OpenMath Content Dictionary: transc1
Canonical URL:
http://www.openmath.org/cd/transc1.ocd
CD Base:
http://www.openmath.org/cd
CD File:
transc1.ocd
CD as XML Encoded OpenMath:
transc1.omcd
Defines:
arccos , arccosh , arccot , arccoth , arccsc , arccsch , arcsec , arcsech , arcsin , arcsinh , arctan , arctanh , cos , cosh , cot , coth , csc , csch , exp , ln , log , sec , sech , sin , sinh , tan , tanh
Date:
2004-03-30
Version:
3
(Revision 1)
Review Date:
2006-03-30
Status:
official
This document is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
The copyright holder grants you permission to redistribute this
document freely as a verbatim copy. Furthermore, the copyright
holder permits you to develop any derived work from this document
provided that the following conditions are met.
a) The derived work acknowledges the fact that it is derived from
this document, and maintains a prominent reference in the
work to the original source.
b) The fact that the derived work is not the original OpenMath
document is stated prominently in the derived work. Moreover if
both this document and the derived work are Content Dictionaries
then the derived work must include a different CDName element,
chosen so that it cannot be confused with any works adopted by
the OpenMath Society. In particular, if there is a Content
Dictionary Group whose name is, for example, `math' containing
Content Dictionaries named `math1', `math2' etc., then you should
not name a derived Content Dictionary `mathN' where N is an integer.
However you are free to name it `private_mathN' or some such. This
is because the names `mathN' may be used by the OpenMath Society
for future extensions.
c) The derived work is distributed under terms that allow the
compilation of derived works, but keep paragraphs a) and b)
intact. The simplest way to do this is to distribute the derived
work under the OpenMath license, but this is not a requirement.
If you have questions about this license please contact the OpenMath
society at http://www.openmath.org .
Author: OpenMath Consortium
SourceURL: https://github.com/OpenMath/CDs
This CD holds the definitions of many transcendental
functions. They are defined as in Abromowitz and Stegun (ninth
printing on), with precise reductions to logs in the case of
inverse functions.
Note that, if signed zeros are supported, some strict
inequalities have to become weak
.
It is intended to be `compatible' with the MathML elements
denoting trancendental functions.
Some additional functions are in the CD transc2.
Role:
application
Description:
This symbol represents a binary log function; the first argument is the base,
to which the second argument is log'ed.
It is defined in Abramowitz and Stegun, Handbook of Mathematical
Functions, section 4.1
Commented Mathematical property (CMP):
a^b = c implies log_a c = b
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMV name="c"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="log"/>
<OMV name="a"/>
<OMV name="c"/>
</OMA>
<OMV name="b"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>a</ci><ci>b</ci></apply>
<ci>c</ci>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">log</csymbol><ci>a</ci><ci>c</ci></apply>
<ci>b</ci>
</apply>
</apply>
</math>
Prefix
Popcorn
$a ^ $b = $c ==> log($a, $c) = $b
Rendered Presentation MathML
Example:
log 100 to base 10 (which is 2).
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="transc1" name="log"/>
<OMF dec="10"/>
<OMF dec="100"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="transc1">log</csymbol>
<cn type="real">10</cn>
<cn type="real">100</cn>
</apply>
</math>
Prefix
Rendered Presentation MathML
Signatures:
sts
Role:
application
Description:
This symbol represents the ln function (natural logarithm) as
described in Abramowitz and Stegun, section 4.1. It takes one
argument. Note the description in the CMP/FMP of the branch cut. If
signed zeros are in use, the inequality needs to be non-strict.
Commented Mathematical property (CMP):
-pi < Im ln x <= pi
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS name="and" cd="logic1"/>
<OMA>
<OMS name="lt" cd="relation1"/>
<OMA>
<OMS name="unary_minus" cd="arith1"/>
<OMS name="pi" cd="nums1"/>
</OMA>
<OMA>
<OMS name="imaginary" cd="complex1"/>
<OMA>
<OMS name="ln" cd="transc1"/>
<OMV name="x"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS name="leq" cd="relation1"/>
<OMA>
<OMS name="imaginary" cd="complex1"/>
<OMA>
<OMS name="ln" cd="transc1"/>
<OMV name="x"/>
</OMA>
</OMA>
<OMS name="pi" cd="nums1"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">lt</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">pi</csymbol></apply>
<apply><csymbol cd="complex1">imaginary</csymbol>
<apply><csymbol cd="transc1">ln</csymbol><ci>x</ci></apply>
</apply>
</apply>
<apply><csymbol cd="relation1">leq</csymbol>
<apply><csymbol cd="complex1">imaginary</csymbol>
<apply><csymbol cd="transc1">ln</csymbol><ci>x</ci></apply>
</apply>
<csymbol cd="nums1">pi</csymbol>
</apply>
</apply>
</math>
Prefix
Popcorn
-(nums1.pi) < complex1.imaginary(ln($x)) and complex1.imaginary(ln($x)) <= nums1.pi
Rendered Presentation MathML
-
π
<
imaginary
(
ln
(
x
)
)
∧
imaginary
(
ln
(
x
)
)
≤
π
Example:
ln 1 (which is 0).
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="transc1" name="ln"/>
<OMF dec="1"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML"><apply><csymbol cd="transc1">ln</csymbol><cn type="real">1</cn></apply></math>
Prefix
Rendered Presentation MathML
Signatures:
sts
Role:
application
Description:
This symbol represents the exponentiation function as described in
Abramowitz and Stegun, section 4.2. It takes one argument.
Commented Mathematical property (CMP):
for all k if k is an integer then e^(z+2*pi*k*i)=e^z
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="k"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="k"/>
<OMS cd="setname1" name="Z"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="exp"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMV name="z"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMI>2</OMI>
<OMS cd="nums1" name="pi"/>
<OMV name="k"/>
<OMS cd="nums1" name="i"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="transc1" name="exp"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>k</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>k</ci><csymbol cd="setname1">Z</csymbol></apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">exp</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<ci>z</ci>
<apply><csymbol cd="arith1">times</csymbol>
<cn type="integer">2</cn>
<csymbol cd="nums1">pi</csymbol>
<ci>k</ci>
<csymbol cd="nums1">i</csymbol>
</apply>
</apply>
</apply>
<apply><csymbol cd="transc1">exp</csymbol><ci>z</ci></apply>
</apply>
</apply>
</bind>
</math>
Prefix
Popcorn
quant1.forall[$k -> set1.in($k, setname1.Z) ==> exp($z + 2 * nums1.pi * $k * nums1.i) = exp($z)]
Rendered Presentation MathML
∀
k
.
k
∈
Z
⇒
exp
(
z
+
2
π
k
i
)
=
exp
(
z
)
Signatures:
sts
Role:
application
Description:
This symbol represents the sin function as described in Abramowitz and
Stegun, section 4.3. It takes one argument.
Commented Mathematical property (CMP):
sin(x) = (exp(ix)-exp(-ix))/2i
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS name="sin" cd="transc1"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS name="divide" cd="arith1"/>
<OMA>
<OMS name="minus" cd="arith1"/>
<OMA>
<OMS name="exp" cd="transc1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMV name="x"/>
</OMA>
</OMA>
<OMA>
<OMS name="exp" cd="transc1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMA>
<OMS name="unary_minus" cd="arith1"/>
<OMS name="i" cd="nums1"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS name="times" cd="arith1"/>
<OMI>2</OMI>
<OMS name="i" cd="nums1"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="transc1">exp</csymbol>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>x</ci></apply>
</apply>
<apply><csymbol cd="transc1">exp</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
<ci>x</ci>
</apply>
</apply>
</apply>
<apply><csymbol cd="arith1">times</csymbol>
<cn type="integer">2</cn>
<csymbol cd="nums1">i</csymbol>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
sin($x) = (exp(nums1.i * $x) - exp( -(nums1.i) * $x)) / (2 * nums1.i)
Rendered Presentation MathML
sin
(
x
)
=
exp
(
i
x
)
-
exp
(
-
i
x
)
2
i
Commented Mathematical property (CMP):
sin(A + B) = sin A cos B + cos A sin B
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="sin"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
</OMA>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="transc1" name="sin"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="transc1" name="cos"/>
<OMV name="B"/>
</OMA>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="transc1" name="cos"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="transc1" name="sin"/>
<OMV name="B"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">sin</csymbol>
<apply><csymbol cd="arith1">plus</csymbol><ci>A</ci><ci>B</ci></apply>
</apply>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="transc1">sin</csymbol><ci>A</ci></apply>
<apply><csymbol cd="transc1">cos</csymbol><ci>B</ci></apply>
</apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="transc1">cos</csymbol><ci>A</ci></apply>
<apply><csymbol cd="transc1">sin</csymbol><ci>B</ci></apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
sin($A + $B) = sin($A) * cos($B) + cos($A) * sin($B)
Rendered Presentation MathML
sin
(
A
+
B
)
=
sin
(
A
)
cos
(
B
)
+
cos
(
A
)
sin
(
B
)
Commented Mathematical property (CMP):
sin A = - sin(-A)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="sin"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMA>
<OMS cd="transc1" name="sin"/>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMV name="A"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">sin</csymbol><ci>A</ci></apply>
<apply><csymbol cd="arith1">unary_minus</csymbol>
<apply><csymbol cd="transc1">sin</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><ci>A</ci></apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
sin($A) = -(sin( -($A)))
Rendered Presentation MathML
sin
(
A
)
=
-
sin
(
-
A
)
Signatures:
sts
Role:
application
Description:
This symbol represents the cos function as described in Abramowitz and
Stegun, section 4.3. It takes one argument.
Commented Mathematical property (CMP):
cos(x) = (exp(ix)+exp(-ix))/2
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS name="cos" cd="transc1"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS name="divide" cd="arith1"/>
<OMA>
<OMS name="plus" cd="arith1"/>
<OMA>
<OMS name="exp" cd="transc1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMV name="x"/>
</OMA>
</OMA>
<OMA>
<OMS name="exp" cd="transc1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMA>
<OMS name="unary_minus" cd="arith1"/>
<OMS name="i" cd="nums1"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMA>
</OMA>
<OMI>2</OMI>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">cos</csymbol><ci>x</ci></apply>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="transc1">exp</csymbol>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>x</ci></apply>
</apply>
<apply><csymbol cd="transc1">exp</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
<ci>x</ci>
</apply>
</apply>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
</math>
Prefix
Popcorn
cos($x) = (exp(nums1.i * $x) + exp( -(nums1.i) * $x)) / 2
Rendered Presentation MathML
cos
(
x
)
=
exp
(
i
x
)
+
exp
(
-
i
x
)
2
Commented Mathematical property (CMP):
cos 2A = cos^2 A - sin^2 A
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="cos"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMI> 2 </OMI>
<OMV name="A"/>
</OMA>
</OMA>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMA>
<OMS cd="transc1" name="cos"/>
<OMV name="A"/>
</OMA>
<OMI> 2 </OMI>
</OMA>
<OMA>
<OMS cd="arith1" name="power"/>
<OMA>
<OMS cd="transc1" name="sin"/>
<OMV name="A"/>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">cos</csymbol>
<apply><csymbol cd="arith1">times</csymbol><cn type="integer">2</cn><ci>A</ci></apply>
</apply>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="transc1">cos</csymbol><ci>A</ci></apply>
<cn type="integer">2</cn>
</apply>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="transc1">sin</csymbol><ci>A</ci></apply>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
cos(2 * $A) = cos($A) ^ 2 - sin($A) ^ 2
Rendered Presentation MathML
cos
(
2
A
)
=
cos
(
A
)
2
-
sin
(
A
)
2
Commented Mathematical property (CMP):
cos A = cos(-A)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="cos"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="transc1" name="cos"/>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMV name="A"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">cos</csymbol><ci>A</ci></apply>
<apply><csymbol cd="transc1">cos</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><ci>A</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
cos($A) = cos( -($A))
Rendered Presentation MathML
cos
(
A
)
=
cos
(
-
A
)
Signatures:
sts
Role:
application
Description:
This symbol represents the tan function as described in Abramowitz and
Stegun, section 4.3. It takes one argument.
Commented Mathematical property (CMP):
tan A = sin A / cos A
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="tan"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMA>
<OMS cd="transc1" name="sin"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="transc1" name="cos"/>
<OMV name="A"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">tan</csymbol><ci>A</ci></apply>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="transc1">sin</csymbol><ci>A</ci></apply>
<apply><csymbol cd="transc1">cos</csymbol><ci>A</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
tan($A) = sin($A) / cos($A)
Rendered Presentation MathML
tan
(
A
)
=
sin
(
A
)
cos
(
A
)
Signatures:
sts
Role:
application
Description:
This symbol represents the sec function as described in Abramowitz and
Stegun, section 4.3. It takes one argument.
Commented Mathematical property (CMP):
sec A = 1/cos A
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="sec"/><OMV name="A"/>
</OMA>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMA>
<OMS cd="transc1" name="cos"/>
<OMV name="A"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">sec</csymbol><ci>A</ci></apply>
<apply><csymbol cd="arith1">divide</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="transc1">cos</csymbol><ci>A</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
sec($A) = alg1.one / cos($A)
Rendered Presentation MathML
sec
(
A
)
=
1
cos
(
A
)
Signatures:
sts
Role:
application
Description:
This symbol represents the csc function as described in Abramowitz and
Stegun, section 4.3. It takes one argument.
Commented Mathematical property (CMP):
csc A = 1/sin A
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="csc"/><OMV name="A"/>
</OMA>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMA>
<OMS cd="transc1" name="sin"/>
<OMV name="A"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">csc</csymbol><ci>A</ci></apply>
<apply><csymbol cd="arith1">divide</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="transc1">sin</csymbol><ci>A</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
csc($A) = alg1.one / sin($A)
Rendered Presentation MathML
csc
(
A
)
=
1
sin
(
A
)
Signatures:
sts
Role:
application
Description:
This symbol represents the cot function as described in Abramowitz and
Stegun, section 4.3. It takes one argument.
Commented Mathematical property (CMP):
cot A = 1/tan A
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="cot"/><OMV name="A"/>
</OMA>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMA>
<OMS cd="transc1" name="tan"/>
<OMV name="A"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">cot</csymbol><ci>A</ci></apply>
<apply><csymbol cd="arith1">divide</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="transc1">tan</csymbol><ci>A</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
cot($A) = alg1.one / tan($A)
Rendered Presentation MathML
cot
(
A
)
=
1
tan
(
A
)
Signatures:
sts
Role:
application
Description:
This symbol represents the sinh function as described in Abramowitz
and Stegun, section 4.5. It takes one argument.
Commented Mathematical property (CMP):
sinh A = 1/2 * (e^A - e^(-A))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="sinh"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="nums1" name="rational"/>
<OMS cd="alg1" name="one"/>
<OMI> 2 </OMI>
</OMA>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMS cd="nums1" name="e"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="arith1" name="power"/>
<OMS cd="nums1" name="e"/>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMV name="A"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">sinh</csymbol><ci>A</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="nums1">rational</csymbol>
<csymbol cd="alg1">one</csymbol>
<cn type="integer">2</cn>
</apply>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="arith1">power</csymbol><csymbol cd="nums1">e</csymbol><ci>A</ci></apply>
<apply><csymbol cd="arith1">power</csymbol>
<csymbol cd="nums1">e</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><ci>A</ci></apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
sinh($A) = alg1.one // 2 * (nums1.e ^ $A - nums1.e ^ -($A))
Rendered Presentation MathML
sinh
(
A
)
=
1
2
(
e
A
-
e
-
A
)
Signatures:
sts
Role:
application
Description:
This symbol represents the cosh function as described in Abramowitz
and Stegun, section 4.5. It takes one argument.
Commented Mathematical property (CMP):
cosh A = 1/2 * (e^A + e^(-A))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="cosh"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="nums1" name="rational"/>
<OMS cd="alg1" name="one"/>
<OMI> 2 </OMI>
</OMA>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMS cd="nums1" name="e"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="arith1" name="power"/>
<OMS cd="nums1" name="e"/>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMV name="A"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">cosh</csymbol><ci>A</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="nums1">rational</csymbol>
<csymbol cd="alg1">one</csymbol>
<cn type="integer">2</cn>
</apply>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">power</csymbol><csymbol cd="nums1">e</csymbol><ci>A</ci></apply>
<apply><csymbol cd="arith1">power</csymbol>
<csymbol cd="nums1">e</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><ci>A</ci></apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
cosh($A) = alg1.one // 2 * (nums1.e ^ $A + nums1.e ^ -($A))
Rendered Presentation MathML
cosh
(
A
)
=
1
2
(
e
A
+
e
-
A
)
Signatures:
sts
Role:
application
Description:
This symbol represents the tanh function as described in Abramowitz
and Stegun, section 4.5. It takes one argument.
Commented Mathematical property (CMP):
tanh A = sinh A / cosh A
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="tanh"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMA>
<OMS cd="transc1" name="sinh"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="transc1" name="cosh"/>
<OMV name="A"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">tanh</csymbol><ci>A</ci></apply>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="transc1">sinh</csymbol><ci>A</ci></apply>
<apply><csymbol cd="transc1">cosh</csymbol><ci>A</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
tanh($A) = sinh($A) / cosh($A)
Rendered Presentation MathML
tanh
(
A
)
=
sinh
(
A
)
cosh
(
A
)
Signatures:
sts
Role:
application
Description:
This symbol represents the sech function as described in Abramowitz
and Stegun, section 4.5. It takes one argument.
Commented Mathematical property (CMP):
sech A = 1/cosh A
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="sech"/><OMV name="A"/>
</OMA>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMA>
<OMS cd="transc1" name="cosh"/>
<OMV name="A"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">sech</csymbol><ci>A</ci></apply>
<apply><csymbol cd="arith1">divide</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="transc1">cosh</csymbol><ci>A</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
sech($A) = alg1.one / cosh($A)
Rendered Presentation MathML
sech
(
A
)
=
1
cosh
(
A
)
Signatures:
sts
Role:
application
Description:
This symbol represents the csch function as described in Abramowitz
and Stegun, section 4.5. It takes one argument.
Commented Mathematical property (CMP):
csch A = 1/sinh A
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="csch"/><OMV name="A"/>
</OMA>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMA>
<OMS cd="transc1" name="sinh"/>
<OMV name="A"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">csch</csymbol><ci>A</ci></apply>
<apply><csymbol cd="arith1">divide</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="transc1">sinh</csymbol><ci>A</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
csch($A) = alg1.one / sinh($A)
Rendered Presentation MathML
csch
(
A
)
=
1
sinh
(
A
)
Signatures:
sts
Role:
application
Description:
This symbol represents the coth function as described in Abramowitz
and Stegun, section 4.5. It takes one argument.
Commented Mathematical property (CMP):
coth A = 1/tanh A
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="coth"/><OMV name="A"/>
</OMA>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMA>
<OMS cd="transc1" name="tanh"/>
<OMV name="A"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">coth</csymbol><ci>A</ci></apply>
<apply><csymbol cd="arith1">divide</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="transc1">tanh</csymbol><ci>A</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
coth($A) = alg1.one / tanh($A)
Rendered Presentation MathML
coth
(
A
)
=
1
tanh
(
A
)
Signatures:
sts
Role:
application
Description:
This symbol represents the arcsin function. This is the inverse of the
sin function as described in Abramowitz and Stegun, section 4.4. It
takes one argument.
Commented Mathematical property (CMP):
arcsin(z) = -i ln (sqrt(1-z^2)+iz)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="arcsin" cd="transc1"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS name="times" cd="arith1"/>
<OMA>
<OMS name="unary_minus" cd="arith1"/>
<OMS name="i" cd="nums1"/>
</OMA>
<OMA>
<OMS name="ln" cd="transc1"/>
<OMA>
<OMS name="plus" cd="arith1"/>
<OMA>
<OMS name="root" cd="arith1"/>
<OMA>
<OMS name="minus" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMA>
<OMS name="power" cd="arith1"/>
<OMV name="z"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
<OMA>
<OMS name="times" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arcsin</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
<apply><csymbol cd="transc1">ln</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
</apply>
<cn type="integer">2</cn>
</apply>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
arcsin($z) = -(nums1.i) * ln(arith1.root(alg1.one - $z ^ 2, 2) + nums1.i * $z)
Rendered Presentation MathML
arcsin
(
z
)
=
-
i
ln
(
1
-
z
2
+
i
z
)
Commented Mathematical property (CMP):
x in [-(pi/2),(pi/2)] implies arcsin(sin x) = x
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="x"/>
<OMA>
<OMS cd="interval1" name="interval_cc"/>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="nums1" name="pi"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="nums1" name="pi"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arcsin"/>
<OMA>
<OMS cd="transc1" name="sin"/>
<OMV name="x"/>
</OMA>
</OMA>
<OMV name="x"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>x</ci>
<apply><csymbol cd="interval1">interval_cc</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<csymbol cd="nums1">pi</csymbol>
<cn type="integer">2</cn>
</apply>
</apply>
<apply><csymbol cd="arith1">divide</csymbol>
<csymbol cd="nums1">pi</csymbol>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arcsin</csymbol>
<apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>
</apply>
<ci>x</ci>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.in($x, interval1.interval_cc( -(nums1.pi / 2), nums1.pi / 2)) ==> arcsin(sin($x)) = $x
Rendered Presentation MathML
x
∈
[
-
π
2
,
π
2
]
⇒
arcsin
(
sin
(
x
)
)
=
x
Signatures:
sts
Role:
application
Description:
This symbol represents the arccos function. This is the inverse of the
cos function as described in Abramowitz and Stegun, section 4.4. It
takes one argument.
Commented Mathematical property (CMP):
arccos(z) = -i ln(z+i \sqrt(1-z^2))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arccos"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMS cd="nums1" name="i"/>
</OMA>
<OMA>
<OMS cd="transc1" name="ln"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMV name="z"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMA>
<OMS cd="arith1" name="root"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMS cd="alg1" name="one"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="z"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arccos</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
<apply><csymbol cd="transc1">ln</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<ci>z</ci>
<apply><csymbol cd="arith1">times</csymbol>
<csymbol cd="nums1">i</csymbol>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
arccos($z) = -(nums1.i) * ln($z + nums1.i * arith1.root(alg1.one - $z ^ 2, 2))
Rendered Presentation MathML
arccos
(
z
)
=
-
i
ln
(
z
+
i
1
-
z
2
)
Commented Mathematical property (CMP):
x in [0,pi] implies arccos(cos x) = x
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="x"/>
<OMA>
<OMS cd="interval1" name="interval_cc"/>
<OMS cd="alg1" name="zero"/>
<OMS cd="nums1" name="pi"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arccos"/>
<OMA>
<OMS cd="transc1" name="cos"/>
<OMV name="x"/>
</OMA>
</OMA>
<OMV name="x"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>x</ci>
<apply><csymbol cd="interval1">interval_cc</csymbol>
<csymbol cd="alg1">zero</csymbol>
<csymbol cd="nums1">pi</csymbol>
</apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arccos</csymbol>
<apply><csymbol cd="transc1">cos</csymbol><ci>x</ci></apply>
</apply>
<ci>x</ci>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.in($x, interval1.interval_cc(alg1.zero, nums1.pi)) ==> arccos(cos($x)) = $x
Rendered Presentation MathML
x
∈
[
0
,
π
]
⇒
arccos
(
cos
(
x
)
)
=
x
Signatures:
sts
Role:
application
Description:
This symbol represents the arctan function. This is the inverse of the
tan function as described in Abramowitz and Stegun, section 4.4. It
takes one argument.
Commented Mathematical property (CMP):
arctan(z) = (i/2)ln((1-iz)/(1+iz))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="arctan" cd="transc1"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS name="times" cd="arith1"/>
<OMA>
<OMS name="divide" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMI> 2 </OMI>
</OMA>
<OMA>
<OMS name="ln" cd="transc1"/>
<OMA>
<OMS name="divide" cd="arith1"/>
<OMA>
<OMS name="minus" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMV name="z"/>
</OMA>
</OMA>
<OMA>
<OMS name="plus" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arctan</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<csymbol cd="nums1">i</csymbol>
<cn type="integer">2</cn>
</apply>
<apply><csymbol cd="transc1">ln</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
</apply>
<apply><csymbol cd="arith1">plus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
arctan($z) = nums1.i / 2 * ln((alg1.one - nums1.i * $z) / (alg1.one + nums1.i * $z))
Rendered Presentation MathML
arctan
(
z
)
=
i
2
ln
(
1
-
i
z
1
+
i
z
)
Commented Mathematical property (CMP):
x in (-(pi/2),(pi/2)) implies arctan(tan x) = x
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="x"/>
<OMA>
<OMS cd="interval1" name="interval_oo"/>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="nums1" name="pi"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="nums1" name="pi"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arctan"/>
<OMA>
<OMS cd="transc1" name="tan"/>
<OMV name="x"/>
</OMA>
</OMA>
<OMV name="x"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>x</ci>
<apply><csymbol cd="interval1">interval_oo</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<csymbol cd="nums1">pi</csymbol>
<cn type="integer">2</cn>
</apply>
</apply>
<apply><csymbol cd="arith1">divide</csymbol>
<csymbol cd="nums1">pi</csymbol>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arctan</csymbol>
<apply><csymbol cd="transc1">tan</csymbol><ci>x</ci></apply>
</apply>
<ci>x</ci>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.in($x, interval1.interval_oo( -(nums1.pi / 2), nums1.pi / 2)) ==> arctan(tan($x)) = $x
Rendered Presentation MathML
x
∈
(
-
π
2
,
π
2
)
⇒
arctan
(
tan
(
x
)
)
=
x
Signatures:
sts
Role:
application
Description:
This symbol represents the arcsec function as described in Abramowitz
and Stegun, section 4.4.
Commented Mathematical property (CMP):
arcsec(z) = -i ln(1/z + i \sqrt(1-1/z^2))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arcsec"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMS cd="nums1" name="i"/>
</OMA>
<OMA>
<OMS cd="transc1" name="ln"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMA>
<OMS cd="arith1" name="root"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMS cd="alg1" name="one"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="z"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arcsec</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
<apply><csymbol cd="transc1">ln</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<csymbol cd="nums1">i</csymbol>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
</apply>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
arcsec($z) = -(nums1.i) * ln(alg1.one / $z + nums1.i * arith1.root(alg1.one - alg1.one / $z ^ 2, 2))
Rendered Presentation MathML
arcsec
(
z
)
=
-
i
ln
(
1
z
+
i
1
-
1
z
2
)
Commented Mathematical property (CMP):
for all z | arcsec z = i * arcsech z
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arcsec"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMA>
<OMS cd="transc1" name="arcsech"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arcsec</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<csymbol cd="nums1">i</csymbol>
<apply><csymbol cd="transc1">arcsech</csymbol><ci>z</ci></apply>
</apply>
</apply>
</bind>
</math>
Prefix
Popcorn
quant1.forall[$z -> arcsec($z) = nums1.i * arcsech($z)]
Rendered Presentation MathML
∀
z
.
arcsec
(
z
)
=
i
arcsech
(
z
)
Signatures:
sts
Role:
application
Description:
This symbol represents the arccsc function as described in Abramowitz
and Stegun, section 4.4.
Commented Mathematical property (CMP):
arccsc(z) = -i ln(i/z + \sqrt(1 - 1/z^2))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arccsc"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMS cd="nums1" name="i"/>
</OMA>
<OMA>
<OMS cd="transc1" name="ln"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="nums1" name="i"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="root"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMS cd="alg1" name="one"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="z"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arccsc</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
<apply><csymbol cd="transc1">ln</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
</apply>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
arccsc($z) = -(nums1.i) * ln(nums1.i / $z + arith1.root(alg1.one - alg1.one / $z ^ 2, 2))
Rendered Presentation MathML
arccsc
(
z
)
=
-
i
ln
(
i
z
+
1
-
1
z
2
)
Commented Mathematical property (CMP):
arccsc(z) = i * arccsch(i * z)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arccsc"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMA>
<OMS cd="transc1" name="arccsch"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arccsc</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<csymbol cd="nums1">i</csymbol>
<apply><csymbol cd="transc1">arccsch</csymbol>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
arccsc($z) = nums1.i * arccsch(nums1.i * $z)
Rendered Presentation MathML
arccsc
(
z
)
=
i
arccsch
(
i
z
)
Commented Mathematical property (CMP):
arccsc(-z) = - arccsc(z)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arccsc"/>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMV name="z"/>
</OMA>
</OMA>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMA>
<OMS cd="transc1" name="arccsc"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arccsc</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><ci>z</ci></apply>
</apply>
<apply><csymbol cd="arith1">unary_minus</csymbol>
<apply><csymbol cd="transc1">arccsc</csymbol><ci>z</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
arccsc( -($z)) = -(arccsc($z))
Rendered Presentation MathML
arccsc
(
-
z
)
=
-
arccsc
(
z
)
Signatures:
sts
Role:
application
Description:
This symbol represents the arccot function as described in Abramowitz
and Stegun, section 4.4.
Commented Mathematical property (CMP):
arccot(-z) = - arccot(z)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arccot"/>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMV name="z"/>
</OMA>
</OMA>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMA>
<OMS cd="transc1" name="arccot"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arccot</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><ci>z</ci></apply>
</apply>
<apply><csymbol cd="arith1">unary_minus</csymbol>
<apply><csymbol cd="transc1">arccot</csymbol><ci>z</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
arccot( -($z)) = -(arccot($z))
Rendered Presentation MathML
arccot
(
-
z
)
=
-
arccot
(
z
)
Commented Mathematical property (CMP):
arccot(x) = (i/2) * ln ((x - i)/(x + i))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arccot"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="nums1" name="i"/>
<OMI> 2 </OMI>
</OMA>
<OMA>
<OMS cd="transc1" name="ln"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMV name="x"/>
<OMS cd="nums1" name="i"/>
</OMA>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMV name="x"/>
<OMS cd="nums1" name="i"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arccot</csymbol><ci>x</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<csymbol cd="nums1">i</csymbol>
<cn type="integer">2</cn>
</apply>
<apply><csymbol cd="transc1">ln</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">minus</csymbol><ci>x</ci><csymbol cd="nums1">i</csymbol></apply>
<apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><csymbol cd="nums1">i</csymbol></apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
arccot($x) = nums1.i / 2 * ln(($x - nums1.i) / ($x + nums1.i))
Rendered Presentation MathML
arccot
(
x
)
=
i
2
ln
(
x
-
i
x
+
i
)
Signatures:
sts
Role:
application
Description:
This symbol represents the arcsinh function as described in Abramowitz
and Stegun, section 4.6.
Commented Mathematical property (CMP):
arcsinh z = ln(z + \sqrt(1+z^2))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arcsinh"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="transc1" name="ln"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMV name="z"/>
<OMA>
<OMS cd="arith1" name="root"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMS cd="alg1" name="one"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="z"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arcsinh</csymbol><ci>z</ci></apply>
<apply><csymbol cd="transc1">ln</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<ci>z</ci>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
arcsinh($z) = ln($z + arith1.root(alg1.one + $z ^ 2, 2))
Rendered Presentation MathML
arcsinh
(
z
)
=
ln
(
z
+
1
+
z
2
)
Commented Mathematical property (CMP):
arcsinh(z) = - i * arcsin(i * z)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arcsinh"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMS cd="nums1" name="i"/>
</OMA>
<OMA>
<OMS cd="transc1" name="arcsin"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arcsinh</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
<apply><csymbol cd="transc1">arcsin</csymbol>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
arcsinh($z) = -(nums1.i) * arcsin(nums1.i * $z)
Rendered Presentation MathML
arcsinh
(
z
)
=
-
i
arcsin
(
i
z
)
Signatures:
sts
Role:
application
Description:
This symbol represents the arccosh function as described in Abramowitz
and Stegun, section 4.6.
Commented Mathematical property (CMP):
arccosh(z) = 2*ln(\sqrt((z+1)/2) + \sqrt((z-1)/2))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arccosh"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMI> 2 </OMI>
<OMA>
<OMS cd="transc1" name="ln"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="arith1" name="root"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMV name="z"/>
<OMS cd="alg1" name="one"/>
</OMA>
<OMI> 2 </OMI>
</OMA>
<OMI> 2 </OMI>
</OMA>
<OMA>
<OMS cd="arith1" name="root"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMV name="z"/>
<OMS cd="alg1" name="one"/>
</OMA>
<OMI> 2 </OMI>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arccosh</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<cn type="integer">2</cn>
<apply><csymbol cd="transc1">ln</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">plus</csymbol><ci>z</ci><csymbol cd="alg1">one</csymbol></apply>
<cn type="integer">2</cn>
</apply>
<cn type="integer">2</cn>
</apply>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">minus</csymbol><ci>z</ci><csymbol cd="alg1">one</csymbol></apply>
<cn type="integer">2</cn>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
arccosh($z) = 2 * ln(arith1.root(($z + alg1.one) / 2, 2) + arith1.root(($z - alg1.one) / 2, 2))
Rendered Presentation MathML
arccosh
(
z
)
=
2
ln
(
z
+
1
2
+
z
-
1
2
)
Commented Mathematical property (CMP):
arccosh z = i * (pi - arccos z)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arccosh"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMS cd="nums1" name="pi"/>
<OMA>
<OMS cd="transc1" name="arccos"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arccosh</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<csymbol cd="nums1">i</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<csymbol cd="nums1">pi</csymbol>
<apply><csymbol cd="transc1">arccos</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
arccosh($z) = nums1.i * (nums1.pi - arccos($z))
Rendered Presentation MathML
arccosh
(
z
)
=
i
(
π
-
arccos
(
z
)
)
Signatures:
sts
Role:
application
Description:
This symbol represents the arctanh function as described in Abramowitz
and Stegun, section 4.6.
Commented Mathematical property (CMP):
arctanh(z) = - i * arctan(i * z)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arctanh"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMS cd="nums1" name="i"/>
</OMA>
<OMA>
<OMS cd="transc1" name="arctan"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arctanh</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
<apply><csymbol cd="transc1">arctan</csymbol>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
arctanh($z) = -(nums1.i) * arctan(nums1.i * $z)
Rendered Presentation MathML
arctanh
(
z
)
=
-
i
arctan
(
i
z
)
Commented Mathematical property (CMP):
for all x where 0 <= x^2 < 1 |
arctanh(x) = 1/2 * ln((1 + x)/(1 - x))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="x"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="relation1" name="leq"/>
<OMS cd="alg1" name="zero"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="x"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="lt"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="x"/>
<OMI> 2 </OMI>
</OMA>
<OMS cd="alg1" name="one"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arctanh"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="nums1" name="rational"/>
<OMI> 1 </OMI>
<OMI> 2 </OMI>
</OMA>
<OMA>
<OMS cd="transc1" name="ln"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMV name="x"/>
<OMS cd="alg1" name="one"/>
</OMA>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMS cd="alg1" name="one"/>
<OMV name="x"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">leq</csymbol>
<csymbol cd="alg1">zero</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><cn type="integer">2</cn></apply>
</apply>
<apply><csymbol cd="relation1">lt</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><cn type="integer">2</cn></apply>
<csymbol cd="alg1">one</csymbol>
</apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arctanh</csymbol><ci>x</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="nums1">rational</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
</apply>
<apply><csymbol cd="transc1">ln</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><csymbol cd="alg1">one</csymbol></apply>
<apply><csymbol cd="arith1">minus</csymbol><csymbol cd="alg1">one</csymbol><ci>x</ci></apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</bind>
</math>
Prefix
forall
[
x
] .
(
implies
(
and
(
leq
(
zero ,
power
(
x , 2 )
)
,
lt
(
power
(
x , 2 )
,
one )
)
,
eq
(
arctanh
(
x )
,
times
(
rational
( 1 , 2 )
,
ln
(
divide
(
plus
(
x ,
one )
,
minus
(
one ,
x )
)
)
)
)
)
)
Popcorn
quant1.forall[$x -> alg1.zero <= $x ^ 2 and $x ^ 2 < alg1.one ==> arctanh($x) = 1 // 2 * ln(($x + alg1.one) / (alg1.one - $x))]
Rendered Presentation MathML
∀
x
.
0
≤
x
2
∧
x
2
<
1
⇒
arctanh
(
x
)
=
1
2
ln
(
x
+
1
1
-
x
)
Signatures:
sts
Role:
application
Description:
This symbol represents the arcsech function as described in Abramowitz
and Stegun, section 4.6.
Commented Mathematical property (CMP):
arcsech(z) = 2 ln(\sqrt((1+z)/(2z)) + \sqrt((1-z)/(2z)))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arcsech"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMI> 2 </OMI>
<OMA>
<OMS cd="transc1" name="ln"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="arith1" name="root"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMS cd="alg1" name="one"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMI> 2 </OMI>
<OMV name="z"/>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
<OMA>
<OMS cd="arith1" name="root"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMS cd="alg1" name="one"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMI> 2 </OMI>
<OMV name="z"/>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arcsech</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<cn type="integer">2</cn>
<apply><csymbol cd="transc1">ln</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">plus</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol><cn type="integer">2</cn><ci>z</ci></apply>
</apply>
<cn type="integer">2</cn>
</apply>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">minus</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol><cn type="integer">2</cn><ci>z</ci></apply>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
eq
(
arcsech
(
z )
,
times
( 2 ,
ln
(
plus
(
root
(
divide
(
plus
(
one ,
z )
,
times
( 2 ,
z )
)
, 2 )
,
root
(
divide
(
minus
(
one ,
z )
,
times
( 2 ,
z )
)
, 2 )
)
)
)
)
Popcorn
arcsech($z) = 2 * ln(arith1.root((alg1.one + $z) / (2 * $z), 2) + arith1.root((alg1.one - $z) / (2 * $z), 2))
Rendered Presentation MathML
arcsech
(
z
)
=
2
ln
(
1
+
z
2
z
+
1
-
z
2
z
)
Commented Mathematical property (CMP):
for all x in (0..1] | arcsech x = ln(1/x + (1/(x^2) - 1)^(1/2))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="x"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="x"/>
<OMA>
<OMS cd="interval1" name="interval_oc"/>
<OMI> 0 </OMI> <OMI> 1 </OMI>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arcsech"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="transc1" name="ln"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="arith1" name="power"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="x"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMS cd="alg1" name="one"/>
</OMA>
<OMA>
<OMS cd="nums1" name="rational"/>
<OMI> 1 </OMI> <OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>x</ci>
<apply><csymbol cd="interval1">interval_oc</csymbol>
<cn type="integer">0</cn>
<cn type="integer">1</cn>
</apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arcsech</csymbol><ci>x</ci></apply>
<apply><csymbol cd="transc1">ln</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>x</ci></apply>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><cn type="integer">2</cn></apply>
</apply>
<csymbol cd="alg1">one</csymbol>
</apply>
<apply><csymbol cd="nums1">rational</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</bind>
</math>
Prefix
forall
[
x
] .
(
implies
(
in
(
x ,
interval_oc
( 0 , 1 )
)
,
eq
(
arcsech
(
x )
,
ln
(
plus
(
divide
(
one ,
x )
,
power
(
minus
(
divide
(
one ,
power
(
x , 2 )
)
,
one )
,
rational
( 1 , 2 )
)
)
)
)
)
)
Popcorn
quant1.forall[$x -> set1.in($x, interval1.interval_oc(0, 1)) ==> arcsech($x) = ln(alg1.one / $x + (alg1.one / $x ^ 2 - alg1.one) ^ 1 // 2)]
Rendered Presentation MathML
∀
x
.
x
∈
(
0
,
1
]
⇒
arcsech
(
x
)
=
ln
(
1
x
+
(
1
x
2
-
1
)
1
2
)
Signatures:
sts
Role:
application
Description:
This symbol represents the arccsch function as described in Abramowitz
and Stegun, section 4.6.
Commented Mathematical property (CMP):
arccsch(z) = ln(1/z + \sqrt(1+(1/z)^2))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arccsch"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="transc1" name="ln"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="root"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMS cd="alg1" name="one"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMV name="z"/>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arccsch</csymbol><ci>z</ci></apply>
<apply><csymbol cd="transc1">ln</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
<cn type="integer">2</cn>
</apply>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
arccsch($z) = ln(alg1.one / $z + arith1.root(alg1.one + (alg1.one / $z) ^ 2, 2))
Rendered Presentation MathML
arccsch
(
z
)
=
ln
(
1
z
+
1
+
1
z
2
)
Commented Mathematical property (CMP):
arccsch(z) = i * arccsc(i * z)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arccsch"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMA>
<OMS cd="transc1" name="arccsc"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arccsch</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<csymbol cd="nums1">i</csymbol>
<apply><csymbol cd="transc1">arccsc</csymbol>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
arccsch($z) = nums1.i * arccsc(nums1.i * $z)
Rendered Presentation MathML
arccsch
(
z
)
=
i
arccsc
(
i
z
)
Signatures:
sts
Role:
application
Description:
This symbol represents the arccoth function as described in Abramowitz
and Stegun, section 4.6.
Commented Mathematical property (CMP):
arccoth(z) = (ln(-1-z)-ln(1-z))/2
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arccoth"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMA>
<OMS cd="transc1" name="ln"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMS cd="alg1" name="one"/>
</OMA>
<OMV name="z"/>
</OMA>
</OMA>
<OMA>
<OMS cd="transc1" name="ln"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMS cd="alg1" name="one"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arccoth</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="transc1">ln</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="alg1">one</csymbol></apply>
<ci>z</ci>
</apply>
</apply>
<apply><csymbol cd="transc1">ln</csymbol>
<apply><csymbol cd="arith1">minus</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
</apply>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
</math>
Prefix
Popcorn
arccoth($z) = (ln( -(alg1.one) - $z) - ln(alg1.one - $z)) / 2
Rendered Presentation MathML
arccoth
(
z
)
=
ln
(
-
1
-
z
)
-
ln
(
1
-
z
)
2
Commented Mathematical property (CMP):
for all z | if z is not zero then arccoth(z) = i * arccot(i * z)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="relation1" name="neq"/>
<OMV name="z"/>
<OMS cd="alg1" name="zero"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="arccoth"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMA>
<OMS cd="transc1" name="arccot"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="relation1">neq</csymbol><ci>z</ci><csymbol cd="alg1">zero</csymbol></apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">arccoth</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<csymbol cd="nums1">i</csymbol>
<apply><csymbol cd="transc1">arccot</csymbol>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
</apply>
</bind>
</math>
Prefix
Popcorn
quant1.forall[$z -> $z != alg1.zero ==> arccoth($z) = nums1.i * arccot(nums1.i * $z)]
Rendered Presentation MathML
∀
z
.
z
≠
0
⇒
arccoth
(
z
)
=
i
arccot
(
i
z
)
Signatures:
sts