OpenMath Content Dictionary: setname2
Canonical URL:
http://www.openmath.org/cd/setname2.ocd
CD Base:
http://www.openmath.org/cd
CD File:
setname2.ocd
CD as XML Encoded OpenMath:
setname2.omcd
Defines:
A , Boolean , GFp , GFpn , H , QuotientField , Zm
Date:
2004-03-30
Version:
3
(Revision 1)
Review Date:
2017-12-31
Status:
experimental
This document is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
The copyright holder grants you permission to redistribute this
document freely as a verbatim copy. Furthermore, the copyright
holder permits you to develop any derived work from this document
provided that the following conditions are met.
a) The derived work acknowledges the fact that it is derived from
this document, and maintains a prominent reference in the
work to the original source.
b) The fact that the derived work is not the original OpenMath
document is stated prominently in the derived work. Moreover if
both this document and the derived work are Content Dictionaries
then the derived work must include a different CDName element,
chosen so that it cannot be confused with any works adopted by
the OpenMath Society. In particular, if there is a Content
Dictionary Group whose name is, for example, `math' containing
Content Dictionaries named `math1', `math2' etc., then you should
not name a derived Content Dictionary `mathN' where N is an integer.
However you are free to name it `private_mathN' or some such. This
is because the names `mathN' may be used by the OpenMath Society
for future extensions.
c) The derived work is distributed under terms that allow the
compilation of derived works, but keep paragraphs a) and b)
intact. The simplest way to do this is to distribute the derived
work under the OpenMath license, but this is not a requirement.
If you have questions about this license please contact the OpenMath
society at http://www.openmath.org .
Author: OpenMath Consortium
SourceURL: https://github.com/OpenMath/CDs
This CD defines some common sets of mathematics.
Written by J.H. Davenport on 1999-04-18.
Revised to add Zm, GFp, GFpn on 1999-11-09.
Revised to add QuotientField and A on 1999-11-19.
Role:
constant
Description:
This symbol represents the set of Booleans. That is the truth values,
true and false.
Commented Mathematical property (CMP):
for all b in the booleans | (there exists an nb in the booleans |
nb not= b implies nb = not b)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMS cd="setname2" name="Boolean"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR>
<OMV name="nb"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="nb"/>
<OMS cd="setname2" name="Boolean"/>
</OMA>
<OMA>
<OMS cd="relation1" name="neq"/>
<OMV name="nb"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMV name="nb"/>
<OMA>
<OMS cd="logic1" name="not"/>
<OMV name="b"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMBIND>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>b</ci><csymbol cd="setname2">Boolean</csymbol></apply>
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>nb</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>nb</ci><csymbol cd="setname2">Boolean</csymbol></apply>
<apply><csymbol cd="relation1">neq</csymbol><ci>nb</ci><ci>b</ci></apply>
<apply><csymbol cd="relation1">eq</csymbol>
<ci>nb</ci>
<apply><csymbol cd="logic1">not</csymbol><ci>b</ci></apply>
</apply>
</apply>
</bind>
</apply>
</bind>
</math>
Prefix
Popcorn
quant1.forall[$b -> set1.in($b, setname2.Boolean) ==> quant1.exists[$nb -> set1.in($nb, setname2.Boolean) and $nb != $b and $nb = not($b)]]
Rendered Presentation MathML
∀
b
.
b
∈
Boolean
⇒
∃
nb
.
nb
∈
Boolean
∧
nb
≠
b
∧
nb
=
¬
b
Signatures:
sts
[Next: A ]
[Last: H ]
[Top ]
Role:
constant
Description:
This symbol represents the set of algebraic numbers.
Commented Mathematical property (CMP):
The algebraic numbers are a proper subset of the reals
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="set1" name="prsubset"/>
<OMS cd="setname2" name="A"/>
<OMS cd="setname1" name="R"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">prsubset</csymbol>
<csymbol cd="setname2">A</csymbol>
<csymbol cd="setname1">R</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.prsubset(setname2.A, setname1.R)
Rendered Presentation MathML
Commented Mathematical property (CMP):
The rationals are a proper subset of the algebraic numbers
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="set1" name="prsubset"/>
<OMS cd="setname1" name="Q"/>
<OMS cd="setname2" name="A"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">prsubset</csymbol>
<csymbol cd="setname1">Q</csymbol>
<csymbol cd="setname2">A</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.prsubset(setname1.Q, setname2.A)
Rendered Presentation MathML
Signatures:
sts
Role:
application
Description:
This symbol represents the set of integers modulo m, where m is not necessarily
a prime. It takes one argument, the integer m.
Commented Mathematical property (CMP):
for all x in the integers modulo m |
there exists an n such that n is an integer and n <= m and x^n = x
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="x"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="x"/>
<OMA>
<OMS cd="setname2" name="Zm"/>
<OMV name="m"/>
</OMA>
</OMA>
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR>
<OMV name="n"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="n"/>
<OMS cd="setname1" name="Z"/>
</OMA>
<OMA>
<OMS cd="relation1" name="leq"/>
<OMV name="n"/>
<OMV name="m"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="x"/>
<OMV name="n"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMBIND>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>x</ci>
<apply><csymbol cd="setname2">Zm</csymbol><ci>m</ci></apply>
</apply>
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>n</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>n</ci><csymbol cd="setname1">Z</csymbol></apply>
<apply><csymbol cd="relation1">leq</csymbol><ci>n</ci><ci>m</ci></apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>n</ci></apply>
<ci>x</ci>
</apply>
</apply>
</bind>
</apply>
</bind>
</math>
Prefix
Popcorn
quant1.forall[$x -> set1.in($x, setname2.Zm($m)) ==> quant1.exists[$n -> set1.in($n, setname1.Z) and $n <= $m and $x ^ $n = $x]]
Rendered Presentation MathML
∀
x
.
x
∈
Z
m
⇒
∃
n
.
n
∈
Z
∧
n
≤
m
∧
x
n
=
x
Example:
The integers mod 12:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS name="Zm" cd="setname2"/>
<OMI> 12 </OMI>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML"><apply><csymbol cd="setname2">Zm</csymbol><cn type="integer">12</cn></apply></math>
Prefix
Rendered Presentation MathML
Example:
The integers mod m:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS name="Zm" cd="setname2"/>
<OMV name="m"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML"><apply><csymbol cd="setname2">Zm</csymbol><ci>m</ci></apply></math>
Prefix
Rendered Presentation MathML
Example:
4*5=8 in Z mod 12
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMATTR>
<OMATP>
<OMS name="type" cd="sts"/>
<OMA>
<OMS name="Zm" cd="setname2"/>
<OMI> 12 </OMI>
</OMA>
</OMATP>
<OMI> 4 </OMI>
</OMATTR>
<OMATTR>
<OMATP>
<OMS name="type" cd="sts"/>
<OMA>
<OMS name="Zm" cd="setname2"/>
<OMI> 12 </OMI>
</OMA>
</OMATP>
<OMI> 5 </OMI>
</OMATTR>
</OMA>
<OMATTR>
<OMATP>
<OMS name="type" cd="sts"/>
<OMA>
<OMS name="Zm" cd="setname2"/>
<OMI> 12 </OMI>
</OMA>
</OMATP>
<OMI> 8 </OMI>
</OMATTR>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<semantics>
<cn type="integer">4</cn>
<annotation-xml cd="sts" name="type"><apply><csymbol cd="setname2">Zm</csymbol><cn type="integer">12</cn></apply></annotation-xml>
</semantics>
<semantics>
<cn type="integer">5</cn>
<annotation-xml cd="sts" name="type"><apply><csymbol cd="setname2">Zm</csymbol><cn type="integer">12</cn></apply></annotation-xml>
</semantics>
</apply>
<semantics>
<cn type="integer">8</cn>
<annotation-xml cd="sts" name="type"><apply><csymbol cd="setname2">Zm</csymbol><cn type="integer">12</cn></apply></annotation-xml>
</semantics>
</apply>
</math>
Prefix
Popcorn
4{sts.type -> setname2.Zm(12)} * 5{sts.type -> setname2.Zm(12)} = 8{sts.type -> setname2.Zm(12)}
Rendered Presentation MathML
Signatures:
sts
Role:
application
Description:
This symbol represents the finite field of integers modulo p, where p is a
prime.
Commented Mathematical property (CMP):
x^p = x mod p
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="power" cd="arith1"/>
<OMATTR>
<OMATP>
<OMS name="type" cd="sts"/>
<OMA>
<OMS name="GFp" cd="setname2"/>
<OMV name="p"/>
</OMA>
</OMATP>
<OMV name="x"/>
</OMATTR>
<OMV name="p"/>
</OMA>
<OMATTR>
<OMATP>
<OMS name="type" cd="sts"/>
<OMA>
<OMS name="GFp" cd="setname2"/>
<OMV name="p"/>
</OMA>
</OMATP>
<OMV name="x"/>
</OMATTR>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">power</csymbol>
<semantics>
<ci>x</ci>
<annotation-xml cd="sts" name="type"><apply><csymbol cd="setname2">GFp</csymbol><ci>p</ci></apply></annotation-xml>
</semantics>
<ci>p</ci>
</apply>
<semantics>
<ci>x</ci>
<annotation-xml cd="sts" name="type"><apply><csymbol cd="setname2">GFp</csymbol><ci>p</ci></apply></annotation-xml>
</semantics>
</apply>
</math>
Prefix
Popcorn
$x{sts.type -> setname2.GFp($p)} ^ $p = $x{sts.type -> setname2.GFp($p)}
Rendered Presentation MathML
Signatures:
sts
Role:
application
Description:
This symbol represents the finite field with p^n elements, where p is a prime.
Example:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="GFp" cd="setname2"/>
<OMV name="p"/>
</OMA>
<OMA>
<OMS name="GFpn" cd="setname2"/>
<OMV name="p"/>
<OMS name="one" cd="alg1"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="setname2">GFp</csymbol><ci>p</ci></apply>
<apply><csymbol cd="setname2">GFpn</csymbol><ci>p</ci><csymbol cd="alg1">one</csymbol></apply>
</apply>
</math>
Prefix
Popcorn
setname2.GFp($p) = setname2.GFpn($p, alg1.one)
Rendered Presentation MathML
Signatures:
sts
Role:
application
Description:
This symbol represents the quotient field of any integral domain.
Example:
The rationals equals QuotientField(Integers)
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMS cd="setname1" name="Q"/>
<OMA>
<OMS cd="setname2" name="QuotientField"/>
<OMS cd="setname1" name="Z"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<csymbol cd="setname1">Q</csymbol>
<apply><csymbol cd="setname2">QuotientField</csymbol><csymbol cd="setname1">Z</csymbol></apply>
</apply>
</math>
Prefix
Popcorn
setname1.Q = setname2.QuotientField(setname1.Z)
Rendered Presentation MathML
Q
=
QuotientField
(
Z
)
Commented Mathematical property (CMP):
R is a field iff QuotientField(R)=R
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS name="equivalent" cd="logic1"/>
<OMA>
<OMS name="in" cd="set1"/>
<OMV name="R"/>
<OMA>
<OMS name="structure" cd="sts"/>
<OMV name="Field"/>
</OMA>
</OMA>
<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="QuotientField" cd="setname2"/>
<OMV name="R"/>
</OMA>
<OMV name="R"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">equivalent</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>R</ci>
<apply><csymbol cd="sts">structure</csymbol><ci>Field</ci></apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="setname2">QuotientField</csymbol><ci>R</ci></apply>
<ci>R</ci>
</apply>
</apply>
</math>
Prefix
Popcorn
logic1.equivalent(set1.in($R, sts.structure($Field)), setname2.QuotientField($R) = $R)
Rendered Presentation MathML
R
∈
structure
(
Field
)
≡
(
QuotientField
(
R
)
=
R
)
Signatures:
sts
Role:
constant
Description:
This symbol represents the set of quaternions.
Commented Mathematical property (CMP):
1 is a quaternion and
there exists i,j,k s.t. i,j,k are quaternions and
i^2 = j^2 = k^2 = ijk = -1 with abs(i) not = abs(j) not = abs(k) not = 1
implies for all q, q a quaternion implies there exists r_0, r_1, r_2,
r_3 reals s.t.
q = r_0 + r_1*i + r_2*j + r_3*k
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMS cd="alg1" name="one"/>
<OMS cd="setname2" name="H"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR>
<OMV name="i"/>
<OMV name="j"/>
<OMV name="k"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="i"/>
<OMS cd="setname2" name="H"/>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="j"/>
<OMS cd="setname2" name="H"/>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="k"/>
<OMS cd="setname2" name="H"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="i"/>
<OMI> 2 </OMI>
</OMA>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMS cd="alg1" name="one"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="j"/>
<OMI> 2 </OMI>
</OMA>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMS cd="alg1" name="one"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="k"/>
<OMI> 2 </OMI>
</OMA>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMS cd="alg1" name="one"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMV name="i"/>
<OMV name="j"/>
<OMV name="k"/>
</OMA>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMS cd="alg1" name="one"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="neq"/>
<OMA>
<OMS cd="arith1" name="abs"/>
<OMV name="i"/>
</OMA>
<OMS cd="alg1" name="one"/>
</OMA>
<OMA>
<OMS cd="relation1" name="neq"/>
<OMA>
<OMS cd="arith1" name="abs"/>
<OMV name="j"/>
</OMA>
<OMS cd="alg1" name="one"/>
</OMA>
<OMA>
<OMS cd="relation1" name="neq"/>
<OMA>
<OMS cd="arith1" name="abs"/>
<OMV name="k"/>
</OMA>
<OMS cd="alg1" name="one"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="q"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="q"/>
<OMS cd="setname2" name="H"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR>
<OMV name="r0"/>
<OMV name="r1"/>
<OMV name="r2"/>
<OMV name="r3"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="r0"/>
<OMS cd="setname1" name="R"/>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="r1"/>
<OMS cd="setname1" name="R"/>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="r2"/>
<OMS cd="setname1" name="R"/>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="r3"/>
<OMS cd="setname1" name="R"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMV name="q"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMV name="r0"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMV name="r1"/>
<OMV name="i"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMV name="r2"/>
<OMV name="j"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMV name="r3"/>
<OMV name="k"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMBIND>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<csymbol cd="alg1">one</csymbol>
<csymbol cd="setname2">H</csymbol>
</apply>
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>i</ci></bvar>
<bvar><ci>j</ci></bvar>
<bvar><ci>k</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>i</ci><csymbol cd="setname2">H</csymbol></apply>
<apply><csymbol cd="set1">in</csymbol><ci>j</ci><csymbol cd="setname2">H</csymbol></apply>
<apply><csymbol cd="set1">in</csymbol><ci>k</ci><csymbol cd="setname2">H</csymbol></apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>i</ci><cn type="integer">2</cn></apply>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="alg1">one</csymbol></apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>j</ci><cn type="integer">2</cn></apply>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="alg1">one</csymbol></apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>k</ci><cn type="integer">2</cn></apply>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="alg1">one</csymbol></apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">times</csymbol><ci>i</ci><ci>j</ci><ci>k</ci></apply>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="alg1">one</csymbol></apply>
</apply>
<apply><csymbol cd="relation1">neq</csymbol>
<apply><csymbol cd="arith1">abs</csymbol><ci>i</ci></apply>
<csymbol cd="alg1">one</csymbol>
</apply>
<apply><csymbol cd="relation1">neq</csymbol>
<apply><csymbol cd="arith1">abs</csymbol><ci>j</ci></apply>
<csymbol cd="alg1">one</csymbol>
</apply>
<apply><csymbol cd="relation1">neq</csymbol>
<apply><csymbol cd="arith1">abs</csymbol><ci>k</ci></apply>
<csymbol cd="alg1">one</csymbol>
</apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>q</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>q</ci><csymbol cd="setname2">H</csymbol></apply>
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>r0</ci></bvar>
<bvar><ci>r1</ci></bvar>
<bvar><ci>r2</ci></bvar>
<bvar><ci>r3</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>r0</ci><csymbol cd="setname1">R</csymbol></apply>
<apply><csymbol cd="set1">in</csymbol><ci>r1</ci><csymbol cd="setname1">R</csymbol></apply>
<apply><csymbol cd="set1">in</csymbol><ci>r2</ci><csymbol cd="setname1">R</csymbol></apply>
<apply><csymbol cd="set1">in</csymbol><ci>r3</ci><csymbol cd="setname1">R</csymbol></apply>
<apply><csymbol cd="relation1">eq</csymbol>
<ci>q</ci>
<apply><csymbol cd="arith1">plus</csymbol>
<ci>r0</ci>
<apply><csymbol cd="arith1">times</csymbol><ci>r1</ci><ci>i</ci></apply>
<apply><csymbol cd="arith1">times</csymbol><ci>r2</ci><ci>j</ci></apply>
<apply><csymbol cd="arith1">times</csymbol><ci>r3</ci><ci>k</ci></apply>
</apply>
</apply>
</apply>
</bind>
</apply>
</bind>
</apply>
</bind>
</apply>
</math>
Prefix
and
(
in
(
one ,
H )
,
exists
[
i
j
k
] .
(
and
(
in
(
i ,
H )
,
in
(
j ,
H )
,
in
(
k ,
H )
,
eq
(
power
(
i , 2 )
,
unary_minus
(
one )
)
,
eq
(
power
(
j , 2 )
,
unary_minus
(
one )
)
,
eq
(
power
(
k , 2 )
,
unary_minus
(
one )
)
,
eq
(
times
(
i ,
j ,
k )
,
unary_minus
(
one )
)
,
neq
(
abs
(
i )
,
one )
,
neq
(
abs
(
j )
,
one )
,
neq
(
abs
(
k )
,
one )
,
forall
[
q
] .
(
implies
(
in
(
q ,
H )
,
exists
[
r0
r1
r2
r3
] .
(
and
(
in
(
r0 ,
R )
,
in
(
r1 ,
R )
,
in
(
r2 ,
R )
,
in
(
r3 ,
R )
,
eq
(
q ,
plus
(
r0 ,
times
(
r1 ,
i )
,
times
(
r2 ,
j )
,
times
(
r3 ,
k )
)
)
)
)
)
)
)
)
)
Popcorn
set1.in(alg1.one, setname2.H) and quant1.exists[$i, $j, $k -> set1.in($i, setname2.H) and set1.in($j, setname2.H) and set1.in($k, setname2.H) and $i ^ 2 = -(alg1.one) and $j ^ 2 = -(alg1.one) and $k ^ 2 = -(alg1.one) and $i * $j * $k = -(alg1.one) and arith1.abs($i) != alg1.one and arith1.abs($j) != alg1.one and arith1.abs($k) != alg1.one and quant1.forall[$q -> set1.in($q, setname2.H) ==> quant1.exists[$r0, $r1, $r2, $r3 -> set1.in($r0, setname1.R) and set1.in($r1, setname1.R) and set1.in($r2, setname1.R) and set1.in($r3, setname1.R) and $q = $r0 + $r1 * $i + $r2 * $j + $r3 * $k]]]
Rendered Presentation MathML
1
∈
H
∧
∃
i
,
j
,
k
.
i
∈
H
∧
j
∈
H
∧
k
∈
H
∧
i
2
=
-
1
∧
j
2
=
-
1
∧
k
2
=
-
1
∧
i
j
k
=
-
1
∧
|
i
|
≠
1
∧
|
j
|
≠
1
∧
|
k
|
≠
1
∧
∀
q
.
q
∈
H
⇒
∃
r
0
,
r
1
,
r
2
,
r
3
.
r
0
∈
R
∧
r
1
∈
R
∧
r
2
∈
R
∧
r
3
∈
R
∧
q
=
r
0
+
r
1
i
+
r
2
j
+
r
3
k
Example:
There exists a,b in the quaternions s.t. a*b neq b*a
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="relation1" name="neq"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMV name="b"/>
<OMV name="a"/>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="relation1">neq</csymbol>
<apply><csymbol cd="arith1">times</csymbol><ci>a</ci><ci>b</ci></apply>
<apply><csymbol cd="arith1">times</csymbol><ci>b</ci><ci>a</ci></apply>
</apply>
</bind>
</math>
Prefix
Popcorn
quant1.exists[$a, $b -> $a * $b != $b * $a]
Rendered Presentation MathML
Signatures:
sts