Example:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="set1" name="size"/>
<OMA><OMS cd="semigroup1" name="carrier"/>
<OMA><OMS cd="semigroup3" name="cyclic_semigroup"/>
<OMV name="k"/> <OMV name="l"/>
</OMA>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="plus"/>
<OMV name="k"/> <OMV name="l"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="set1">size</csymbol>
<apply><csymbol cd="semigroup1">carrier</csymbol>
<apply><csymbol cd="semigroup3">cyclic_semigroup</csymbol><ci>k</ci><ci>l</ci></apply>
</apply>
</apply>
<apply><csymbol cd="arith1">plus</csymbol><ci>k</ci><ci>l</ci></apply>
</apply>
</math>
Prefix
Popcorn
set1.size(semigroup1.carrier(semigroup3.cyclic_semigroup($k, $l))) = $k + $l
Rendered Presentation MathML
size
(
carrier
(
cyclic_semigroup
(
k
,
l
)
)
)
=
k
+
l
Commented Mathematical property (CMP):
The size of cyclic_semigroup(k,l) equals k+l.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="set1" name="size"/>
<OMA><OMS cd="semigroup3" name="cyclic_semigroup"/>
<OMV name="k"/> <OMV name="l"/>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="plus"/>
<OMV name="k"/> <OMV name="l"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="set1">size</csymbol>
<apply><csymbol cd="semigroup3">cyclic_semigroup</csymbol><ci>k</ci><ci>l</ci></apply>
</apply>
<apply><csymbol cd="arith1">plus</csymbol><ci>k</ci><ci>l</ci></apply>
</apply>
</math>
Prefix
Popcorn
set1.size(semigroup3.cyclic_semigroup($k, $l)) = $k + $l
Rendered Presentation MathML
size
(
cyclic_semigroup
(
k
,
l
)
)
=
k
+
l
Signatures:
sts
Description:
This is a unary function whose argument must be a set X or a positive integer.
When applied to X, it refers to the semigroup of all functions from X to X if X
is a set and to {1,...,X} if X is an integer, whose
binary operation is composition of maps and whose identity element is the
identity map on the set X, respectively {1,...,X}.
Signatures:
sts
Description:
This is a unary function whose argument must be a semigroup M.
When applied to M, it represents the map
from M to the maps semigroup on M that assigns to m left multiplication by m on M.
Commented Mathematical property (CMP):
The left regular representation on M applied to the element x of M
represents left multiplication by x on M
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMBIND><OMS cd="quant1" name="forall"/>
<OMBVAR><OMV name="M"/> <OMV name="x"/> </OMBVAR>
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMA><OMS cd="semigroup3" name="left_regular_representation"/>
<OMV name="M"/>
</OMA>
<OMV name="x"/>
</OMA>
<OMA><OMS cd="semigroup2" name="left_multiplication"/>
<OMV name="M"/> <OMV name="x"/>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>M</ci></bvar>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><apply><csymbol cd="semigroup3">left_regular_representation</csymbol><ci>M</ci></apply><ci>x</ci></apply>
<apply><csymbol cd="semigroup2">left_multiplication</csymbol><ci>M</ci><ci>x</ci></apply>
</apply>
</bind>
</math>
Prefix
Popcorn
quant1.forall[$M, $x -> semigroup3.left_regular_representation($M)($x) = semigroup2.left_multiplication($M, $x)]
Rendered Presentation MathML
∀
M
,
x
.
(
left_regular_representation
(
M
)
)
(
x
)
=
left_multiplication
(
M
,
x
)
Commented Mathematical property (CMP):
The left regular representation is a homomorphism
of semigroups from M to the maps semigroup on M.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMBIND><OMS cd="quant1" name="forall"/>
<OMBVAR><OMV name="M"/> </OMBVAR>
<OMA><OMS cd="semigroup2" name="is_homomorphism"/>
<OMV name="M"/>
<OMA><OMS cd="semigroup3" name="maps_semigroup"/>
<OMV name="M"/>
</OMA>
<OMA><OMS cd="semigroup3" name="left_regular_representation"/>
<OMV name="M"/>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>M</ci></bvar>
<apply><csymbol cd="semigroup2">is_homomorphism</csymbol>
<ci>M</ci>
<apply><csymbol cd="semigroup3">maps_semigroup</csymbol><ci>M</ci></apply>
<apply><csymbol cd="semigroup3">left_regular_representation</csymbol><ci>M</ci></apply>
</apply>
</bind>
</math>
Prefix
Popcorn
quant1.forall[$M -> semigroup2.is_homomorphism($M, semigroup3.maps_semigroup($M), semigroup3.left_regular_representation($M))]
Rendered Presentation MathML
∀
M
.
is_homomorphism
(
M
,
maps_semigroup
(
M
)
,
left_regular_representation
(
M
)
)
Signatures:
sts
Description:
This is a function with a single argument which must be a semigroup.
It refers to the automorphism group of its argument.
Signatures:
sts
Description:
This is an n-ary function whose arguments must be semigroups.
It refers to the direct product of its arguments.
Signatures:
sts
Description:
This is a binary function whose first argument should be a semigroup
M and whose second argument should be a natural number n.
It refers to the direct product of n copies of M.
Signatures:
sts
Description:
This symbol represents a binary function. The argument is a list or a
set. When evaluated on such an argument, the function represents the
free semigroup generated by the entries of the list or set.
Example:
The free semigroup on the letters a, b:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA><OMS cd="semigroup3" name="free_semigroup"/>
<OMA><OMS cd="list1" name="list"/>
<OMV name="a"/> <OMV name="b"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="semigroup3">free_semigroup</csymbol>
<apply><csymbol cd="list1">list</csymbol><ci>a</ci><ci>b</ci></apply>
</apply>
</math>
Prefix
Popcorn
semigroup3.free_semigroup([$a , $b])
Rendered Presentation MathML
free_semigroup
(
(
a
,
b
)
)
Signatures:
sts