OpenMath Content Dictionary: algebraic_cats
Canonical URL:
http://www.openmath.org/cd/algebraic_cats.ocd
CD File:
algebraic_cats.ocd
CD as XML Encoded OpenMath:
algebraic_cats.omcd
Defines:
Abelian_group , Abelian_group_identity , Abelian_group_inverse , Abelian_group_operation , Abelian_group_set , Abelian_monoid , Abelian_monoid_identity , Abelian_monoid_operation , Abelian_monoid_set , Abelian_semigroup , Abelian_semigroup_operation , Abelian_semigroup_set , Euclidean_domain , Euclidean_domain_abs , Euclidean_domain_negative , Euclidean_domain_plus , Euclidean_domain_set , Euclidean_domain_times , Euclidean_domain_zero , field , field_negative , field_one , field_plus , field_reciprocal , field_set , field_times , field_zero , group , group_identity , group_inverse , group_operation , group_set , groupoid , groupoid_operation , groupoid_set , integral_domain , integral_domain_negative , integral_domain_one , integral_domain_plus , integral_domain_set , integral_domain_times , integral_domain_zero , monoid , monoid_identity , monoid_operation , monoid_set , non_commutative_ring , non_commutative_ring_negative , non_commutative_ring_plus , non_commutative_ring_set , non_commutative_ring_times , non_commutative_ring_zero , ordered_Abelian_group , ordered_Abelian_group_identity , ordered_Abelian_group_inverse , ordered_Abelian_group_operation , ordered_Abelian_group_order , ordered_Abelian_group_set , ordered_Abelian_monoid , ordered_Abelian_monoid_identity , ordered_Abelian_monoid_operation , ordered_Abelian_monoid_order , ordered_Abelian_monoid_set , ordered_group , ordered_group_identity , ordered_group_inverse , ordered_group_operation , ordered_group_order , ordered_group_set , ordered_monoid , ordered_monoid_identity , ordered_monoid_operation , ordered_monoid_order , ordered_monoid_set , ordered_ring , ordered_ring_negative , ordered_ring_order , ordered_ring_plus , ordered_ring_set , ordered_ring_times , ordered_ring_zero , ring , ring_negative , ring_plus , ring_set , ring_times , ring_zero , ringoid , ringoid_plus , ringoid_set , ringoid_times , semigroup , semigroup_operation , semigroup_set
Date:
2002-06-17
Version:
0
(Revision 3)
Review Date:
2017-12-31
Status:
experimental
This document is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
The copyright holder grants you permission to redistribute this
document freely as a verbatim copy. Furthermore, the copyright
holder permits you to develop any derived work from this document
provided that the following conditions are met.
a) The derived work acknowledges the fact that it is derived from
this document, and maintains a prominent reference in the
work to the original source.
b) The fact that the derived work is not the original OpenMath
document is stated prominently in the derived work. Moreover if
both this document and the derived work are Content Dictionaries
then the derived work must include a different CDName element,
chosen so that it cannot be confused with any works adopted by
the OpenMath Society. In particular, if there is a Content
Dictionary Group whose name is, for example, `math' containing
Content Dictionaries named `math1', `math2' etc., then you should
not name a derived Content Dictionary `mathN' where N is an integer.
However you are free to name it `private_mathN' or some such. This
is because the names `mathN' may be used by the OpenMath Society
for future extensions.
c) The derived work is distributed under terms that allow the
compilation of derived works, but keep paragraphs a) and b)
intact. The simplest way to do this is to distribute the derived
work under the OpenMath license, but this is not a requirement.
If you have questions about this license please contact the OpenMath
society at http://www.openmath.org .
Author: J B Collins
Author: Bill Naylor
A CD of basic algebraic category constructors. This CD holds
constructors of individual instances of the categories, with
defining properties of the categories and accessor symbols to allow
access to attributes of the categories.
Description:
This is the constructor for monoids. A monoid comprises a set and an operation over elements of the set. The set must contain a unique identity element
(relative to the operation). That is an element, I, such that I*a=a*I=a where a
represents an arbitrary element of S and * represents the operation.
The operation * must be associative over S.
The monoid constructor takes three arguments, the set of the monoid, a binary
function taking two elements of the set into itself to represent the operation
of the monoid and an element of the set to represent the identity of the
monoid.
Commented Mathematical property (CMP):
This constructor may be used to build monoids
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="monoid"/>
<OMV name="S"/>
<OMV name="star"/>
</OMA>
<OMS cd="generic_alg_cats" name="monoid"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">monoid</csymbol><ci>S</ci><ci>star</ci></apply>
<csymbol cd="generic_alg_cats">monoid</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.in(algebraic_cats.monoid($S, $star), generic_alg_cats.monoid)
Rendered Presentation MathML
monoid
(
S
,
star
)
∈
monoid
Commented Mathematical property (CMP):
if (S,*,1) comprises a monoid then for all a,b,c in S | a*(b*c)=(a*b)*c
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS cd="generic_alg_cats" name="monoid"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
<OMV name="c"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS name="monoid_set" cd="algebraic_cats"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS name="monoid_set" cd="algebraic_cats"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="c"/>
<OMA>
<OMS name="monoid_set" cd="algebraic_cats"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMA>
<OMS name="monoid_operation" cd="algebraic_cats"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMA>
<OMA>
<OMS name="monoid_operation" cd="algebraic_cats"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="c"/>
</OMA>
</OMA>
<OMA>
<OMA>
<OMS name="monoid_operation" cd="algebraic_cats"/>
<OMV name="S"/>
</OMA>
<OMA>
<OMA>
<OMS name="monoid_operation" cd="algebraic_cats"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMV name="c"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">monoid</csymbol></apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<bvar><ci>c</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">monoid_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">monoid_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>c</ci>
<apply><csymbol cd="algebraic_cats">monoid_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">monoid_operation</csymbol><ci>S</ci></apply>
<ci>a</ci>
<apply>
<apply><csymbol cd="algebraic_cats">monoid_operation</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>c</ci>
</apply>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">monoid_operation</csymbol><ci>S</ci></apply>
<apply>
<apply><csymbol cd="algebraic_cats">monoid_operation</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<ci>c</ci>
</apply>
</apply>
</apply>
</bind>
</apply>
</math>
Prefix
implies
(
in
(
S ,
monoid )
,
forall
[
a
b
c
] .
(
implies
(
and
(
in
(
a ,
monoid_set
(
S )
)
,
in
(
b ,
monoid_set
(
S )
)
,
in
(
c ,
monoid_set
(
S )
)
)
,
eq
(
monoid_operation
(
S )
(
a ,
monoid_operation
(
S )
(
b ,
c )
)
,
monoid_operation
(
S )
(
monoid_operation
(
S )
(
a ,
b )
,
c )
)
)
)
)
Popcorn
set1.in($S, generic_alg_cats.monoid) ==> quant1.forall[$a, $b, $c -> set1.in($a, algebraic_cats.monoid_set($S)) and set1.in($b, algebraic_cats.monoid_set($S)) and set1.in($c, algebraic_cats.monoid_set($S)) ==> algebraic_cats.monoid_operation($S)($a, algebraic_cats.monoid_operation($S)($b, $c)) = algebraic_cats.monoid_operation($S)(algebraic_cats.monoid_operation($S)($a, $b), $c)]
Rendered Presentation MathML
S
∈
monoid
⇒
∀
a
,
b
,
c
.
a
∈
monoid_set
(
S
)
∧
b
∈
monoid_set
(
S
)
∧
c
∈
monoid_set
(
S
)
⇒
(
monoid_operation
(
S
)
)
(
a
,
(
monoid_operation
(
S
)
)
(
b
,
c
)
)
=
(
monoid_operation
(
S
)
)
(
(
monoid_operation
(
S
)
)
(
a
,
b
)
,
c
)
Commented Mathematical property (CMP):
the operation of the monoid is closed over the set of the monoid
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="logic1" name="implies"/>
<OMA><OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS cd="generic_alg_cats" name="monoid"/>
</OMA>
<OMA><OMS cd="logic1" name="implies"/>
<OMA><OMS cd="logic1" name="and"/>
<OMA><OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS name="monoid_set" cd="algebraic_cats"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA><OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS name="monoid_set" cd="algebraic_cats"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA><OMS cd="set1" name="in"/>
<OMA>
<OMA>
<OMS name="monoid_operation" cd="algebraic_cats"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMS name="monoid_set" cd="algebraic_cats"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">monoid</csymbol></apply>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">monoid_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">monoid_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">monoid_operation</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply><csymbol cd="algebraic_cats">monoid_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.in($S, generic_alg_cats.monoid) ==> set1.in($a, algebraic_cats.monoid_set($S)) and set1.in($b, algebraic_cats.monoid_set($S)) ==> set1.in(algebraic_cats.monoid_operation($S)($a, $b), algebraic_cats.monoid_set($S))
Rendered Presentation MathML
S
∈
monoid
⇒
a
∈
monoid_set
(
S
)
∧
b
∈
monoid_set
(
S
)
⇒
(
monoid_operation
(
S
)
)
(
a
,
b
)
∈
monoid_set
(
S
)
Commented Mathematical property (CMP):
if (S,*,1) is a monoid then there exists a unique identity
element in S
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="logic1" name="implies"/>
<OMA><OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS cd="generic_alg_cats" name="monoid"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR><OMV name="id"/></OMBVAR>
<OMA><OMS cd="logic1" name="and"/>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR><OMV name="x"/></OMBVAR>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMA>
<OMS name="monoid_operation" cd="algebraic_cats"/>
<OMV name="S"/>
</OMA>
<OMV name="x"/>
<OMV name="id"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMBIND>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMV name="id"/>
<OMA>
<OMS cd="algebraic_cats" name="monoid_identity"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMA>
<OMS name="monoid_operation" cd="algebraic_cats"/>
<OMV name="S"/>
</OMA>
<OMV name="x"/>
<OMV name="id2"/>
</OMA>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMV name="id"/>
<OMV name="id2"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">monoid</csymbol></apply>
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>id</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">monoid_operation</csymbol><ci>S</ci></apply>
<ci>x</ci>
<ci>id</ci>
</apply>
<ci>x</ci>
</apply>
</bind>
<apply><csymbol cd="relation1">eq</csymbol>
<ci>id</ci>
<apply><csymbol cd="algebraic_cats">monoid_identity</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">monoid_operation</csymbol><ci>S</ci></apply>
<ci>x</ci>
<ci>id2</ci>
</apply>
<ci>x</ci>
</apply>
<apply><csymbol cd="relation1">eq</csymbol><ci>id</ci><ci>id2</ci></apply>
</apply>
</apply>
</bind>
</apply>
</math>
Prefix
implies
(
in
(
S ,
monoid )
,
exists
[
id ] .
(
and
(
forall
[
x ] .
(
eq
(
monoid_operation
(
S )
(
x ,
id )
,
x )
)
,
eq
(
id ,
monoid_identity
(
S )
)
,
implies
(
eq
(
monoid_operation
(
S )
(
x ,
id2 )
,
x )
,
eq
(
id ,
id2 )
)
)
)
)
Popcorn
set1.in($S, generic_alg_cats.monoid) ==> quant1.exists[$id -> quant1.forall[$x -> algebraic_cats.monoid_operation($S)($x, $id) = $x] and $id = algebraic_cats.monoid_identity($S) and (algebraic_cats.monoid_operation($S)($x, $id2) = $x ==> $id = $id2)]
Rendered Presentation MathML
S
∈
monoid
⇒
∃
id
.
∀
x
.
(
monoid_operation
(
S
)
)
(
x
,
id
)
=
x
∧
id
=
monoid_identity
(
S
)
∧
(
(
monoid_operation
(
S
)
)
(
x
,
id
2
)
=
x
⇒
id
=
id
2
)
Commented Mathematical property (CMP):
the set of a monoid must contain at least one element
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS cd="generic_alg_cats" name="monoid"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR><OMV name="x"/></OMBVAR>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="x"/>
<OMA>
<OMS cd="algebraic_cats" name="monoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">monoid</csymbol></apply>
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="set1">in</csymbol>
<ci>x</ci>
<apply><csymbol cd="algebraic_cats">monoid_set</csymbol><ci>S</ci></apply>
</apply>
</bind>
</apply>
</math>
Prefix
Popcorn
set1.in($S, generic_alg_cats.monoid) ==> quant1.exists[$x -> set1.in($x, algebraic_cats.monoid_set($S))]
Rendered Presentation MathML
S
∈
monoid
⇒
∃
x
.
x
∈
monoid_set
(
S
)
Signatures:
sts
Description:
This symbol takes one argument which should be a monoid, it returns the set of
the monoid.
Commented Mathematical property (CMP):
The set of the monoid (S,*,1) = S
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="monoid_set"/>
<OMA>
<OMS cd="algebraic_cats" name="monoid"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
</OMA>
</OMA>
<OMV name="S"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">monoid_set</csymbol>
<apply><csymbol cd="algebraic_cats">monoid</csymbol><ci>S</ci><ci>star</ci><ci>id</ci></apply>
</apply>
<ci>S</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.monoid_set(algebraic_cats.monoid($S, $star, $id)) = $S
Rendered Presentation MathML
monoid_set
(
monoid
(
S
,
star
,
id
)
)
=
S
Signatures:
sts
Description:
This symbol takes one argument which should be a monoid, it returns
the operation of the monoid.
Commented Mathematical property (CMP):
The operation of the monoid (S,*,1) = *
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="monoid_operation"/>
<OMA>
<OMS cd="algebraic_cats" name="monoid"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
</OMA>
</OMA>
<OMV name="star"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">monoid_operation</csymbol>
<apply><csymbol cd="algebraic_cats">monoid</csymbol><ci>S</ci><ci>star</ci><ci>id</ci></apply>
</apply>
<ci>star</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.monoid_operation(algebraic_cats.monoid($S, $star, $id)) = $star
Rendered Presentation MathML
monoid_operation
(
monoid
(
S
,
star
,
id
)
)
=
star
Signatures:
sts
Description:
This symbol takes one argument which should be a monoid, it returns
the identity of the monoid.
Commented Mathematical property (CMP):
The identity of the monoid (S,*,1) = 1
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="monoid_identity"/>
<OMA>
<OMS cd="algebraic_cats" name="monoid"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
</OMA>
</OMA>
<OMV name="id"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">monoid_identity</csymbol>
<apply><csymbol cd="algebraic_cats">monoid</csymbol><ci>S</ci><ci>star</ci><ci>id</ci></apply>
</apply>
<ci>id</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.monoid_identity(algebraic_cats.monoid($S, $star, $id)) = $id
Rendered Presentation MathML
monoid_identity
(
monoid
(
S
,
star
,
id
)
)
=
id
Signatures:
sts
Description:
This is the constructor for Abelian monoids. An Abelian monoid is a monoid,
such that the operation is commutative between members of the Abelian monoid.
The Abelian_monoid constructor takes three arguments, the set of the Abelian monoid, a
binary function taking two elements of the set into itself to represent the
operation of the Abelian monoid and an element of the set to represent the identity of
the Abelian monoid.
Commented Mathematical property (CMP):
This constructor may be used to build Abelian_monoids
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_monoid"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="Id"/>
</OMA>
<OMS cd="generic_alg_cats" name="Abelian_monoid"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_monoid</csymbol><ci>S</ci><ci>star</ci><ci>Id</ci></apply>
<csymbol cd="generic_alg_cats">Abelian_monoid</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.in(algebraic_cats.Abelian_monoid($S, $star, $Id), generic_alg_cats.Abelian_monoid)
Rendered Presentation MathML
Abelian_monoid
(
S
,
star
,
Id
)
∈
Abelian_monoid
Commented Mathematical property (CMP):
if (S,*,1) comprises an Abelian monoid then for all a,b in S | a*b=b*a
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS cd="generic_alg_cats" name="Abelian_monoid"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="generic_alg_cats" name="Abelian_monoid"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="generic_alg_cats" name="Abelian_monoid"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_monoid_operation"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_monoid_operation"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="a"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">Abelian_monoid</csymbol></apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="generic_alg_cats">Abelian_monoid</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="generic_alg_cats">Abelian_monoid</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">Abelian_monoid_operation</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">Abelian_monoid_operation</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>a</ci>
</apply>
</apply>
</apply>
</bind>
</apply>
</math>
Prefix
Popcorn
set1.in($S, generic_alg_cats.Abelian_monoid) ==> quant1.forall[$a, $b -> set1.in($a, generic_alg_cats.Abelian_monoid($S)) and set1.in($b, generic_alg_cats.Abelian_monoid($S)) and algebraic_cats.Abelian_monoid_operation($S)($a, $b) = algebraic_cats.Abelian_monoid_operation($S)($b, $a)]
Rendered Presentation MathML
S
∈
Abelian_monoid
⇒
∀
a
,
b
.
a
∈
Abelian_monoid
(
S
)
∧
b
∈
Abelian_monoid
(
S
)
∧
(
Abelian_monoid_operation
(
S
)
)
(
a
,
b
)
=
(
Abelian_monoid_operation
(
S
)
)
(
b
,
a
)
Signatures:
sts
Description:
This symbol takes one argument which should be an Abelian monoid, it returns the set of
the Abelian monoid.
Commented Mathematical property (CMP):
The set of the Abelian monoid (S,*,1) = S
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_monoid_set"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_monoid"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
</OMA>
</OMA>
<OMV name="S"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_monoid_set</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_monoid</csymbol><ci>S</ci><ci>star</ci><ci>id</ci></apply>
</apply>
<ci>S</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.Abelian_monoid_set(algebraic_cats.Abelian_monoid($S, $star, $id)) = $S
Rendered Presentation MathML
Abelian_monoid_set
(
Abelian_monoid
(
S
,
star
,
id
)
)
=
S
Signatures:
sts
Description:
This symbol takes one argument which should be an Abelian monoid, it returns
the operation of the Abelian monoid.
Commented Mathematical property (CMP):
The operation of the Abelian monoid (S,*,1)= *
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_monoid_set"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_monoid"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
</OMA>
</OMA>
<OMV name="star"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_monoid_set</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_monoid</csymbol><ci>S</ci><ci>star</ci><ci>id</ci></apply>
</apply>
<ci>star</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.Abelian_monoid_set(algebraic_cats.Abelian_monoid($S, $star, $id)) = $star
Rendered Presentation MathML
Abelian_monoid_set
(
Abelian_monoid
(
S
,
star
,
id
)
)
=
star
Signatures:
sts
Description:
This symbol takes one argument which should be an Abelian monoid, it returns
the identity of the Abelian monoid.
Commented Mathematical property (CMP):
The identity of the Abelian monoid (S,*,1) = 1
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_monoid_set"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_monoid"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
</OMA>
</OMA>
<OMV name="id"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_monoid_set</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_monoid</csymbol><ci>S</ci><ci>star</ci><ci>id</ci></apply>
</apply>
<ci>id</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.Abelian_monoid_set(algebraic_cats.Abelian_monoid($S, $star, $id)) = $id
Rendered Presentation MathML
Abelian_monoid_set
(
Abelian_monoid
(
S
,
star
,
id
)
)
=
id
Signatures:
sts
Description:
This is the constructor for ordered monoids, that is monoids on which there is
an ordering relation. The ordered_monoid constructor takes four arguments, the
set of the ordered monoid, a binary function taking two elements of the set into itself
to represent the operation of the ordered monoid, an element of the set to represent
the identity of the ordered monoid and a binary function taking two elements of the set
into the booleans to represent the ordering on the ordered monoid.
Commented Mathematical property (CMP):
This constructor may be used to build ordered monoids
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="Id"/>
<OMV name="lt"/>
</OMA>
<OMS cd="generic_alg_cats" name="ordered_monoid"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_monoid</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>Id</ci>
<ci>lt</ci>
</apply>
<csymbol cd="generic_alg_cats">ordered_monoid</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.in(algebraic_cats.ordered_monoid($S, $star, $Id, $lt), generic_alg_cats.ordered_monoid)
Rendered Presentation MathML
ordered_monoid
(
S
,
star
,
Id
,
lt
)
∈
ordered_monoid
Commented Mathematical property (CMP):
if (S,*,1,\leq) represents an ordered monoid, then
for all a,b in S | a \leq b or b \leq a
and
for all a,b,c in S | if a\leq b and b\leq c then a\leq c
and
for all a,b in S | if a\leq b and b\leq a then a=b
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS name="ordered_monoid" cd="generic_alg_cats"/>
</OMA>
<OMA>
<OMS cd="logic1" name="and"/>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="or"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid_order"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid_order"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="a"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
<OMV name="c"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="c"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid_order"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid_order"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="c"/>
</OMA>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid_order"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="c"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid_order"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid_order"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="a"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">ordered_monoid</csymbol></apply>
<apply><csymbol cd="logic1">and</csymbol>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">ordered_monoid_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">ordered_monoid_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="logic1">or</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_monoid_order</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_monoid_order</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>a</ci>
</apply>
</apply>
</apply>
</bind>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<bvar><ci>c</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">ordered_monoid_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">ordered_monoid_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>c</ci>
<apply><csymbol cd="algebraic_cats">ordered_monoid_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_monoid_order</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_monoid_order</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>c</ci>
</apply>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_monoid_order</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>c</ci>
</apply>
</apply>
</apply>
</bind>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">ordered_monoid_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">ordered_monoid_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_monoid_order</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_monoid_order</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>a</ci>
</apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol><ci>a</ci><ci>b</ci></apply>
</apply>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
implies
(
in
(
S ,
ordered_monoid )
,
and
(
forall
[
a
b
] .
(
implies
(
and
(
in
(
a ,
ordered_monoid_set
(
S )
)
,
in
(
b ,
ordered_monoid_set
(
S )
)
)
,
or
(
ordered_monoid_order
(
S )
(
a ,
b )
,
ordered_monoid_order
(
S )
(
b ,
a )
)
)
)
,
forall
[
a
b
c
] .
(
implies
(
and
(
in
(
a ,
ordered_monoid_set
(
S )
)
,
in
(
b ,
ordered_monoid_set
(
S )
)
,
in
(
c ,
ordered_monoid_set
(
S )
)
)
,
implies
(
and
(
ordered_monoid_order
(
S )
(
a ,
b )
,
ordered_monoid_order
(
S )
(
b ,
c )
)
,
ordered_monoid_order
(
S )
(
a ,
c )
)
)
)
,
forall
[
a
b
] .
(
implies
(
and
(
in
(
a ,
ordered_monoid_set
(
S )
)
,
in
(
b ,
ordered_monoid_set
(
S )
)
)
,
implies
(
and
(
ordered_monoid_order
(
S )
(
a ,
b )
,
ordered_monoid_order
(
S )
(
b ,
a )
)
,
eq
(
a ,
b )
)
)
)
)
)
Popcorn
set1.in($S, generic_alg_cats.ordered_monoid) ==> quant1.forall[$a, $b -> set1.in($a, algebraic_cats.ordered_monoid_set($S)) and set1.in($b, algebraic_cats.ordered_monoid_set($S)) ==> algebraic_cats.ordered_monoid_order($S)($a, $b) > algebraic_cats.ordered_monoid_order($S)($b, $a)] and quant1.forall[$a, $b, $c -> set1.in($a, algebraic_cats.ordered_monoid_set($S)) and set1.in($b, algebraic_cats.ordered_monoid_set($S)) and set1.in($c, algebraic_cats.ordered_monoid_set($S)) ==> algebraic_cats.ordered_monoid_order($S)($a, $b) and algebraic_cats.ordered_monoid_order($S)($b, $c) ==> algebraic_cats.ordered_monoid_order($S)($a, $c)] and quant1.forall[$a, $b -> set1.in($a, algebraic_cats.ordered_monoid_set($S)) and set1.in($b, algebraic_cats.ordered_monoid_set($S)) ==> algebraic_cats.ordered_monoid_order($S)($a, $b) and algebraic_cats.ordered_monoid_order($S)($b, $a) ==> $a = $b]
Rendered Presentation MathML
S
∈
ordered_monoid
⇒
∀
a
,
b
.
a
∈
ordered_monoid_set
(
S
)
∧
b
∈
ordered_monoid_set
(
S
)
⇒
(
ordered_monoid_order
(
S
)
)
(
a
,
b
)
∨
(
ordered_monoid_order
(
S
)
)
(
b
,
a
)
∧
∀
a
,
b
,
c
.
a
∈
ordered_monoid_set
(
S
)
∧
b
∈
ordered_monoid_set
(
S
)
∧
c
∈
ordered_monoid_set
(
S
)
⇒
(
ordered_monoid_order
(
S
)
)
(
a
,
b
)
∧
(
ordered_monoid_order
(
S
)
)
(
b
,
c
)
⇒
(
ordered_monoid_order
(
S
)
)
(
a
,
c
)
∧
∀
a
,
b
.
a
∈
ordered_monoid_set
(
S
)
∧
b
∈
ordered_monoid_set
(
S
)
⇒
(
ordered_monoid_order
(
S
)
)
(
a
,
b
)
∧
(
ordered_monoid_order
(
S
)
)
(
b
,
a
)
⇒
a
=
b
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered monoid. It returns a
set which should be the set of the ordered monoid.
Commented Mathematical property (CMP):
The set of the ordered monoid (S,*,1,\leq) = S
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid_set"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="S"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_monoid_set</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_monoid</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>S</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_monoid_set(algebraic_cats.ordered_monoid($S, $star, $id, $leq)) = $S
Rendered Presentation MathML
ordered_monoid_set
(
ordered_monoid
(
S
,
star
,
id
,
leq
)
)
=
S
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered monoid. It returns a
binary function between elements of the set of the ordered monoid, which should
represent the operation of the ordered monoid.
Commented Mathematical property (CMP):
The operation of the ordered monoid (S,*,1,\leq) = *
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid_operation"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="star"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_monoid_operation</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_monoid</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>star</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_monoid_operation(algebraic_cats.ordered_monoid($S, $star, $id, $leq)) = $star
Rendered Presentation MathML
ordered_monoid_operation
(
ordered_monoid
(
S
,
star
,
id
,
leq
)
)
=
star
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered monoid. It returns an
element of the set of the ordered monoid, which should be the identity of the
ordered monoid.
Commented Mathematical property (CMP):
The identity of the ordered monoid (S,*,1,\leq) = 1
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid_identity"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="id"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_monoid_identity</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_monoid</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>id</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_monoid_identity(algebraic_cats.ordered_monoid($S, $star, $id, $leq)) = $id
Rendered Presentation MathML
ordered_monoid_identity
(
ordered_monoid
(
S
,
star
,
id
,
leq
)
)
=
id
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered monoid. It returns a
binary function between elements of the set of the ordered monoid, which should
represent the ordering relation on the ordered monoid.
Commented Mathematical property (CMP):
The order of the ordered monoid (S,*,1,\leq) = \leq
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid_order"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="leq"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_monoid_order</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_monoid</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>leq</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_monoid_order(algebraic_cats.ordered_monoid($S, $star, $id, $leq)) = $leq
Rendered Presentation MathML
ordered_monoid_order
(
ordered_monoid
(
S
,
star
,
id
,
leq
)
)
=
leq
Signatures:
sts
Description:
This symbol is the constructor for ordered Abelian monoids, that is Abelian
monoids on which there is an ordering relation. The ordered_Abelian_monoid
constructor takes four arguments, the set of the ordered Abelian monoid, a binary function
taking two elements of the set into itself to represent the operation of the
ordered Abelian monoid, an element of the set to represent the identity of the ordered Abelian monoid and a
binary function taking two elements of the set into the booleans to represent the ordering of the ordered Abelian monoid.
Commented Mathematical property (CMP):
This constructor may be used to build ordered Abelian monoids
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="Id"/>
<OMV name="lt"/>
</OMA>
<OMS cd="generic_alg_cats" name="ordered_Abelian_monoid"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>Id</ci>
<ci>lt</ci>
</apply>
<csymbol cd="generic_alg_cats">ordered_Abelian_monoid</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.in(algebraic_cats.ordered_Abelian_monoid($S, $star, $Id, $lt), generic_alg_cats.ordered_Abelian_monoid)
Rendered Presentation MathML
ordered_Abelian_monoid
(
S
,
star
,
Id
,
lt
)
∈
ordered_Abelian_monoid
Commented Mathematical property (CMP):
if (S,*,1,\leq) represents an ordered Abelian monoid, then
for all a,b in S | a \leq b or b \leq a
and
for all a,b,c in S | if a\leq b and b\leq c then a\leq c
and
for all a,b in S | if a\leq b and b\leq a then a=b
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS name="ordered_Abelian_monoid" cd="generic_alg_cats"/>
</OMA>
<OMA>
<OMS cd="logic1" name="and"/>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="or"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid_order"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_monoid_order"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="a"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
<OMV name="c"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="c"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid_order"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid_order"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="c"/>
</OMA>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid_order"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="c"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid_order"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid_order"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="a"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">ordered_Abelian_monoid</csymbol></apply>
<apply><csymbol cd="logic1">and</csymbol>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="logic1">or</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_monoid_order</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_monoid_order</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>a</ci>
</apply>
</apply>
</apply>
</bind>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<bvar><ci>c</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>c</ci>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid_order</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid_order</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>c</ci>
</apply>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid_order</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>c</ci>
</apply>
</apply>
</apply>
</bind>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid_order</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid_order</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>a</ci>
</apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol><ci>a</ci><ci>b</ci></apply>
</apply>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
implies
(
in
(
S ,
ordered_Abelian_monoid )
,
and
(
forall
[
a
b
] .
(
implies
(
and
(
in
(
a ,
ordered_Abelian_monoid_set
(
S )
)
,
in
(
b ,
ordered_Abelian_monoid_set
(
S )
)
)
,
or
(
ordered_monoid_order
(
S )
(
a ,
b )
,
ordered_monoid_order
(
S )
(
b ,
a )
)
)
)
,
forall
[
a
b
c
] .
(
implies
(
and
(
in
(
a ,
ordered_Abelian_monoid_set
(
S )
)
,
in
(
b ,
ordered_Abelian_monoid_set
(
S )
)
,
in
(
c ,
ordered_Abelian_monoid_set
(
S )
)
)
,
implies
(
and
(
ordered_Abelian_monoid_order
(
S )
(
a ,
b )
,
ordered_Abelian_monoid_order
(
S )
(
b ,
c )
)
,
ordered_Abelian_monoid_order
(
S )
(
a ,
c )
)
)
)
,
forall
[
a
b
] .
(
implies
(
and
(
in
(
a ,
ordered_Abelian_monoid_set
(
S )
)
,
in
(
b ,
ordered_Abelian_monoid_set
(
S )
)
)
,
implies
(
and
(
ordered_Abelian_monoid_order
(
S )
(
a ,
b )
,
ordered_Abelian_monoid_order
(
S )
(
b ,
a )
)
,
eq
(
a ,
b )
)
)
)
)
)
Popcorn
set1.in($S, generic_alg_cats.ordered_Abelian_monoid) ==> quant1.forall[$a, $b -> set1.in($a, algebraic_cats.ordered_Abelian_monoid_set($S)) and set1.in($b, algebraic_cats.ordered_Abelian_monoid_set($S)) ==> algebraic_cats.ordered_monoid_order($S)($a, $b) > algebraic_cats.ordered_monoid_order($S)($b, $a)] and quant1.forall[$a, $b, $c -> set1.in($a, algebraic_cats.ordered_Abelian_monoid_set($S)) and set1.in($b, algebraic_cats.ordered_Abelian_monoid_set($S)) and set1.in($c, algebraic_cats.ordered_Abelian_monoid_set($S)) ==> algebraic_cats.ordered_Abelian_monoid_order($S)($a, $b) and algebraic_cats.ordered_Abelian_monoid_order($S)($b, $c) ==> algebraic_cats.ordered_Abelian_monoid_order($S)($a, $c)] and quant1.forall[$a, $b -> set1.in($a, algebraic_cats.ordered_Abelian_monoid_set($S)) and set1.in($b, algebraic_cats.ordered_Abelian_monoid_set($S)) ==> algebraic_cats.ordered_Abelian_monoid_order($S)($a, $b) and algebraic_cats.ordered_Abelian_monoid_order($S)($b, $a) ==> $a = $b]
Rendered Presentation MathML
S
∈
ordered_Abelian_monoid
⇒
∀
a
,
b
.
a
∈
ordered_Abelian_monoid_set
(
S
)
∧
b
∈
ordered_Abelian_monoid_set
(
S
)
⇒
(
ordered_monoid_order
(
S
)
)
(
a
,
b
)
∨
(
ordered_monoid_order
(
S
)
)
(
b
,
a
)
∧
∀
a
,
b
,
c
.
a
∈
ordered_Abelian_monoid_set
(
S
)
∧
b
∈
ordered_Abelian_monoid_set
(
S
)
∧
c
∈
ordered_Abelian_monoid_set
(
S
)
⇒
(
ordered_Abelian_monoid_order
(
S
)
)
(
a
,
b
)
∧
(
ordered_Abelian_monoid_order
(
S
)
)
(
b
,
c
)
⇒
(
ordered_Abelian_monoid_order
(
S
)
)
(
a
,
c
)
∧
∀
a
,
b
.
a
∈
ordered_Abelian_monoid_set
(
S
)
∧
b
∈
ordered_Abelian_monoid_set
(
S
)
⇒
(
ordered_Abelian_monoid_order
(
S
)
)
(
a
,
b
)
∧
(
ordered_Abelian_monoid_order
(
S
)
)
(
b
,
a
)
⇒
a
=
b
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered Abelian monoid. It returns a
set which should be the set of the ordered Abelian monoid.
Commented Mathematical property (CMP):
The set of the ordered Abelian monoid (S,*,1,/leq) = S
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid_set"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="S"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid_set</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>S</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_Abelian_monoid_set(algebraic_cats.ordered_Abelian_monoid($S, $star, $id, $leq)) = $S
Rendered Presentation MathML
ordered_Abelian_monoid_set
(
ordered_Abelian_monoid
(
S
,
star
,
id
,
leq
)
)
=
S
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered Abelian monoid. It returns a
binary function between elements of the set of the ordered Abelian monoid, which should
represent the operation of the ordered Abelian monoid.
Commented Mathematical property (CMP):
The operation of the ordered Abelian monoid (S,*,1,/leq) = *
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid_operation"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="star"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid_operation</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>star</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_Abelian_monoid_operation(algebraic_cats.ordered_Abelian_monoid($S, $star, $id, $leq)) = $star
Rendered Presentation MathML
ordered_Abelian_monoid_operation
(
ordered_Abelian_monoid
(
S
,
star
,
id
,
leq
)
)
=
star
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered Abelian monoid. It returns an
element of the set of the ordered Abelian monoid, which should be the identity of the
ordered Abelian monoid.
Commented Mathematical property (CMP):
The identity of the ordered Abelian monoid (S,*,1,/leq) = 1
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid_identity"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="id"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid_identity</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>id</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_Abelian_monoid_identity(algebraic_cats.ordered_Abelian_monoid($S, $star, $id, $leq)) = $id
Rendered Presentation MathML
ordered_Abelian_monoid_identity
(
ordered_Abelian_monoid
(
S
,
star
,
id
,
leq
)
)
=
id
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered Abelian monoid. It returns a
binary function between elements of the set of the ordered Abelian monoid, which should
represent the ordering relation on the ordered Abelian monoid.
Commented Mathematical property (CMP):
The ordering of the ordered Abelian monoid (S,*,1,/leq) = /leq
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid_order"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_monoid"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="leq"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid_order</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_monoid</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>leq</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_Abelian_monoid_order(algebraic_cats.ordered_Abelian_monoid($S, $star, $id, $leq)) = $leq
Rendered Presentation MathML
ordered_Abelian_monoid_order
(
ordered_Abelian_monoid
(
S
,
star
,
id
,
leq
)
)
=
leq
Signatures:
sts
Description:
This symbol is the constructor for groupoids, that is an algebraic structure
on a set, with a binary operation. The operator of the groupoid must be closed
over the set of the groupoid.
The groupoid constructor takes two arguments, the set of the groupoid and a
binary function which represents the operation of the groupoid.
Commented Mathematical property (CMP):
This constructor may be used to build groupoids
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="groupoid"/>
<OMV name="S"/>
<OMV name="star"/>
</OMA>
<OMS cd="generic_alg_cats" name="groupoid"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">groupoid</csymbol><ci>S</ci><ci>star</ci></apply>
<csymbol cd="generic_alg_cats">groupoid</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.in(algebraic_cats.groupoid($S, $star), generic_alg_cats.groupoid)
Rendered Presentation MathML
groupoid
(
S
,
star
)
∈
groupoid
Commented Mathematical property (CMP):
if (S,*) comprises a groupoid, then for all a,b in S | a*b is a member of S
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS cd="generic_alg_cats" name="groupoid"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="groupoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="groupoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="groupoid_operation"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMS cd="algebraic_cats" name="groupoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">groupoid</csymbol></apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">groupoid_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">groupoid_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">groupoid_operation</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply><csymbol cd="algebraic_cats">groupoid_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
</bind>
</apply>
</math>
Prefix
Popcorn
set1.in($S, generic_alg_cats.groupoid) ==> quant1.forall[$a, $b -> set1.in($a, algebraic_cats.groupoid_set($S)) and set1.in($b, algebraic_cats.groupoid_set($S)) ==> set1.in(algebraic_cats.groupoid_operation($S)($a, $b), algebraic_cats.groupoid_set($S))]
Rendered Presentation MathML
S
∈
groupoid
⇒
∀
a
,
b
.
a
∈
groupoid_set
(
S
)
∧
b
∈
groupoid_set
(
S
)
⇒
(
groupoid_operation
(
S
)
)
(
a
,
b
)
∈
groupoid_set
(
S
)
Signatures:
sts
Description:
This symbol takes one argument which should be a groupoid. It returns the set of the groupoid.
Commented Mathematical property (CMP):
The set of the groupoid (S,*) = S
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="groupoid_set"/>
<OMA>
<OMS cd="algebraic_cats" name="groupoid"/>
<OMV name="S"/>
<OMV name="star"/>
</OMA>
</OMA>
<OMV name="S"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">groupoid_set</csymbol>
<apply><csymbol cd="algebraic_cats">groupoid</csymbol><ci>S</ci><ci>star</ci></apply>
</apply>
<ci>S</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.groupoid_set(algebraic_cats.groupoid($S, $star)) = $S
Rendered Presentation MathML
groupoid_set
(
groupoid
(
S
,
star
)
)
=
S
Signatures:
sts
Description:
This symbol takes one argument which should be a groupoid. It returns a binary
function which should represent the operation of the groupoid.
Commented Mathematical property (CMP):
The operation of the groupoid (S,*) = *
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="groupoid_operation"/>
<OMA>
<OMS cd="algebraic_cats" name="groupoid"/>
<OMV name="S"/>
<OMV name="star"/>
</OMA>
</OMA>
<OMV name="star"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">groupoid_operation</csymbol>
<apply><csymbol cd="algebraic_cats">groupoid</csymbol><ci>S</ci><ci>star</ci></apply>
</apply>
<ci>star</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.groupoid_operation(algebraic_cats.groupoid($S, $star)) = $star
Rendered Presentation MathML
groupoid_operation
(
groupoid
(
S
,
star
)
)
=
star
Signatures:
sts
Description:
This symbol is the constructor for semigroups, that is groupoids for which
the operator of the semigroup is associative over the set of the semigroup.
The semigroup constructor takes two arguments, the set of the semigroup and a
binary function which represents the operation of the semigroup.
Commented Mathematical property (CMP):
This constructor may be used to build semigroups
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="semigroup"/>
<OMV name="S"/>
<OMV name="star"/>
</OMA>
<OMS cd="generic_alg_cats" name="semigroup"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">semigroup</csymbol><ci>S</ci><ci>star</ci></apply>
<csymbol cd="generic_alg_cats">semigroup</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.in(algebraic_cats.semigroup($S, $star), generic_alg_cats.semigroup)
Rendered Presentation MathML
semigroup
(
S
,
star
)
∈
semigroup
Commented Mathematical property (CMP):
if (S,*) comprises a semigroup then for all a,b,c in S | a*(b*c)=(a*b)*c
Signatures:
sts
Description:
This symbol takes one argument which should be a semigroup. It returns the set of the semigroup.
Commented Mathematical property (CMP):
The set of the semigroup (S,*) = S
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="semigroup_set"/>
<OMA>
<OMS cd="algebraic_cats" name="semigroup"/>
<OMV name="S"/>
<OMV name="star"/>
</OMA>
</OMA>
<OMV name="S"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">semigroup_set</csymbol>
<apply><csymbol cd="algebraic_cats">semigroup</csymbol><ci>S</ci><ci>star</ci></apply>
</apply>
<ci>S</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.semigroup_set(algebraic_cats.semigroup($S, $star)) = $S
Rendered Presentation MathML
semigroup_set
(
semigroup
(
S
,
star
)
)
=
S
Signatures:
sts
Description:
This symbol takes one argument which should be a semigroup. It returns a binary function which should represent the operation of the semigroup.
Commented Mathematical property (CMP):
The operation of the semigroup (S,*) = *
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="semigroup_operation"/>
<OMA>
<OMS cd="algebraic_cats" name="semigroup"/>
<OMV name="S"/>
<OMV name="star"/>
</OMA>
</OMA>
<OMV name="star"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">semigroup_operation</csymbol>
<apply><csymbol cd="algebraic_cats">semigroup</csymbol><ci>S</ci><ci>star</ci></apply>
</apply>
<ci>star</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.semigroup_operation(algebraic_cats.semigroup($S, $star)) = $star
Rendered Presentation MathML
semigroup_operation
(
semigroup
(
S
,
star
)
)
=
star
Signatures:
sts
Description:
This symbol is the constructor for an Abelian semigroup, that is a semigroup
which has an operator which is commutative over the set of the semigroup.
The Abelian semigroup constructor takes two arguments, the set of the Abelian semigroup and a
binary function which represents the operation of the Abelian semigroup.
Commented Mathematical property (CMP):
This constructor may be used to build Abelian semigroups
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_semigroup"/>
<OMV name="S"/>
<OMV name="star"/>
</OMA>
<OMS cd="generic_alg_cats" name="Abelian_semigroup"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_semigroup</csymbol><ci>S</ci><ci>star</ci></apply>
<csymbol cd="generic_alg_cats">Abelian_semigroup</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.in(algebraic_cats.Abelian_semigroup($S, $star), generic_alg_cats.Abelian_semigroup)
Rendered Presentation MathML
Abelian_semigroup
(
S
,
star
)
∈
Abelian_semigroup
Commented Mathematical property (CMP):
If (S,*) comprises an Abelian semigroup, then for all a,b in S|a*b=b*a
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS cd="generic_alg_cats" name="Abelian_semigroup"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="generic_alg_cats" name="Abelian_semigroup"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="generic_alg_cats" name="Abelian_semigroup"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_semigroup_operation"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_semigroup_operation"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="a"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">Abelian_semigroup</csymbol></apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="generic_alg_cats">Abelian_semigroup</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="generic_alg_cats">Abelian_semigroup</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">Abelian_semigroup_operation</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">Abelian_semigroup_operation</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>a</ci>
</apply>
</apply>
</apply>
</bind>
</apply>
</math>
Prefix
Popcorn
set1.in($S, generic_alg_cats.Abelian_semigroup) ==> quant1.forall[$a, $b -> set1.in($a, generic_alg_cats.Abelian_semigroup($S)) and set1.in($b, generic_alg_cats.Abelian_semigroup($S)) and algebraic_cats.Abelian_semigroup_operation($S)($a, $b) = algebraic_cats.Abelian_semigroup_operation($S)($b, $a)]
Rendered Presentation MathML
S
∈
Abelian_semigroup
⇒
∀
a
,
b
.
a
∈
Abelian_semigroup
(
S
)
∧
b
∈
Abelian_semigroup
(
S
)
∧
(
Abelian_semigroup_operation
(
S
)
)
(
a
,
b
)
=
(
Abelian_semigroup_operation
(
S
)
)
(
b
,
a
)
Signatures:
sts
Description:
This symbol takes one argument which should be an Abelian semigroup. It returns a set, which should be the set of the Abelian semigroup.
Commented Mathematical property (CMP):
The set of the Abelian semigroup (S,*) = S
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_semigroup_set"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_semigroup"/>
<OMV name="S"/>
<OMV name="star"/>
</OMA>
</OMA>
<OMV name="S"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_semigroup_set</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_semigroup</csymbol><ci>S</ci><ci>star</ci></apply>
</apply>
<ci>S</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.Abelian_semigroup_set(algebraic_cats.Abelian_semigroup($S, $star)) = $S
Rendered Presentation MathML
Abelian_semigroup_set
(
Abelian_semigroup
(
S
,
star
)
)
=
S
Signatures:
sts
Description:
This symbol takes one argument which should be an Abelian semigroup. It returns a binary function, which should represent the operation of the Abelian semigroup.
Commented Mathematical property (CMP):
The operation of the Abelian semigroup (S,*) = *
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_semigroup_operation"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_semigroup"/>
<OMV name="S"/>
<OMV name="star"/>
</OMA>
</OMA>
<OMV name="star"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_semigroup_operation</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_semigroup</csymbol><ci>S</ci><ci>star</ci></apply>
</apply>
<ci>star</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.Abelian_semigroup_operation(algebraic_cats.Abelian_semigroup($S, $star)) = $star
Rendered Presentation MathML
Abelian_semigroup_operation
(
Abelian_semigroup
(
S
,
star
)
)
=
star
Signatures:
sts
This symbol is an alternative model for the symbol declare_group in
the CD group1
Description:
This symbol is the constructor for groups, that is a monoid for which every
element is invertible.
The group constructor takes four arguments, the set of the group, a binary
function taking two elements of the set into itself to represent the operation
of the group, an element of the set to represent the identity of the group and
a unary function taking the set into itself to specify inverse elements of the group.
Commented Mathematical property (CMP):
This symbol may be used to build groups
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="group"/>
<OMV name="S"/>
<OMV name="star"/>
</OMA>
<OMS cd="generic_alg_cats" name="group"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">group</csymbol><ci>S</ci><ci>star</ci></apply>
<csymbol cd="generic_alg_cats">group</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.in(algebraic_cats.group($S, $star), generic_alg_cats.group)
Rendered Presentation MathML
group
(
S
,
star
)
∈
group
Commented Mathematical property (CMP):
if (S,*,1,inv:S->S) comprises a group then for all a in S | inv(a) is a member of S and inv(a)*a=a*inv(a)=1
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS cd="generic_alg_cats" name="group"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="group_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="logic1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="group_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="group_operation"/>
<OMV name="S"/>
</OMA>
<OMA>
<OMS cd="algebraic_cats" name="group_inverse"/>
<OMV name="a"/>
</OMA>
<OMV name="a"/>
</OMA>
<OMA>
<OMS cd="algebraic_cats" name="group_identity"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="group_operation"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="group_inverse"/>
<OMV name="a"/>
</OMA>
</OMA>
<OMA>
<OMS cd="algebraic_cats" name="group_identity"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">group</csymbol></apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">group_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="logic1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">group_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">group_operation</csymbol><ci>S</ci></apply>
<apply><csymbol cd="algebraic_cats">group_inverse</csymbol><ci>a</ci></apply>
<ci>a</ci>
</apply>
<apply><csymbol cd="algebraic_cats">group_identity</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">group_operation</csymbol><ci>S</ci></apply>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">group_inverse</csymbol><ci>a</ci></apply>
</apply>
<apply><csymbol cd="algebraic_cats">group_identity</csymbol><ci>S</ci></apply>
</apply>
</apply>
</apply>
</bind>
</apply>
</math>
Prefix
implies
(
in
(
S ,
group )
,
forall
[
a
] .
(
implies
(
in
(
a ,
group_set
(
S )
)
,
and
(
in
(
a ,
group_set
(
S )
)
,
eq
(
group_operation
(
S )
(
group_inverse
(
a )
,
a )
,
group_identity
(
S )
)
,
eq
(
group_operation
(
S )
(
a ,
group_inverse
(
a )
)
,
group_identity
(
S )
)
)
)
)
)
Popcorn
set1.in($S, generic_alg_cats.group) ==> quant1.forall[$a -> set1.in($a, algebraic_cats.group_set($S)) ==> logic1.in($a, algebraic_cats.group_set($S)) and algebraic_cats.group_operation($S)(algebraic_cats.group_inverse($a), $a) = algebraic_cats.group_identity($S) and algebraic_cats.group_operation($S)($a, algebraic_cats.group_inverse($a)) = algebraic_cats.group_identity($S)]
Rendered Presentation MathML
S
∈
group
⇒
∀
a
.
a
∈
group_set
(
S
)
⇒
in
(
a
,
group_set
(
S
)
)
∧
(
group_operation
(
S
)
)
(
group_inverse
(
a
)
,
a
)
=
group_identity
(
S
)
∧
(
group_operation
(
S
)
)
(
a
,
group_inverse
(
a
)
)
=
group_identity
(
S
)
Signatures:
sts
Description:
This symbol takes one argument which should be a group. It returns a set, which should be the set of the group.
Commented Mathematical property (CMP):
The set of the group (S,*,1,inv) = S
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="group_set"/>
<OMA>
<OMS cd="algebraic_cats" name="group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
</OMA>
</OMA>
<OMV name="S"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">group_set</csymbol>
<apply><csymbol cd="algebraic_cats">group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
</apply>
</apply>
<ci>S</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.group_set(algebraic_cats.group($S, $star, $id, $inv)) = $S
Rendered Presentation MathML
group_set
(
group
(
S
,
star
,
id
,
inv
)
)
=
S
Signatures:
sts
Description:
This symbol takes one argument which should be a group. It returns a binary function, which represents the operation of the group.
Commented Mathematical property (CMP):
The operation of the group (S,*,1,inv) = *
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="group_operation"/>
<OMA>
<OMS cd="algebraic_cats" name="group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
</OMA>
</OMA>
<OMV name="star"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">group_operation</csymbol>
<apply><csymbol cd="algebraic_cats">group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
</apply>
</apply>
<ci>star</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.group_operation(algebraic_cats.group($S, $star, $id, $inv)) = $star
Rendered Presentation MathML
group_operation
(
group
(
S
,
star
,
id
,
inv
)
)
=
star
Signatures:
sts
Description:
This symbol takes one argument which should be a group. It returns the identity of the group.
Commented Mathematical property (CMP):
The identity of the group (S,*,1,inv) = 1
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="group_identity"/>
<OMA>
<OMS cd="algebraic_cats" name="group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
</OMA>
</OMA>
<OMV name="id"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">group_identity</csymbol>
<apply><csymbol cd="algebraic_cats">group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
</apply>
</apply>
<ci>id</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.group_identity(algebraic_cats.group($S, $star, $id, $inv)) = $id
Rendered Presentation MathML
group_identity
(
group
(
S
,
star
,
id
,
inv
)
)
=
id
Signatures:
sts
Description:
This symbol takes one argument which should be a group. It returns a unary function, which is the inverse mapping for the group.
Commented Mathematical property (CMP):
The inverse of the group (S,*,1,inv) = inv
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="group_inverse"/>
<OMA>
<OMS cd="algebraic_cats" name="group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
</OMA>
</OMA>
<OMV name="inv"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">group_inverse</csymbol>
<apply><csymbol cd="algebraic_cats">group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
</apply>
</apply>
<ci>inv</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.group_inverse(algebraic_cats.group($S, $star, $id, $inv)) = $inv
Rendered Presentation MathML
group_inverse
(
group
(
S
,
star
,
id
,
inv
)
)
=
inv
Signatures:
sts
Description:
This symbol is the constructor for ordered groups, that is a group on which
there is an ordering relation.
The ordered_group constructor takes five arguments, the set of the ordered
group, a binary function taking two elements of the set into itself to
represent the operation of the ordered group, an element of the set to
represent the identity of the ordered group, a unary function taking the set
into itself to specify inverse elements of the ordered group and a binary function taking two
elements of the set into the booleans to specify the ordering of the ordered
group.
Commented Mathematical property (CMP):
This constructor may be used to build ordered groups
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
<OMV name="leq"/>
</OMA>
<OMS cd="generic_alg_cats" name="ordered_group"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
<ci>leq</ci>
</apply>
<csymbol cd="generic_alg_cats">ordered_group</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.in(algebraic_cats.ordered_group($S, $star, $id, $inv, $leq), generic_alg_cats.ordered_group)
Rendered Presentation MathML
ordered_group
(
S
,
star
,
id
,
inv
,
leq
)
∈
ordered_group
Commented Mathematical property (CMP):
if (S,*,1,inv:S->S,\leq) represents an ordered group, then
for all a,b in S | a \leq b or b \leq a
and
for all a,b,c in S | if a\leq b and b\leq c then a\leq c
and
for all a,b in S | if a\leq b and b\leq a then a=b
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS name="ordered_group" cd="generic_alg_cats"/>
</OMA>
<OMA>
<OMS cd="logic1" name="and"/>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="or"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group_order"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group_order"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="a"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
<OMV name="c"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="c"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group_order"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group_order"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="c"/>
</OMA>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group_order"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="c"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group_order"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group_order"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="a"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">ordered_group</csymbol></apply>
<apply><csymbol cd="logic1">and</csymbol>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">ordered_group_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">ordered_group_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="logic1">or</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_group_order</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_group_order</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>a</ci>
</apply>
</apply>
</apply>
</bind>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<bvar><ci>c</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">ordered_group_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">ordered_group_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>c</ci>
<apply><csymbol cd="algebraic_cats">ordered_group_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_group_order</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_group_order</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>c</ci>
</apply>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_group_order</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>c</ci>
</apply>
</apply>
</apply>
</bind>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">ordered_group_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">ordered_group_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_group_order</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_group_order</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>a</ci>
</apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol><ci>a</ci><ci>b</ci></apply>
</apply>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
implies
(
in
(
S ,
ordered_group )
,
and
(
forall
[
a
b
] .
(
implies
(
and
(
in
(
a ,
ordered_group_set
(
S )
)
,
in
(
b ,
ordered_group_set
(
S )
)
)
,
or
(
ordered_group_order
(
S )
(
a ,
b )
,
ordered_group_order
(
S )
(
b ,
a )
)
)
)
,
forall
[
a
b
c
] .
(
implies
(
and
(
in
(
a ,
ordered_group_set
(
S )
)
,
in
(
b ,
ordered_group_set
(
S )
)
,
in
(
c ,
ordered_group_set
(
S )
)
)
,
implies
(
and
(
ordered_group_order
(
S )
(
a ,
b )
,
ordered_group_order
(
S )
(
b ,
c )
)
,
ordered_group_order
(
S )
(
a ,
c )
)
)
)
,
forall
[
a
b
] .
(
implies
(
and
(
in
(
a ,
ordered_group_set
(
S )
)
,
in
(
b ,
ordered_group_set
(
S )
)
)
,
implies
(
and
(
ordered_group_order
(
S )
(
a ,
b )
,
ordered_group_order
(
S )
(
b ,
a )
)
,
eq
(
a ,
b )
)
)
)
)
)
Popcorn
set1.in($S, generic_alg_cats.ordered_group) ==> quant1.forall[$a, $b -> set1.in($a, algebraic_cats.ordered_group_set($S)) and set1.in($b, algebraic_cats.ordered_group_set($S)) ==> algebraic_cats.ordered_group_order($S)($a, $b) > algebraic_cats.ordered_group_order($S)($b, $a)] and quant1.forall[$a, $b, $c -> set1.in($a, algebraic_cats.ordered_group_set($S)) and set1.in($b, algebraic_cats.ordered_group_set($S)) and set1.in($c, algebraic_cats.ordered_group_set($S)) ==> algebraic_cats.ordered_group_order($S)($a, $b) and algebraic_cats.ordered_group_order($S)($b, $c) ==> algebraic_cats.ordered_group_order($S)($a, $c)] and quant1.forall[$a, $b -> set1.in($a, algebraic_cats.ordered_group_set($S)) and set1.in($b, algebraic_cats.ordered_group_set($S)) ==> algebraic_cats.ordered_group_order($S)($a, $b) and algebraic_cats.ordered_group_order($S)($b, $a) ==> $a = $b]
Rendered Presentation MathML
S
∈
ordered_group
⇒
∀
a
,
b
.
a
∈
ordered_group_set
(
S
)
∧
b
∈
ordered_group_set
(
S
)
⇒
(
ordered_group_order
(
S
)
)
(
a
,
b
)
∨
(
ordered_group_order
(
S
)
)
(
b
,
a
)
∧
∀
a
,
b
,
c
.
a
∈
ordered_group_set
(
S
)
∧
b
∈
ordered_group_set
(
S
)
∧
c
∈
ordered_group_set
(
S
)
⇒
(
ordered_group_order
(
S
)
)
(
a
,
b
)
∧
(
ordered_group_order
(
S
)
)
(
b
,
c
)
⇒
(
ordered_group_order
(
S
)
)
(
a
,
c
)
∧
∀
a
,
b
.
a
∈
ordered_group_set
(
S
)
∧
b
∈
ordered_group_set
(
S
)
⇒
(
ordered_group_order
(
S
)
)
(
a
,
b
)
∧
(
ordered_group_order
(
S
)
)
(
b
,
a
)
⇒
a
=
b
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered group. It returns the set of the ordered group.
Commented Mathematical property (CMP):
The set of the ordered group (S,*,1,inv,leq) = S
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group_set"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="S"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_group_set</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>S</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_group_set(algebraic_cats.ordered_group($S, $star, $id, $inv, $leq)) = $S
Rendered Presentation MathML
ordered_group_set
(
ordered_group
(
S
,
star
,
id
,
inv
,
leq
)
)
=
S
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered group. It returns a binary function, which represents the operation of the ordered group.
Commented Mathematical property (CMP):
The operation of the ordered group (S,*,1,inv,leq) = *
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group_operation"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="missing"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_group_operation</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>missing</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_group_operation(algebraic_cats.ordered_group($S, $star, $id, $inv, $leq)) = $missing
Rendered Presentation MathML
ordered_group_operation
(
ordered_group
(
S
,
star
,
id
,
inv
,
leq
)
)
=
missing
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered group. It returns the identity of the ordered group.
Commented Mathematical property (CMP):
The identity of the ordered group (S,*,1,inv,leq) = 1
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group_identity"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="id"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_group_identity</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>id</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_group_identity(algebraic_cats.ordered_group($S, $star, $id, $inv, $leq)) = $id
Rendered Presentation MathML
ordered_group_identity
(
ordered_group
(
S
,
star
,
id
,
inv
,
leq
)
)
=
id
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered group. It returns a unary function, which is the inverse function of the ordered group.
Commented Mathematical property (CMP):
The inverse of the ordered group (S,*,1,inv,leq) = inv
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group_inverse"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="inv"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_group_inverse</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>inv</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_group_inverse(algebraic_cats.ordered_group($S, $star, $id, $inv, $leq)) = $inv
Rendered Presentation MathML
ordered_group_inverse
(
ordered_group
(
S
,
star
,
id
,
inv
,
leq
)
)
=
inv
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered group. It returns a binary function, which represents the ordering of the ordered group.
Commented Mathematical property (CMP):
The order of the ordered group (S,*,1,inv,leq) = leq
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group_order"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="leq"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_group_order</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>leq</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_group_order(algebraic_cats.ordered_group($S, $star, $id, $inv, $leq)) = $leq
Rendered Presentation MathML
ordered_group_order
(
ordered_group
(
S
,
star
,
id
,
inv
,
leq
)
)
=
leq
Signatures:
sts
Description:
This symbol is the constructor for Abelian groups, that is a group such that
the operation is commutative between members of the group.
The Abelian_group constructor takes four arguments, the set of the Abelian
group, a binary function taking two elements of the set into itself to
represent the operation of the Abelian group, an element of the set to
represent the identity of the Abelian group and a unary function taking the
set into itself to specify inverse elements.
Commented Mathematical property (CMP):
This constructor builds Abelian groups
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
</OMA>
<OMS cd="generic_alg_cats" name="Abelian_group"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
</apply>
<csymbol cd="generic_alg_cats">Abelian_group</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.in(algebraic_cats.Abelian_group($S, $star, $id, $inv), generic_alg_cats.Abelian_group)
Rendered Presentation MathML
Abelian_group
(
S
,
star
,
id
,
inv
)
∈
Abelian_group
Commented Mathematical property (CMP):
if (S,*,1,inv) comprises an Abelian group then for all a,b in S | a*b = b*a
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS cd="generic_alg_cats" name="Abelian_group"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_group_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_group_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_group_operation"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_group_operation"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="a"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">Abelian_group</csymbol></apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">Abelian_group_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">Abelian_group_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">Abelian_group_operation</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">Abelian_group_operation</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>a</ci>
</apply>
</apply>
</apply>
</bind>
</apply>
</math>
Prefix
Popcorn
set1.in($S, generic_alg_cats.Abelian_group) ==> quant1.forall[$a, $b -> set1.in($a, algebraic_cats.Abelian_group_set($S)) and set1.in($b, algebraic_cats.Abelian_group_set($S)) ==> algebraic_cats.Abelian_group_operation($S)($a, $b) = algebraic_cats.Abelian_group_operation($S)($b, $a)]
Rendered Presentation MathML
S
∈
Abelian_group
⇒
∀
a
,
b
.
a
∈
Abelian_group_set
(
S
)
∧
b
∈
Abelian_group_set
(
S
)
⇒
(
Abelian_group_operation
(
S
)
)
(
a
,
b
)
=
(
Abelian_group_operation
(
S
)
)
(
b
,
a
)
Signatures:
sts
Description:
This symbol takes one argument which should be an Abelian group. It returns the set of the Abelian group.
Commented Mathematical property (CMP):
The set of the Abelian group (S,*,1,inv) = S
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_group_set"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
</OMA>
</OMA>
<OMV name="S"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_group_set</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
</apply>
</apply>
<ci>S</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.Abelian_group_set(algebraic_cats.Abelian_group($S, $star, $id, $inv)) = $S
Rendered Presentation MathML
Abelian_group_set
(
Abelian_group
(
S
,
star
,
id
,
inv
)
)
=
S
Signatures:
sts
Description:
This symbol takes one argument which should be an Abelian group. It returns a binary function, which represents the operation of the Abelian group.
Commented Mathematical property (CMP):
The operation of the Abelian group (S,*,1,inv) = *
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_group_operation"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
</OMA>
</OMA>
<OMV name="star"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_group_operation</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
</apply>
</apply>
<ci>star</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.Abelian_group_operation(algebraic_cats.Abelian_group($S, $star, $id, $inv)) = $star
Rendered Presentation MathML
Abelian_group_operation
(
Abelian_group
(
S
,
star
,
id
,
inv
)
)
=
star
Signatures:
sts
Description:
This symbol takes one argument which should be an Abelian group. It returns the identity of the Abelian group.
Commented Mathematical property (CMP):
The identity of the Abelian group (S,*,1,inv) = 1
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_group_identity"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
</OMA>
</OMA>
<OMV name="id"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_group_identity</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
</apply>
</apply>
<ci>id</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.Abelian_group_identity(algebraic_cats.Abelian_group($S, $star, $id, $inv)) = $id
Rendered Presentation MathML
Abelian_group_identity
(
Abelian_group
(
S
,
star
,
id
,
inv
)
)
=
id
Signatures:
sts
Description:
This symbol takes one argument which should be an Abelian group. It reurns a unary function, which should be the inverse function for the Abelian group.
Commented Mathematical property (CMP):
The inverse of the Abelian group (S,*,1,inv) = inv
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_group_inverse"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
</OMA>
</OMA>
<OMV name="inv"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_group_inverse</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
</apply>
</apply>
<ci>inv</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.Abelian_group_inverse(algebraic_cats.Abelian_group($S, $star, $id, $inv)) = $inv
Rendered Presentation MathML
Abelian_group_inverse
(
Abelian_group
(
S
,
star
,
id
,
inv
)
)
=
inv
Signatures:
sts
Description:
This symbol is the constructor for ordered Abelian groups, that is an
Abelian group on which there is an ordering relation.
The ordered_Abelian_group constructor takes five arguments, the set of the
ordered Abelian group, a binary function taking two elements of the set into
itself to represent the operation of the ordered Abelian group, an element of
the set to represent the identity of the ordered Abelian group, a unary
function taking the set into itself to specify inverse elements and a binary
function taking two elements of the set into the booleans to specify the
ordering of the ordered Abelian group.
Commented Mathematical property (CMP):
This constructor builds ordered Abelian groups
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
<OMV name="leq"/>
</OMA>
<OMS cd="generic_alg_cats" name="ordered_Abelian_group"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
<ci>leq</ci>
</apply>
<csymbol cd="generic_alg_cats">ordered_Abelian_group</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.in(algebraic_cats.ordered_Abelian_group($S, $star, $id, $inv, $leq), generic_alg_cats.ordered_Abelian_group)
Rendered Presentation MathML
ordered_Abelian_group
(
S
,
star
,
id
,
inv
,
leq
)
∈
ordered_Abelian_group
Commented Mathematical property (CMP):
if (S,*,1,inv:S->S,\leq) represents an ordered Abelian group, then
for all a,b in S | a \leq b or b \leq a
and
for all a,b,c in S | if a\leq b and b\leq c then a\leq c
and
for all a,b in S | if a\leq b and b\leq a then a=b
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS name="ordered_Abelian_group" cd="generic_alg_cats"/>
</OMA>
<OMA>
<OMS cd="logic1" name="and"/>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="or"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group_order"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group_order"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="a"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
<OMV name="c"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="c"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group_order"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group_order"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="c"/>
</OMA>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group_order"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="c"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group_order"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group_order"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="a"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">ordered_Abelian_group</csymbol></apply>
<apply><csymbol cd="logic1">and</csymbol>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="logic1">or</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group_order</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group_order</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>a</ci>
</apply>
</apply>
</apply>
</bind>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<bvar><ci>c</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>c</ci>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group_order</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group_order</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>c</ci>
</apply>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group_order</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>c</ci>
</apply>
</apply>
</apply>
</bind>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group_order</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group_order</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>a</ci>
</apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol><ci>a</ci><ci>b</ci></apply>
</apply>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
implies
(
in
(
S ,
ordered_Abelian_group )
,
and
(
forall
[
a
b
] .
(
implies
(
and
(
in
(
a ,
ordered_Abelian_group_set
(
S )
)
,
in
(
b ,
ordered_Abelian_group_set
(
S )
)
)
,
or
(
ordered_Abelian_group_order
(
S )
(
a ,
b )
,
ordered_Abelian_group_order
(
S )
(
b ,
a )
)
)
)
,
forall
[
a
b
c
] .
(
implies
(
and
(
in
(
a ,
ordered_Abelian_group_set
(
S )
)
,
in
(
b ,
ordered_Abelian_group_set
(
S )
)
,
in
(
c ,
ordered_Abelian_group_set
(
S )
)
)
,
implies
(
and
(
ordered_Abelian_group_order
(
S )
(
a ,
b )
,
ordered_Abelian_group_order
(
S )
(
b ,
c )
)
,
ordered_Abelian_group_order
(
S )
(
a ,
c )
)
)
)
,
forall
[
a
b
] .
(
implies
(
and
(
in
(
a ,
ordered_Abelian_group_set
(
S )
)
,
in
(
b ,
ordered_Abelian_group_set
(
S )
)
)
,
implies
(
and
(
ordered_Abelian_group_order
(
S )
(
a ,
b )
,
ordered_Abelian_group_order
(
S )
(
b ,
a )
)
,
eq
(
a ,
b )
)
)
)
)
)
Popcorn
set1.in($S, generic_alg_cats.ordered_Abelian_group) ==> quant1.forall[$a, $b -> set1.in($a, algebraic_cats.ordered_Abelian_group_set($S)) and set1.in($b, algebraic_cats.ordered_Abelian_group_set($S)) ==> algebraic_cats.ordered_Abelian_group_order($S)($a, $b) > algebraic_cats.ordered_Abelian_group_order($S)($b, $a)] and quant1.forall[$a, $b, $c -> set1.in($a, algebraic_cats.ordered_Abelian_group_set($S)) and set1.in($b, algebraic_cats.ordered_Abelian_group_set($S)) and set1.in($c, algebraic_cats.ordered_Abelian_group_set($S)) ==> algebraic_cats.ordered_Abelian_group_order($S)($a, $b) and algebraic_cats.ordered_Abelian_group_order($S)($b, $c) ==> algebraic_cats.ordered_Abelian_group_order($S)($a, $c)] and quant1.forall[$a, $b -> set1.in($a, algebraic_cats.ordered_Abelian_group_set($S)) and set1.in($b, algebraic_cats.ordered_Abelian_group_set($S)) ==> algebraic_cats.ordered_Abelian_group_order($S)($a, $b) and algebraic_cats.ordered_Abelian_group_order($S)($b, $a) ==> $a = $b]
Rendered Presentation MathML
S
∈
ordered_Abelian_group
⇒
∀
a
,
b
.
a
∈
ordered_Abelian_group_set
(
S
)
∧
b
∈
ordered_Abelian_group_set
(
S
)
⇒
(
ordered_Abelian_group_order
(
S
)
)
(
a
,
b
)
∨
(
ordered_Abelian_group_order
(
S
)
)
(
b
,
a
)
∧
∀
a
,
b
,
c
.
a
∈
ordered_Abelian_group_set
(
S
)
∧
b
∈
ordered_Abelian_group_set
(
S
)
∧
c
∈
ordered_Abelian_group_set
(
S
)
⇒
(
ordered_Abelian_group_order
(
S
)
)
(
a
,
b
)
∧
(
ordered_Abelian_group_order
(
S
)
)
(
b
,
c
)
⇒
(
ordered_Abelian_group_order
(
S
)
)
(
a
,
c
)
∧
∀
a
,
b
.
a
∈
ordered_Abelian_group_set
(
S
)
∧
b
∈
ordered_Abelian_group_set
(
S
)
⇒
(
ordered_Abelian_group_order
(
S
)
)
(
a
,
b
)
∧
(
ordered_Abelian_group_order
(
S
)
)
(
b
,
a
)
⇒
a
=
b
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered Abelian group. It returns the set of the ordered Abelian group.
Commented Mathematical property (CMP):
The set of the ordered Abelian group (S,*,1,inv,leq) = S
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group_set"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="S"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group_set</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>S</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_Abelian_group_set(algebraic_cats.ordered_Abelian_group($S, $star, $id, $inv, $leq)) = $S
Rendered Presentation MathML
ordered_Abelian_group_set
(
ordered_Abelian_group
(
S
,
star
,
id
,
inv
,
leq
)
)
=
S
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered Abelian group. It returns a binary function, which represents the operation of the ordered Abelian group.
Commented Mathematical property (CMP):
The operation of the ordered Abelian group (S,*,1,inv,leq) = *
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group_operation"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="star"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group_operation</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>star</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_Abelian_group_operation(algebraic_cats.ordered_Abelian_group($S, $star, $id, $inv, $leq)) = $star
Rendered Presentation MathML
ordered_Abelian_group_operation
(
ordered_Abelian_group
(
S
,
star
,
id
,
inv
,
leq
)
)
=
star
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered Abelian group. It returns the identity of the ordered Abelian group.
Commented Mathematical property (CMP):
The identity of the ordered Abelian group (S,*,1,inv,leq) = 1
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group_identity"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="id"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group_identity</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>id</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_Abelian_group_identity(algebraic_cats.ordered_Abelian_group($S, $star, $id, $inv, $leq)) = $id
Rendered Presentation MathML
ordered_Abelian_group_identity
(
ordered_Abelian_group
(
S
,
star
,
id
,
inv
,
leq
)
)
=
id
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered Abelian group. It returns a unary function, which is the inverse function of the ordered Abelian group.
Commented Mathematical property (CMP):
The inverse of the ordered Abelian group (S,*,1,inv,leq) = inv
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group_inverse"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="inv"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group_inverse</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>inv</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_Abelian_group_inverse(algebraic_cats.ordered_Abelian_group($S, $star, $id, $inv, $leq)) = $inv
Rendered Presentation MathML
ordered_Abelian_group_inverse
(
ordered_Abelian_group
(
S
,
star
,
id
,
inv
,
leq
)
)
=
inv
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered Abelian group. It returns a binary function, which should represent the ordering of the ordered Abelian group.
Commented Mathematical property (CMP):
The order of the ordered Abelian group (S,*,1,inv,leq) = leq
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group_order"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_Abelian_group"/>
<OMV name="S"/>
<OMV name="star"/>
<OMV name="id"/>
<OMV name="inv"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="leq"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group_order</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_Abelian_group</csymbol>
<ci>S</ci>
<ci>star</ci>
<ci>id</ci>
<ci>inv</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>leq</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_Abelian_group_order(algebraic_cats.ordered_Abelian_group($S, $star, $id, $inv, $leq)) = $leq
Rendered Presentation MathML
ordered_Abelian_group_order
(
ordered_Abelian_group
(
S
,
star
,
id
,
inv
,
leq
)
)
=
leq
Signatures:
sts
Description:
This symbol is the constructor for ringoids. A ringoid is a set together with
two operations + and *. * is left and right distributive over +.
The ringoid constructor takes three arguments, the set of the ringoid,
a binary function from the set into itself to represent the * operation and
a binary function from the set into itself to represent the + operation.
Commented Mathematical property (CMP):
The ringoid constructor builds ringoids
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="ringoid"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
</OMA>
<OMS cd="generic_alg_cats" name="ringoid"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">ringoid</csymbol><ci>S</ci><ci>times</ci><ci>plus</ci></apply>
<csymbol cd="generic_alg_cats">ringoid</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.in(algebraic_cats.ringoid($S, $times, $plus), generic_alg_cats.ringoid)
Rendered Presentation MathML
ringoid
(
S
,
times
,
plus
)
∈
ringoid
Commented Mathematical property (CMP):
if (a,*,+) comprises a ringoid then for all a,b,c in S | a*(b+c) = a*b+a*c
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS cd="generic_alg_cats" name="ringoid"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
<OMV name="c"/>
</OMBVAR>
<OMA><OMS cd="logic1" name="and"/>
<OMA><OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="ringoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA><OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="ringoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA><OMS cd="set1" name="in"/>
<OMV name="c"/>
<OMA>
<OMS cd="algebraic_cats" name="ringoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ringoid_times"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ringoid_plus"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="c"/>
</OMA>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ringoid_plus"/>
<OMV name="S"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ringoid_times"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ringoid_times"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="c"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">ringoid</csymbol></apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<bvar><ci>c</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">ringoid_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">ringoid_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>c</ci>
<apply><csymbol cd="algebraic_cats">ringoid_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">ringoid_times</csymbol><ci>S</ci></apply>
<ci>a</ci>
<apply>
<apply><csymbol cd="algebraic_cats">ringoid_plus</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>c</ci>
</apply>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ringoid_plus</csymbol><ci>S</ci></apply>
<apply>
<apply><csymbol cd="algebraic_cats">ringoid_times</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ringoid_times</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>c</ci>
</apply>
</apply>
</apply>
</apply>
</bind>
</apply>
</math>
Prefix
implies
(
in
(
S ,
ringoid )
,
forall
[
a
b
c
] .
(
and
(
in
(
a ,
ringoid_set
(
S )
)
,
in
(
b ,
ringoid_set
(
S )
)
,
in
(
c ,
ringoid_set
(
S )
)
,
eq
(
ringoid_times
(
S )
(
a ,
ringoid_plus
(
S )
(
b ,
c )
)
,
ringoid_plus
(
S )
(
ringoid_times
(
S )
(
a ,
b )
,
ringoid_times
(
S )
(
a ,
c )
)
)
)
)
)
Popcorn
set1.in($S, generic_alg_cats.ringoid) ==> quant1.forall[$a, $b, $c -> set1.in($a, algebraic_cats.ringoid_set($S)) and set1.in($b, algebraic_cats.ringoid_set($S)) and set1.in($c, algebraic_cats.ringoid_set($S)) and algebraic_cats.ringoid_times($S)($a, algebraic_cats.ringoid_plus($S)($b, $c)) = algebraic_cats.ringoid_plus($S)(algebraic_cats.ringoid_times($S)($a, $b), algebraic_cats.ringoid_times($S)($a, $c))]
Rendered Presentation MathML
S
∈
ringoid
⇒
∀
a
,
b
,
c
.
a
∈
ringoid_set
(
S
)
∧
b
∈
ringoid_set
(
S
)
∧
c
∈
ringoid_set
(
S
)
∧
(
ringoid_times
(
S
)
)
(
a
,
(
ringoid_plus
(
S
)
)
(
b
,
c
)
)
=
(
ringoid_plus
(
S
)
)
(
(
ringoid_times
(
S
)
)
(
a
,
b
)
,
(
ringoid_times
(
S
)
)
(
a
,
c
)
)
Commented Mathematical property (CMP):
(b+c)*a = b*a+c*a
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS cd="generic_alg_cats" name="ringoid"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
<OMV name="c"/>
</OMBVAR>
<OMA><OMS cd="logic1" name="and"/>
<OMA><OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="ringoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA><OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="ringoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA><OMS cd="set1" name="in"/>
<OMV name="c"/>
<OMA>
<OMS cd="algebraic_cats" name="ringoid_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ringoid_times"/>
<OMV name="S"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ringoid_plus"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="c"/>
</OMA>
<OMV name="a"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ringoid_plus"/>
<OMV name="S"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ringoid_times"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="a"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ringoid_times"/>
<OMV name="S"/>
</OMA>
<OMV name="c"/>
<OMV name="a"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">ringoid</csymbol></apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<bvar><ci>c</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">ringoid_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">ringoid_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>c</ci>
<apply><csymbol cd="algebraic_cats">ringoid_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">ringoid_times</csymbol><ci>S</ci></apply>
<apply>
<apply><csymbol cd="algebraic_cats">ringoid_plus</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>c</ci>
</apply>
<ci>a</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ringoid_plus</csymbol><ci>S</ci></apply>
<apply>
<apply><csymbol cd="algebraic_cats">ringoid_times</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>a</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ringoid_times</csymbol><ci>S</ci></apply>
<ci>c</ci>
<ci>a</ci>
</apply>
</apply>
</apply>
</apply>
</bind>
</apply>
</math>
Prefix
implies
(
in
(
S ,
ringoid )
,
forall
[
a
b
c
] .
(
and
(
in
(
a ,
ringoid_set
(
S )
)
,
in
(
b ,
ringoid_set
(
S )
)
,
in
(
c ,
ringoid_set
(
S )
)
,
eq
(
ringoid_times
(
S )
(
ringoid_plus
(
S )
(
b ,
c )
,
a )
,
ringoid_plus
(
S )
(
ringoid_times
(
S )
(
b ,
a )
,
ringoid_times
(
S )
(
c ,
a )
)
)
)
)
)
Popcorn
set1.in($S, generic_alg_cats.ringoid) ==> quant1.forall[$a, $b, $c -> set1.in($a, algebraic_cats.ringoid_set($S)) and set1.in($b, algebraic_cats.ringoid_set($S)) and set1.in($c, algebraic_cats.ringoid_set($S)) and algebraic_cats.ringoid_times($S)(algebraic_cats.ringoid_plus($S)($b, $c), $a) = algebraic_cats.ringoid_plus($S)(algebraic_cats.ringoid_times($S)($b, $a), algebraic_cats.ringoid_times($S)($c, $a))]
Rendered Presentation MathML
S
∈
ringoid
⇒
∀
a
,
b
,
c
.
a
∈
ringoid_set
(
S
)
∧
b
∈
ringoid_set
(
S
)
∧
c
∈
ringoid_set
(
S
)
∧
(
ringoid_times
(
S
)
)
(
(
ringoid_plus
(
S
)
)
(
b
,
c
)
,
a
)
=
(
ringoid_plus
(
S
)
)
(
(
ringoid_times
(
S
)
)
(
b
,
a
)
,
(
ringoid_times
(
S
)
)
(
c
,
a
)
)
Signatures:
sts
Description:
This symbol takes one argument which should be a ringoid. It returns a
set which represents the set of the ringoid.
Commented Mathematical property (CMP):
The set of the ringoid (S,*,+) = S
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ringoid_set"/>
<OMA>
<OMS cd="algebraic_cats" name="ringoid"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
</OMA>
</OMA>
<OMV name="S"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ringoid_set</csymbol>
<apply><csymbol cd="algebraic_cats">ringoid</csymbol><ci>S</ci><ci>times</ci><ci>plus</ci></apply>
</apply>
<ci>S</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ringoid_set(algebraic_cats.ringoid($S, $times, $plus)) = $S
Rendered Presentation MathML
ringoid_set
(
ringoid
(
S
,
times
,
plus
)
)
=
S
Signatures:
sts
Description:
This symbol takes one argument which should be a ringoid. It returns a
binary function which represents the multiplicative operation (*) of
the ringoid.
Commented Mathematical property (CMP):
The mulitplication operation of the ringoid (S,*,+) = S
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ringoid_times"/>
<OMA>
<OMS cd="algebraic_cats" name="ringoid"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
</OMA>
</OMA>
<OMV name="times"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ringoid_times</csymbol>
<apply><csymbol cd="algebraic_cats">ringoid</csymbol><ci>S</ci><ci>times</ci><ci>plus</ci></apply>
</apply>
<ci>times</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ringoid_times(algebraic_cats.ringoid($S, $times, $plus)) = $times
Rendered Presentation MathML
ringoid_times
(
ringoid
(
S
,
times
,
plus
)
)
=
times
Signatures:
sts
Description:
This symbol takes one argument which should be a ringoid. It returns a
binary function which represents the additive operation (+) of the ringoid.
Commented Mathematical property (CMP):
The addition operation of the ringoid (S,*,+) = +
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ringoid_plus"/>
<OMA>
<OMS cd="algebraic_cats" name="ringoid"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
</OMA>
</OMA>
<OMV name="plus"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ringoid_plus</csymbol>
<apply><csymbol cd="algebraic_cats">ringoid</csymbol><ci>S</ci><ci>times</ci><ci>plus</ci></apply>
</apply>
<ci>plus</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ringoid_plus(algebraic_cats.ringoid($S, $times, $plus)) = $plus
Rendered Presentation MathML
ringoid_plus
(
ringoid
(
S
,
times
,
plus
)
)
=
plus
Signatures:
sts
Description:
This symbol is the constructor for rings. A ring is a set together with two
operations + and *. A ring is an Abelian group under + and a semigroup under *.
A ring has a further rule which associates the two operation, that is left and
right distributivity.
The ring constructor takes five arguments, the set of the ring, a binary
function from the set into itself to represent the * operation, a binary
function from the set into itself to represent the + operation, an element of
the set of the ring to represent the additive identity 0 and a unary function
from the set into itself to represent additive inverses (i.e. inverses under +,
or negatives).
Commented Mathematical property (CMP):
This constructor builds rings
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="ring"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
</OMA>
<OMS cd="generic_alg_cats" name="ring"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">ring</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
</apply>
<csymbol cd="generic_alg_cats">ring</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.in(algebraic_cats.ring($S, $times, $plus, $zero, $neg), generic_alg_cats.ring)
Rendered Presentation MathML
ring
(
S
,
times
,
plus
,
zero
,
neg
)
∈
ring
Commented Mathematical property (CMP):
A ring is a ringoid
Commented Mathematical property (CMP):
if (S,*,+,0,neg:S->S) comprises a ring then * is both left and right
distributive over +. That is:
For all a,b,c in S, a*(b+c)=(a*b)+(a*c) and (b+c)*a=(b*a)+(c*a)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS cd="generic_alg_cats" name="ring"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
<OMV name="c"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="ring_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="ring_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="c"/>
<OMA>
<OMS cd="algebraic_cats" name="ring_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ring_times"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ring_plus"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="c"/>
</OMA>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ring_plus"/>
<OMV name="S"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ring_times"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ring_times"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="c"/>
</OMA>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ring_times"/>
<OMV name="S"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ring_plus"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="c"/>
</OMA>
<OMV name="a"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ring_plus"/>
<OMV name="S"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ring_times"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="a"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ring_times"/>
<OMV name="S"/>
</OMA>
<OMV name="c"/>
<OMV name="a"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">ring</csymbol></apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<bvar><ci>c</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">ring_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">ring_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>c</ci>
<apply><csymbol cd="algebraic_cats">ring_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">ring_times</csymbol><ci>S</ci></apply>
<ci>a</ci>
<apply>
<apply><csymbol cd="algebraic_cats">ring_plus</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>c</ci>
</apply>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ring_plus</csymbol><ci>S</ci></apply>
<apply>
<apply><csymbol cd="algebraic_cats">ring_times</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ring_times</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>c</ci>
</apply>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ring_times</csymbol><ci>S</ci></apply>
<apply>
<apply><csymbol cd="algebraic_cats">ring_plus</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>c</ci>
</apply>
<ci>a</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ring_plus</csymbol><ci>S</ci></apply>
<apply>
<apply><csymbol cd="algebraic_cats">ring_times</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>a</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ring_times</csymbol><ci>S</ci></apply>
<ci>c</ci>
<ci>a</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</bind>
</apply>
</math>
Prefix
implies
(
in
(
S ,
ring )
,
forall
[
a
b
c
] .
(
implies
(
and
(
in
(
a ,
ring_set
(
S )
)
,
in
(
b ,
ring_set
(
S )
)
,
in
(
c ,
ring_set
(
S )
)
)
,
and
(
eq
(
ring_times
(
S )
(
a ,
ring_plus
(
S )
(
b ,
c )
)
,
ring_plus
(
S )
(
ring_times
(
S )
(
a ,
b )
,
ring_times
(
S )
(
a ,
c )
)
,
ring_times
(
S )
(
ring_plus
(
S )
(
b ,
c )
,
a )
,
ring_plus
(
S )
(
ring_times
(
S )
(
b ,
a )
,
ring_times
(
S )
(
c ,
a )
)
)
)
)
)
)
Popcorn
set1.in($S, generic_alg_cats.ring) ==> quant1.forall[$a, $b, $c -> set1.in($a, algebraic_cats.ring_set($S)) and set1.in($b, algebraic_cats.ring_set($S)) and set1.in($c, algebraic_cats.ring_set($S)) ==> algebraic_cats.ring_times($S)($a, algebraic_cats.ring_plus($S)($b, $c)) = algebraic_cats.ring_plus($S)(algebraic_cats.ring_times($S)($a, $b), algebraic_cats.ring_times($S)($a, $c)) = algebraic_cats.ring_times($S)(algebraic_cats.ring_plus($S)($b, $c), $a) = algebraic_cats.ring_plus($S)(algebraic_cats.ring_times($S)($b, $a), algebraic_cats.ring_times($S)($c, $a))]
Rendered Presentation MathML
S
∈
ring
⇒
∀
a
,
b
,
c
.
a
∈
ring_set
(
S
)
∧
b
∈
ring_set
(
S
)
∧
c
∈
ring_set
(
S
)
⇒
(
ring_times
(
S
)
)
(
a
,
(
ring_plus
(
S
)
)
(
b
,
c
)
)
=
(
ring_plus
(
S
)
)
(
(
ring_times
(
S
)
)
(
a
,
b
)
,
(
ring_times
(
S
)
)
(
a
,
c
)
)
=
(
ring_times
(
S
)
)
(
(
ring_plus
(
S
)
)
(
b
,
c
)
,
a
)
=
(
ring_plus
(
S
)
)
(
(
ring_times
(
S
)
)
(
b
,
a
)
,
(
ring_times
(
S
)
)
(
c
,
a
)
)
Signatures:
sts
Description:
This symbol takes one argument which should be a ring. It returns the set of the ring.
Commented Mathematical property (CMP):
The set of the ring (S,*,+,0,neg) = S
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ring_set"/>
<OMA>
<OMS cd="algebraic_cats" name="ring"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="S"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ring_set</csymbol>
<apply><csymbol cd="algebraic_cats">ring</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>S</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ring_set(algebraic_cats.ring($S, $times, $plus, $zero, $neg)) = $S
Rendered Presentation MathML
ring_set
(
ring
(
S
,
times
,
plus
,
zero
,
neg
)
)
=
S
Signatures:
sts
Description:
This symbol takes one argument which should be a ring. It returns a binary function which represents the multiplicative operation of the ring.
Commented Mathematical property (CMP):
The times of the ring (S,*,+,0,neg) = *
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ring_times"/>
<OMA>
<OMS cd="algebraic_cats" name="ring"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="times"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ring_times</csymbol>
<apply><csymbol cd="algebraic_cats">ring</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>times</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ring_times(algebraic_cats.ring($S, $times, $plus, $zero, $neg)) = $times
Rendered Presentation MathML
ring_times
(
ring
(
S
,
times
,
plus
,
zero
,
neg
)
)
=
times
Signatures:
sts
Description:
This symbol takes one argument which should be a ring. It returns a binary function which represents the additive operation of the ring.
Commented Mathematical property (CMP):
The plus of the ring (S,*,+,0,neg) = +
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ring_plus"/>
<OMA>
<OMS cd="algebraic_cats" name="ring"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="plus"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ring_plus</csymbol>
<apply><csymbol cd="algebraic_cats">ring</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>plus</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ring_plus(algebraic_cats.ring($S, $times, $plus, $zero, $neg)) = $plus
Rendered Presentation MathML
ring_plus
(
ring
(
S
,
times
,
plus
,
zero
,
neg
)
)
=
plus
Signatures:
sts
Description:
This symbol takes one argument which should be a ring. It returns the additive identity of the ring.
Commented Mathematical property (CMP):
The zero of the ring (S,*,+,0,neg) = 0
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ring_zero"/>
<OMA>
<OMS cd="algebraic_cats" name="ring"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="zero"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ring_zero</csymbol>
<apply><csymbol cd="algebraic_cats">ring</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>zero</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ring_zero(algebraic_cats.ring($S, $times, $plus, $zero, $neg)) = $zero
Rendered Presentation MathML
ring_zero
(
ring
(
S
,
times
,
plus
,
zero
,
neg
)
)
=
zero
Signatures:
sts
Description:
This symbol takes one argument which should be a ring. It returns a unary function which should be the negative function of the ring.
Commented Mathematical property (CMP):
The negative function of the ring (S,*,+,0,neg) = neg
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ring_negative"/>
<OMA>
<OMS cd="algebraic_cats" name="ring"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="neg"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ring_negative</csymbol>
<apply><csymbol cd="algebraic_cats">ring</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>neg</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ring_negative(algebraic_cats.ring($S, $times, $plus, $zero, $neg)) = $neg
Rendered Presentation MathML
ring_negative
(
ring
(
S
,
times
,
plus
,
zero
,
neg
)
)
=
neg
Signatures:
sts
Description:
This symbol is the constructor for ordered rings, that is a ring on which there
is an ordering relation.
The ordered_ring constructor takes six arguments, the set of the ordered ring,
a binary function from the set into itself to represent the
multiplicative operation (*), a
binary function from the set into itself to represent the additive
operation (+), an
element of the set of the ordered ring to represent the additive identity 0,
a unary function from the set into itself to represent additive inverses
(i.e. inverses under +, or negatives) and a binary function from the set into
the booleans to represent the ordering relation.
Commented Mathematical property (CMP):
This constructor builds ordered rings
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
<OMV name="leq"/>
</OMA>
<OMS cd="generic_alg_cats" name="ordered_ring"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_ring</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
<ci>leq</ci>
</apply>
<csymbol cd="generic_alg_cats">ordered_ring</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.in(algebraic_cats.ordered_ring($S, $times, $plus, $zero, $neg, $leq), generic_alg_cats.ordered_ring)
Rendered Presentation MathML
ordered_ring
(
S
,
times
,
plus
,
zero
,
neg
,
leq
)
∈
ordered_ring
Commented Mathematical property (CMP):
if (S,*,+,0,neg:S->S,\leq) constitutes an ordered ring, then
for all a,b in S | a \leq b or b \leq a
and
for all a,b,c in S | if a\leq b and b\leq c then a\leq c
and
for all a,b in S | if a\leq b and b\leq a then a=b
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS name="ordered_ring" cd="generic_alg_cats"/>
</OMA>
<OMA>
<OMS cd="logic1" name="and"/>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="or"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring_order"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring_order"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="a"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
<OMV name="c"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="c"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring_order"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring_order"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="c"/>
</OMA>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring_order"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="c"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring_order"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring_order"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="a"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">ordered_ring</csymbol></apply>
<apply><csymbol cd="logic1">and</csymbol>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">ordered_ring_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">ordered_ring_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="logic1">or</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_ring_order</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_ring_order</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>a</ci>
</apply>
</apply>
</apply>
</bind>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<bvar><ci>c</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">ordered_ring_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">ordered_ring_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>c</ci>
<apply><csymbol cd="algebraic_cats">ordered_ring_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_ring_order</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_ring_order</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>c</ci>
</apply>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_ring_order</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>c</ci>
</apply>
</apply>
</apply>
</bind>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">ordered_ring_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">ordered_ring_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_ring_order</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">ordered_ring_order</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>a</ci>
</apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol><ci>a</ci><ci>b</ci></apply>
</apply>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
implies
(
in
(
S ,
ordered_ring )
,
and
(
forall
[
a
b
] .
(
implies
(
and
(
in
(
a ,
ordered_ring_set
(
S )
)
,
in
(
b ,
ordered_ring_set
(
S )
)
)
,
or
(
ordered_ring_order
(
S )
(
a ,
b )
,
ordered_ring_order
(
S )
(
b ,
a )
)
)
)
,
forall
[
a
b
c
] .
(
implies
(
and
(
in
(
a ,
ordered_ring_set
(
S )
)
,
in
(
b ,
ordered_ring_set
(
S )
)
,
in
(
c ,
ordered_ring_set
(
S )
)
)
,
implies
(
and
(
ordered_ring_order
(
S )
(
a ,
b )
,
ordered_ring_order
(
S )
(
b ,
c )
)
,
ordered_ring_order
(
S )
(
a ,
c )
)
)
)
,
forall
[
a
b
] .
(
implies
(
and
(
in
(
a ,
ordered_ring_set
(
S )
)
,
in
(
b ,
ordered_ring_set
(
S )
)
)
,
implies
(
and
(
ordered_ring_order
(
S )
(
a ,
b )
,
ordered_ring_order
(
S )
(
b ,
a )
)
,
eq
(
a ,
b )
)
)
)
)
)
Popcorn
set1.in($S, generic_alg_cats.ordered_ring) ==> quant1.forall[$a, $b -> set1.in($a, algebraic_cats.ordered_ring_set($S)) and set1.in($b, algebraic_cats.ordered_ring_set($S)) ==> algebraic_cats.ordered_ring_order($S)($a, $b) > algebraic_cats.ordered_ring_order($S)($b, $a)] and quant1.forall[$a, $b, $c -> set1.in($a, algebraic_cats.ordered_ring_set($S)) and set1.in($b, algebraic_cats.ordered_ring_set($S)) and set1.in($c, algebraic_cats.ordered_ring_set($S)) ==> algebraic_cats.ordered_ring_order($S)($a, $b) and algebraic_cats.ordered_ring_order($S)($b, $c) ==> algebraic_cats.ordered_ring_order($S)($a, $c)] and quant1.forall[$a, $b -> set1.in($a, algebraic_cats.ordered_ring_set($S)) and set1.in($b, algebraic_cats.ordered_ring_set($S)) ==> algebraic_cats.ordered_ring_order($S)($a, $b) and algebraic_cats.ordered_ring_order($S)($b, $a) ==> $a = $b]
Rendered Presentation MathML
S
∈
ordered_ring
⇒
∀
a
,
b
.
a
∈
ordered_ring_set
(
S
)
∧
b
∈
ordered_ring_set
(
S
)
⇒
(
ordered_ring_order
(
S
)
)
(
a
,
b
)
∨
(
ordered_ring_order
(
S
)
)
(
b
,
a
)
∧
∀
a
,
b
,
c
.
a
∈
ordered_ring_set
(
S
)
∧
b
∈
ordered_ring_set
(
S
)
∧
c
∈
ordered_ring_set
(
S
)
⇒
(
ordered_ring_order
(
S
)
)
(
a
,
b
)
∧
(
ordered_ring_order
(
S
)
)
(
b
,
c
)
⇒
(
ordered_ring_order
(
S
)
)
(
a
,
c
)
∧
∀
a
,
b
.
a
∈
ordered_ring_set
(
S
)
∧
b
∈
ordered_ring_set
(
S
)
⇒
(
ordered_ring_order
(
S
)
)
(
a
,
b
)
∧
(
ordered_ring_order
(
S
)
)
(
b
,
a
)
⇒
a
=
b
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered ring. It returns the set of the ordered ring.
Commented Mathematical property (CMP):
The set of the ordered ring (S,*,+,0,-,leq) = *
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring_set"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="S"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_ring_set</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_ring</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>S</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_ring_set(algebraic_cats.ordered_ring($S, $times, $plus, $zero, $neg, $leq)) = $S
Rendered Presentation MathML
ordered_ring_set
(
ordered_ring
(
S
,
times
,
plus
,
zero
,
neg
,
leq
)
)
=
S
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered ring. It returns a binary function, which represents the multiplicative operation of the ordered ring.
Commented Mathematical property (CMP):
The times of the ordered ring (S,*,+,0,-,leq) = *
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring_times"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="times"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_ring_times</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_ring</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>times</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_ring_times(algebraic_cats.ordered_ring($S, $times, $plus, $zero, $neg, $leq)) = $times
Rendered Presentation MathML
ordered_ring_times
(
ordered_ring
(
S
,
times
,
plus
,
zero
,
neg
,
leq
)
)
=
times
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered ring. It returns a binary function, which represents the additive operation of the ordered ring.
Commented Mathematical property (CMP):
The + of the ordered ring (S,*,+,0,-,leq) = +
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring_plus"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="plus"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_ring_plus</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_ring</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>plus</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_ring_plus(algebraic_cats.ordered_ring($S, $times, $plus, $zero, $neg, $leq)) = $plus
Rendered Presentation MathML
ordered_ring_plus
(
ordered_ring
(
S
,
times
,
plus
,
zero
,
neg
,
leq
)
)
=
plus
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered ring. It returns the zero of the ordered ring.
Commented Mathematical property (CMP):
The zero of the ordered ring (S,*,+,0,-,leq) = 0
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring_zero"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="zero"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_ring_zero</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_ring</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>zero</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_ring_zero(algebraic_cats.ordered_ring($S, $times, $plus, $zero, $neg, $leq)) = $zero
Rendered Presentation MathML
ordered_ring_zero
(
ordered_ring
(
S
,
times
,
plus
,
zero
,
neg
,
leq
)
)
=
zero
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered ring. It returns a unary function to represent the additive inverse function of the ordered ring.
Commented Mathematical property (CMP):
The negative of the ordered ring (S,*,+,0,-,leq) = -
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring_negative"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="neg"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_ring_negative</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_ring</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>neg</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_ring_negative(algebraic_cats.ordered_ring($S, $times, $plus, $zero, $neg, $leq)) = $neg
Rendered Presentation MathML
ordered_ring_negative
(
ordered_ring
(
S
,
times
,
plus
,
zero
,
neg
,
leq
)
)
=
neg
Signatures:
sts
Description:
This symbol takes one argument which should be an ordered ring. It returns a binary function, which represents the order function on the ordered ring.
Commented Mathematical property (CMP):
The order of the ordered ring (S,*,+,0,-,leq) = leq
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring_order"/>
<OMA>
<OMS cd="algebraic_cats" name="ordered_ring"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
<OMV name="leq"/>
</OMA>
</OMA>
<OMV name="leq"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_ring_order</csymbol>
<apply><csymbol cd="algebraic_cats">ordered_ring</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
<ci>leq</ci>
</apply>
</apply>
<ci>leq</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.ordered_ring_order(algebraic_cats.ordered_ring($S, $times, $plus, $zero, $neg, $leq)) = $leq
Rendered Presentation MathML
ordered_ring_order
(
ordered_ring
(
S
,
times
,
plus
,
zero
,
neg
,
leq
)
)
=
leq
Signatures:
sts
Description:
This symbol is the constructor for non commutative rings, these are rings
over which the * operator is not commutative.
the non_commutative_ring constructor takes five arguments:
The set of the non-commutative ring.
A binary function into itself to represent the multiplication operation, *.
A binary function into itself to represent the addition operation, +.
A member of the set of the non-commutative ring to specify the additive
identity, 0.
And a unary function taking the set of the non-commutative ring into itself to
represent the additive inverses of the non-commutative ring (i.e. inverses under +, or negatives).
Commented Mathematical property (CMP):
This constructor builds non-commutative rings
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="non_commutative_ring"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
</OMA>
<OMS cd="generic_alg_cats" name="non_commutative_ring"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">non_commutative_ring</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
</apply>
<csymbol cd="generic_alg_cats">non_commutative_ring</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.in(algebraic_cats.non_commutative_ring($S, $times, $plus, $zero, $neg), generic_alg_cats.non_commutative_ring)
Rendered Presentation MathML
non_commutative_ring
(
S
,
times
,
plus
,
zero
,
neg
)
∈
non_commutative_ring
Commented Mathematical property (CMP):
if (S,*,+,0,neg:S->S) constitutes a non-commutative ring, then
there exist a,b in S such that a*b~=b*a
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS cd="generic_alg_cats" name="non_commutative_ring"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="non_commutative_ring_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="non_commutative_ring_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="neq"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="non_commutative_ring_times"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
</OMA>
<OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="non_commutative_ring_times"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="a"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">non_commutative_ring</csymbol></apply>
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">non_commutative_ring_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">non_commutative_ring_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="relation1">neq</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">non_commutative_ring_times</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
</apply>
<apply>
<apply>
<apply><csymbol cd="algebraic_cats">non_commutative_ring_times</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>a</ci>
</apply>
</apply>
</apply>
</bind>
</apply>
</math>
Prefix
Popcorn
set1.in($S, generic_alg_cats.non_commutative_ring) ==> quant1.exists[$a, $b -> set1.in($a, algebraic_cats.non_commutative_ring_set($S)) and set1.in($b, algebraic_cats.non_commutative_ring_set($S)) ==> algebraic_cats.non_commutative_ring_times($S)($a, $b) ==> algebraic_cats.non_commutative_ring_times($S)($b, $a)()]
Rendered Presentation MathML
S
∈
non_commutative_ring
⇒
∃
a
,
b
.
a
∈
non_commutative_ring_set
(
S
)
∧
b
∈
non_commutative_ring_set
(
S
)
⇒
(
non_commutative_ring_times
(
S
)
)
(
a
,
b
)
Signatures:
sts
Description:
This symbol takes one argument which should be a non-commutative ring. It returns the set of the non-commutative ring.
Commented Mathematical property (CMP):
The set of the non-commutative ring (S,*,+,0,-) = S
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="non_commutative_ring_set"/>
<OMA>
<OMS cd="algebraic_cats" name="non_commutative_ring"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="S"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">non_commutative_ring_set</csymbol>
<apply><csymbol cd="algebraic_cats">non_commutative_ring</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>S</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.non_commutative_ring_set(algebraic_cats.non_commutative_ring($S, $times, $plus, $zero, $neg)) = $S
Rendered Presentation MathML
non_commutative_ring_set
(
non_commutative_ring
(
S
,
times
,
plus
,
zero
,
neg
)
)
=
S
Signatures:
sts
Description:
This symbol takes one argument which should be a non-commutative ring. It returns a binary function, which represents the multiplicative function of the non-commutative ring.
Commented Mathematical property (CMP):
The times of the non-commutative ring (S,*,+,0,-) = *
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="non_commutative_ring_times"/>
<OMA>
<OMS cd="algebraic_cats" name="non_commutative"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="times"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">non_commutative_ring_times</csymbol>
<apply><csymbol cd="algebraic_cats">non_commutative</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>times</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.non_commutative_ring_times(algebraic_cats.non_commutative($S, $times, $plus, $zero, $neg)) = $times
Rendered Presentation MathML
non_commutative_ring_times
(
non_commutative
(
S
,
times
,
plus
,
zero
,
neg
)
)
=
times
Signatures:
sts
Description:
This symbol takes one argument which should be a non-commutative ring. It returns a binary function, which represents the additive function of the non-commutative ring.
Commented Mathematical property (CMP):
The plus of the non-commutative ring (S,*,+,0,-) = +
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="non_commutative_ring_plus"/>
<OMA>
<OMS cd="algebraic_cats" name="non_commutative_ring"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="plus"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">non_commutative_ring_plus</csymbol>
<apply><csymbol cd="algebraic_cats">non_commutative_ring</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>plus</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.non_commutative_ring_plus(algebraic_cats.non_commutative_ring($S, $times, $plus, $zero, $neg)) = $plus
Rendered Presentation MathML
non_commutative_ring_plus
(
non_commutative_ring
(
S
,
times
,
plus
,
zero
,
neg
)
)
=
plus
Signatures:
sts
Description:
This symbol takes one argument which should be a non-commutative ring. It returns the zero of the non-commutative ring.
Commented Mathematical property (CMP):
The zero of the non-commutative ring (S,*,+,0,-) = 0
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="non_commutative_ring_zero"/>
<OMA>
<OMS cd="algebraic_cats" name="non_commutative_ring"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="zero"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">non_commutative_ring_zero</csymbol>
<apply><csymbol cd="algebraic_cats">non_commutative_ring</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>zero</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.non_commutative_ring_zero(algebraic_cats.non_commutative_ring($S, $times, $plus, $zero, $neg)) = $zero
Rendered Presentation MathML
non_commutative_ring_zero
(
non_commutative_ring
(
S
,
times
,
plus
,
zero
,
neg
)
)
=
zero
Signatures:
sts
Description:
This symbol takes one argument which should be a non-commutative ring. It returns a unary function, which represents the multiplicative inverse of the non-commutative ring.
Commented Mathematical property (CMP):
The negative of the non-commutative ring (S,*,+,0,-) = -
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="non_commutative_ring_negative"/>
<OMA>
<OMS cd="algebraic_cats" name="non_commutative_ring"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="neg"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">non_commutative_ring_negative</csymbol>
<apply><csymbol cd="algebraic_cats">non_commutative_ring</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>neg</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.non_commutative_ring_negative(algebraic_cats.non_commutative_ring($S, $times, $plus, $zero, $neg)) = $neg
Rendered Presentation MathML
non_commutative_ring_negative
(
non_commutative_ring
(
S
,
times
,
plus
,
zero
,
neg
)
)
=
neg
Signatures:
sts
Description:
This symbol is the constructor for Euclidean domains. A Euclidean domain is a
ring on which there is no zero divisors together with an integer norm function.
The Euclidean_domain constructor takes six arguments:
The set of the Euclidean domain.
A binary function into itself to represent the multiplication operation, *.
A binary function into itself to represent the addition operation, +.
A member of the set of the Euclidean domain to specify the additive
identity, 0.
A unary function taking the set of the Euclidean domain into itself to
represent the additive inverses (i.e. inverses under +, or negatives).
And a unary function taking elements of the set into the positive integers, to
represent the integer norm function.
Commented Mathematical property (CMP):
This constructor builds Euclidean domains
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
<OMV name="abs"/>
</OMA>
<OMS cd="generic_alg_cats" name="Euclidean_domain"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">Euclidean_domain</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
<ci>abs</ci>
</apply>
<csymbol cd="generic_alg_cats">Euclidean_domain</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.in(algebraic_cats.Euclidean_domain($S, $times, $plus, $zero, $neg, $abs), generic_alg_cats.Euclidean_domain)
Rendered Presentation MathML
Euclidean_domain
(
S
,
times
,
plus
,
zero
,
neg
,
abs
)
∈
Euclidean_domain
Commented Mathematical property (CMP):
if (S,*,+,0,neg:S->S,abs:S->Z^+) constitutes a Euclidean domain then
for every a,b ~= 0 in S then abs(a*b) >= abs(a) and abs(a*b) >= abs(b)
and
for every a,b ~= 0 in S then there exists q and r in S such that
a=q*b + r and abs(r) < abs(B) or r=0
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS cd="generic_alg_cats" name="Euclidean_domain"/>
</OMA>
<OMA>
<OMS cd="logic1" name="and"/>
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="neq"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_zero"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="neq"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_zero"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="relation1" name="geq"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_abs"/>
<OMV name="S"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_times"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
</OMA>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_abs"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
</OMA>
<OMA>
<OMS cd="relation1" name="geq"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_abs"/>
<OMV name="S"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_times"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_abs"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMBIND>
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="neq"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_zero"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="neq"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_zero"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<!--exists q and r in S such that a=q*b + r and abs(r) < abs(b) or r=0-->
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR>
<OMV name="q"/>
<OMV name="r"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="or"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMV name="r"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_zero"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="q"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="r"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMV name="a"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_plus"/>
<OMV name="S"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_times"/>
<OMV name="S"/>
</OMA>
<OMV name="q"/>
<OMV name="b"/>
</OMA>
<OMV name="r"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="lt"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_abs"/>
<OMV name="S"/>
</OMA>
<OMV name="r"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_abs"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">Euclidean_domain</csymbol></apply>
<apply><csymbol cd="logic1">and</csymbol>
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="relation1">neq</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_zero</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="relation1">neq</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_zero</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">geq</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_abs</csymbol><ci>S</ci></apply>
<apply>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_times</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
</apply>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_abs</csymbol><ci>S</ci></apply>
<ci>a</ci>
</apply>
<apply><csymbol cd="relation1">geq</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_abs</csymbol><ci>S</ci></apply>
<apply>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_times</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
</apply>
<apply><apply><csymbol cd="algebraic_cats">Euclidean_domain_abs</csymbol><ci>S</ci></apply><ci>b</ci></apply>
</apply>
</apply>
</apply>
</bind>
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="relation1">neq</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_zero</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="relation1">neq</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_zero</csymbol><ci>S</ci></apply>
</apply>
</apply>
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>q</ci></bvar>
<bvar><ci>r</ci></bvar>
<apply><csymbol cd="logic1">or</csymbol>
<apply><csymbol cd="relation1">eq</csymbol>
<ci>r</ci>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_zero</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>q</ci>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>r</ci>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<ci>a</ci>
<apply>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_plus</csymbol><ci>S</ci></apply>
<apply>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_times</csymbol><ci>S</ci></apply>
<ci>q</ci>
<ci>b</ci>
</apply>
<ci>r</ci>
</apply>
</apply>
<apply><csymbol cd="relation1">lt</csymbol>
<apply><apply><csymbol cd="algebraic_cats">Euclidean_domain_abs</csymbol><ci>S</ci></apply><ci>r</ci></apply>
<apply><apply><csymbol cd="algebraic_cats">Euclidean_domain_abs</csymbol><ci>S</ci></apply><ci>b</ci></apply>
</apply>
</apply>
</apply>
</bind>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
implies
(
in
(
S ,
Euclidean_domain )
,
and
(
exists
[
a
b
] .
(
implies
(
and
(
in
(
a ,
Euclidean_domain_set
(
S )
)
,
in
(
b ,
Euclidean_domain_set
(
S )
)
,
neq
(
a ,
Euclidean_domain_zero
(
S )
)
,
neq
(
b ,
Euclidean_domain_zero
(
S )
)
)
,
and
(
geq
(
Euclidean_domain_abs
(
S )
(
Euclidean_domain_times
(
S )
(
a ,
b )
)
,
Euclidean_domain_abs
(
S )
,
a )
,
geq
(
Euclidean_domain_abs
(
S )
(
Euclidean_domain_times
(
S )
(
a ,
b )
)
,
Euclidean_domain_abs
(
S )
(
b )
)
)
)
)
,
exists
[
a
b
] .
(
implies
(
and
(
in
(
a ,
Euclidean_domain_set
(
S )
)
,
in
(
b ,
Euclidean_domain_set
(
S )
)
,
neq
(
a ,
Euclidean_domain_zero
(
S )
)
,
neq
(
b ,
Euclidean_domain_zero
(
S )
)
)
,
exists
[
q
r
] .
(
or
(
eq
(
r ,
Euclidean_domain_zero
(
S )
)
,
and
(
in
(
q ,
Euclidean_domain_set
(
S )
)
,
in
(
r ,
Euclidean_domain_set
(
S )
)
,
eq
(
a ,
Euclidean_domain_plus
(
S )
(
Euclidean_domain_times
(
S )
(
q ,
b )
,
r )
)
,
lt
(
Euclidean_domain_abs
(
S )
(
r )
,
Euclidean_domain_abs
(
S )
(
b )
)
)
)
)
)
)
)
)
Popcorn
set1.in($S, generic_alg_cats.Euclidean_domain) ==> quant1.exists[$a, $b -> set1.in($a, algebraic_cats.Euclidean_domain_set($S)) and set1.in($b, algebraic_cats.Euclidean_domain_set($S)) and $a != algebraic_cats.Euclidean_domain_zero($S) and $b != algebraic_cats.Euclidean_domain_zero($S) ==> algebraic_cats.Euclidean_domain_abs($S)(algebraic_cats.Euclidean_domain_times($S)($a, $b)) >= algebraic_cats.Euclidean_domain_abs($S) >= $a and algebraic_cats.Euclidean_domain_abs($S)(algebraic_cats.Euclidean_domain_times($S)($a, $b)) >= algebraic_cats.Euclidean_domain_abs($S)($b)] and quant1.exists[$a, $b -> set1.in($a, algebraic_cats.Euclidean_domain_set($S)) and set1.in($b, algebraic_cats.Euclidean_domain_set($S)) and $a != algebraic_cats.Euclidean_domain_zero($S) and $b != algebraic_cats.Euclidean_domain_zero($S) ==> quant1.exists[$q, $r -> $r = algebraic_cats.Euclidean_domain_zero($S) > set1.in($q, algebraic_cats.Euclidean_domain_set($S)) and set1.in($r, algebraic_cats.Euclidean_domain_set($S)) and $a = algebraic_cats.Euclidean_domain_plus($S)(algebraic_cats.Euclidean_domain_times($S)($q, $b), $r) and algebraic_cats.Euclidean_domain_abs($S)($r) < algebraic_cats.Euclidean_domain_abs($S)($b)]]
Rendered Presentation MathML
S
∈
Euclidean_domain
⇒
∃
a
,
b
.
a
∈
Euclidean_domain_set
(
S
)
∧
b
∈
Euclidean_domain_set
(
S
)
∧
a
≠
Euclidean_domain_zero
(
S
)
∧
b
≠
Euclidean_domain_zero
(
S
)
⇒
(
Euclidean_domain_abs
(
S
)
)
(
(
Euclidean_domain_times
(
S
)
)
(
a
,
b
)
)
≥
Euclidean_domain_abs
(
S
)
≥
a
∧
(
Euclidean_domain_abs
(
S
)
)
(
(
Euclidean_domain_times
(
S
)
)
(
a
,
b
)
)
≥
(
Euclidean_domain_abs
(
S
)
)
(
b
)
∧
∃
a
,
b
.
a
∈
Euclidean_domain_set
(
S
)
∧
b
∈
Euclidean_domain_set
(
S
)
∧
a
≠
Euclidean_domain_zero
(
S
)
∧
b
≠
Euclidean_domain_zero
(
S
)
⇒
∃
q
,
r
.
(
r
=
Euclidean_domain_zero
(
S
)
)
∨
(
q
∈
Euclidean_domain_set
(
S
)
∧
r
∈
Euclidean_domain_set
(
S
)
∧
a
=
(
Euclidean_domain_plus
(
S
)
)
(
(
Euclidean_domain_times
(
S
)
)
(
q
,
b
)
,
r
)
∧
(
Euclidean_domain_abs
(
S
)
)
(
r
)
<
(
Euclidean_domain_abs
(
S
)
)
(
b
)
)
Signatures:
sts
Description:
This symbol takes one argument which should be a Euclidean domain. It returns the set of the Euclidean domain.
Commented Mathematical property (CMP):
The set of the Euclidean domain (S,*,+,0,-,abs) = S
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_set"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
<OMV name="abs"/>
</OMA>
</OMA>
<OMV name="S"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_set</csymbol>
<apply><csymbol cd="algebraic_cats">Euclidean_domain</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
<ci>abs</ci>
</apply>
</apply>
<ci>S</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.Euclidean_domain_set(algebraic_cats.Euclidean_domain($S, $times, $plus, $zero, $neg, $abs)) = $S
Rendered Presentation MathML
Euclidean_domain_set
(
Euclidean_domain
(
S
,
times
,
plus
,
zero
,
neg
,
abs
)
)
=
S
Signatures:
sts
Description:
This symbol takes one argument which should be a Euclidean domain. It returns a binary function, which represents the multiplicative operation of the Euclidean domain.
Commented Mathematical property (CMP):
The times of the Euclidean domain (S,*,+,0,-,abs) = *
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_times"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
<OMV name="abs"/>
</OMA>
</OMA>
<OMV name="times"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_times</csymbol>
<apply><csymbol cd="algebraic_cats">Euclidean_domain</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
<ci>abs</ci>
</apply>
</apply>
<ci>times</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.Euclidean_domain_times(algebraic_cats.Euclidean_domain($S, $times, $plus, $zero, $neg, $abs)) = $times
Rendered Presentation MathML
Euclidean_domain_times
(
Euclidean_domain
(
S
,
times
,
plus
,
zero
,
neg
,
abs
)
)
=
times
Signatures:
sts
Description:
This symbol takes one argument which should be a Euclidean domain. It returns a binary function, which represents the additive operation of the Euclidean domain.
Commented Mathematical property (CMP):
The plus of the Euclidean domain (S,*,+,0,-,abs) = +
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_plus"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_plus"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
<OMV name="abs"/>
</OMA>
</OMA>
<OMV name="plus"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_plus</csymbol>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_plus</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
<ci>abs</ci>
</apply>
</apply>
<ci>plus</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.Euclidean_domain_plus(algebraic_cats.Euclidean_domain_plus($S, $times, $plus, $zero, $neg, $abs)) = $plus
Rendered Presentation MathML
Euclidean_domain_plus
(
Euclidean_domain_plus
(
S
,
times
,
plus
,
zero
,
neg
,
abs
)
)
=
plus
Signatures:
sts
Description:
This symbol takes one argument which should be a Euclidean domain. It returns the additive identity of the Euclidean domain.
Commented Mathematical property (CMP):
The zero of the Euclidean domain (S,*,+,0,-,abs) = 0
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_zero"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
<OMV name="abs"/>
</OMA>
</OMA>
<OMV name="zero"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_zero</csymbol>
<apply><csymbol cd="algebraic_cats">Euclidean_domain</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
<ci>abs</ci>
</apply>
</apply>
<ci>zero</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.Euclidean_domain_zero(algebraic_cats.Euclidean_domain($S, $times, $plus, $zero, $neg, $abs)) = $zero
Rendered Presentation MathML
Euclidean_domain_zero
(
Euclidean_domain
(
S
,
times
,
plus
,
zero
,
neg
,
abs
)
)
=
zero
Signatures:
sts
Description:
This symbol takes one argument which should be a Euclidean domain. It returns a unary function, which represents additive inverses of the Euclidean domain.
Commented Mathematical property (CMP):
The negative of the Euclidean domain (S,*,+,0,-,abs) = -
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_negative"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
<OMV name="abs"/>
</OMA>
</OMA>
<OMV name="neg"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_negative</csymbol>
<apply><csymbol cd="algebraic_cats">Euclidean_domain</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
<ci>abs</ci>
</apply>
</apply>
<ci>neg</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.Euclidean_domain_negative(algebraic_cats.Euclidean_domain($S, $times, $plus, $zero, $neg, $abs)) = $neg
Rendered Presentation MathML
Euclidean_domain_negative
(
Euclidean_domain
(
S
,
times
,
plus
,
zero
,
neg
,
abs
)
)
=
neg
Signatures:
sts
Description:
This symbol takes one argument which should be a Euclidean domain. It returns a unary function, which is the absolute value function of the Euclidean domain.
Commented Mathematical property (CMP):
The absolute value function of the Euclidean domain (S,*,+,0,-,abs) = abs
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain_abs"/>
<OMA>
<OMS cd="algebraic_cats" name="Euclidean_domain"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
<OMV name="abs"/>
</OMA>
</OMA>
<OMV name="abs"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">Euclidean_domain_abs</csymbol>
<apply><csymbol cd="algebraic_cats">Euclidean_domain</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
<ci>abs</ci>
</apply>
</apply>
<ci>abs</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.Euclidean_domain_abs(algebraic_cats.Euclidean_domain($S, $times, $plus, $zero, $neg, $abs)) = $abs
Rendered Presentation MathML
Euclidean_domain_abs
(
Euclidean_domain
(
S
,
times
,
plus
,
zero
,
neg
,
abs
)
)
=
abs
Signatures:
sts
Description:
This symbol is the constructor for fields. A field is an Abelian group under
+, the set of the field complement {0} with * is an Abelian group, a field
has a further rule which associates the two operations, that is left and right
distributivity.
The field constructor takes seven arguments:
The set of the field.
A binary function into itself to represent the multiplication operation, *.
A binary function into itself to represent the addition operation, +.
A member of the set of the field to specify the multiplicative identity, 1.
A member of the set of the field to specify the additive identity, 0.
A unary function taking the set of the field into itself to
represent the multiplicative inverses (i.e. inverses under *).
A unary function taking the set of the field into itself to
represent the additive inverses (i.e. inverses under +, or negatives).
Commented Mathematical property (CMP):
This constructor builds fields
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="fields"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="one"/>
<OMV name="zero"/>
<OMV name="inv"/>
<OMV name="neg"/>
</OMA>
<OMS cd="generic_alg_cats" name="fields"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">fields</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>one</ci>
<ci>zero</ci>
<ci>inv</ci>
<ci>neg</ci>
</apply>
<csymbol cd="generic_alg_cats">fields</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.in(algebraic_cats.fields($S, $times, $plus, $one, $zero, $inv, $neg), generic_alg_cats.fields)
Rendered Presentation MathML
fields
(
S
,
times
,
plus
,
one
,
zero
,
inv
,
neg
)
∈
fields
Commented Mathematical property (CMP):
The set of the field complement {0} with * is an Abelian group
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS cd="generic_alg_cats" name="field"/>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="set1" name="setdiff"/>
<OMA>
<OMS cd="algebraic_cats" name="field_set"/>
<OMV name="S"/>
</OMA>
<OMA>
<OMS cd="set1" name="set"/>
<OMA>
<OMS cd="algebraic_cats" name="field_zero"/>
</OMA>
</OMA>
</OMA>
<OMS cd="generic_alg_cats" name="Abelian_group"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">field</csymbol></apply>
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="set1">setdiff</csymbol>
<apply><csymbol cd="algebraic_cats">field_set</csymbol><ci>S</ci></apply>
<apply><csymbol cd="set1">set</csymbol><apply><csymbol cd="algebraic_cats">field_zero</csymbol></apply></apply>
</apply>
<csymbol cd="generic_alg_cats">Abelian_group</csymbol>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.in($S, generic_alg_cats.field) ==> set1.in(set1.setdiff(algebraic_cats.field_set($S), {algebraic_cats.field_zero()}), generic_alg_cats.Abelian_group)
Rendered Presentation MathML
S
∈
field
⇒
field_set
(
S
)
∖
{
field_zero
(
)
}
∈
Abelian_group
Signatures:
sts
Description:
This symbol takes one argument which should be a field. It returns the set of the field.
Commented Mathematical property (CMP):
The set of the field (S,*,+,1,0,inv,-) = S
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="field_set"/>
<OMA>
<OMS cd="algebraic_cats" name="field"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="one"/>
<OMV name="zero"/>
<OMV name="inv"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="S"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">field_set</csymbol>
<apply><csymbol cd="algebraic_cats">field</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>one</ci>
<ci>zero</ci>
<ci>inv</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>S</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.field_set(algebraic_cats.field($S, $times, $plus, $one, $zero, $inv, $neg)) = $S
Rendered Presentation MathML
field_set
(
field
(
S
,
times
,
plus
,
one
,
zero
,
inv
,
neg
)
)
=
S
Signatures:
sts
Description:
This symbol takes one argument which should be a field. It returns a binary function, to represent the multiplicative operation of the field.
Commented Mathematical property (CMP):
The times of the field (S,*,+,1,0,inv,-) = *
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="field_times"/>
<OMA>
<OMS cd="algebraic_cats" name="field"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="one"/>
<OMV name="zero"/>
<OMV name="inv"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="times"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">field_times</csymbol>
<apply><csymbol cd="algebraic_cats">field</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>one</ci>
<ci>zero</ci>
<ci>inv</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>times</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.field_times(algebraic_cats.field($S, $times, $plus, $one, $zero, $inv, $neg)) = $times
Rendered Presentation MathML
field_times
(
field
(
S
,
times
,
plus
,
one
,
zero
,
inv
,
neg
)
)
=
times
Signatures:
sts
Description:
This symbol takes one argument which should be a field. It returns a binary function, to represent the additive operation of the field.
Commented Mathematical property (CMP):
The plus of the field (S,*,+,1,0,inv,-) = +
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="field_plus"/>
<OMA>
<OMS cd="algebraic_cats" name="field"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="one"/>
<OMV name="zero"/>
<OMV name="inv"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="plus"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">field_plus</csymbol>
<apply><csymbol cd="algebraic_cats">field</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>one</ci>
<ci>zero</ci>
<ci>inv</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>plus</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.field_plus(algebraic_cats.field($S, $times, $plus, $one, $zero, $inv, $neg)) = $plus
Rendered Presentation MathML
field_plus
(
field
(
S
,
times
,
plus
,
one
,
zero
,
inv
,
neg
)
)
=
plus
Signatures:
sts
Description:
This symbol takes one argument which should be a field. It returns the multiplicative identity of the field.
Commented Mathematical property (CMP):
The one of the field (S,*,+,1,0,inv,-) = 1
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="field_one"/>
<OMA>
<OMS cd="algebraic_cats" name="field"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="one"/>
<OMV name="zero"/>
<OMV name="inv"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="one"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">field_one</csymbol>
<apply><csymbol cd="algebraic_cats">field</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>one</ci>
<ci>zero</ci>
<ci>inv</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>one</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.field_one(algebraic_cats.field($S, $times, $plus, $one, $zero, $inv, $neg)) = $one
Rendered Presentation MathML
field_one
(
field
(
S
,
times
,
plus
,
one
,
zero
,
inv
,
neg
)
)
=
one
Signatures:
sts
Description:
This symbol takes one argument which should be a field. It returns the additive identity of the field.
Commented Mathematical property (CMP):
The zero of the field (S,*,+,1,0,inv,-) = 0
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="field_zero"/>
<OMA>
<OMS cd="algebraic_cats" name="field"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="one"/>
<OMV name="zero"/>
<OMV name="inv"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="zero"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">field_zero</csymbol>
<apply><csymbol cd="algebraic_cats">field</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>one</ci>
<ci>zero</ci>
<ci>inv</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>zero</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.field_zero(algebraic_cats.field($S, $times, $plus, $one, $zero, $inv, $neg)) = $zero
Rendered Presentation MathML
field_zero
(
field
(
S
,
times
,
plus
,
one
,
zero
,
inv
,
neg
)
)
=
zero
Signatures:
sts
Description:
This symbol takes one argument which should be a field. It returns a unary function, which is the multiplicative inverse function of the field.
Commented Mathematical property (CMP):
The reciprocal of the field (S,*,+,1,0,inv,-) = inv
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="field_reciprocal"/>
<OMA>
<OMS cd="algebraic_cats" name="field"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="one"/>
<OMV name="zero"/>
<OMV name="inv"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="inv"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">field_reciprocal</csymbol>
<apply><csymbol cd="algebraic_cats">field</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>one</ci>
<ci>zero</ci>
<ci>inv</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>inv</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.field_reciprocal(algebraic_cats.field($S, $times, $plus, $one, $zero, $inv, $neg)) = $inv
Rendered Presentation MathML
field_reciprocal
(
field
(
S
,
times
,
plus
,
one
,
zero
,
inv
,
neg
)
)
=
inv
Signatures:
sts
Description:
This symbol takes one argument which should be a field. It returns a unary function, which is the additive inverse function of the field.
Commented Mathematical property (CMP):
The negative of the field (S,*,+,1,0,inv,-) = -
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="field_negative"/>
<OMA>
<OMS cd="algebraic_cats" name="field"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="one"/>
<OMV name="zero"/>
<OMV name="inv"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="neg"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">field_negative</csymbol>
<apply><csymbol cd="algebraic_cats">field</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>one</ci>
<ci>zero</ci>
<ci>inv</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>neg</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.field_negative(algebraic_cats.field($S, $times, $plus, $one, $zero, $inv, $neg)) = $neg
Rendered Presentation MathML
field_negative
(
field
(
S
,
times
,
plus
,
one
,
zero
,
inv
,
neg
)
)
=
neg
Signatures:
sts
Description:
This symbol is the constructor for integral domains. An integral domain is a
ring which is commutative under *, it has a multiplicative identity (under *),
and has no zero divisors.
The integral_domain constructor takes six arguments.
The set of the integral domain,
a binary function from the set into itself to represent the * operation,
a binary function from the set into itself to represent the + operation,
an element of the set of the ring to represent the multiplicative identity 1,
an element of the set of the ring to represent the additive identity 0,
and a unary function from the set into itself to represent additive inverses
(i.e. inverses under +, or negatives).
Commented Mathematical property (CMP):
This constructor builds integral domains
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="one"/>
<OMV name="plus"/>
<OMV name="zero"/>
<OMV name="neg"/>
</OMA>
<OMS cd="generic_alg_cats" name="integral_domain"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">integral_domain</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>one</ci>
<ci>plus</ci>
<ci>zero</ci>
<ci>neg</ci>
</apply>
<csymbol cd="generic_alg_cats">integral_domain</csymbol>
</apply>
</math>
Prefix
Popcorn
set1.in(algebraic_cats.integral_domain($S, $times, $one, $plus, $zero, $neg), generic_alg_cats.integral_domain)
Rendered Presentation MathML
integral_domain
(
S
,
times
,
one
,
plus
,
zero
,
neg
)
∈
integral_domain
Commented Mathematical property (CMP):
An integral domain is commutative under *
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS cd="generic_alg_cats" name="integral_domain"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="a"/>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="b"/>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain_set"/>
<OMV name="S"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain_times"/>
<OMV name="S"/>
</OMA>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain_times"/>
<OMV name="S"/>
</OMA>
<OMV name="b"/>
<OMV name="a"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">integral_domain</csymbol></apply>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>a</ci>
<apply><csymbol cd="algebraic_cats">integral_domain_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>b</ci>
<apply><csymbol cd="algebraic_cats">integral_domain_set</csymbol><ci>S</ci></apply>
</apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">integral_domain_times</csymbol><ci>S</ci></apply>
<ci>a</ci>
<ci>b</ci>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">integral_domain_times</csymbol><ci>S</ci></apply>
<ci>b</ci>
<ci>a</ci>
</apply>
</apply>
</apply>
</bind>
</apply>
</math>
Prefix
Popcorn
set1.in($S, generic_alg_cats.integral_domain) ==> quant1.forall[$a, $b -> set1.in($a, algebraic_cats.integral_domain_set($S)) and set1.in($b, algebraic_cats.integral_domain_set($S)) ==> algebraic_cats.integral_domain_times($S)($a, $b) = algebraic_cats.integral_domain_times($S)($b, $a)]
Rendered Presentation MathML
S
∈
integral_domain
⇒
∀
a
,
b
.
a
∈
integral_domain_set
(
S
)
∧
b
∈
integral_domain_set
(
S
)
⇒
(
integral_domain_times
(
S
)
)
(
a
,
b
)
=
(
integral_domain_times
(
S
)
)
(
b
,
a
)
Commented Mathematical property (CMP):
An integral domain has a multiplicative identity
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS cd="generic_alg_cats" name="integral_domain"/>
</OMA>
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR>
<OMV name="id"/>
</OMBVAR>
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="x"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain_times"/>
<OMV name="S"/>
</OMA>
<OMV name="id"/>
<OMV name="x"/>
</OMA>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain_times"/>
<OMV name="S"/>
</OMA>
<OMV name="x"/>
<OMV name="id"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMA>
</OMBIND>
</OMBIND>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">integral_domain</csymbol></apply>
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>id</ci></bvar>
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">integral_domain_times</csymbol><ci>S</ci></apply>
<ci>id</ci>
<ci>x</ci>
</apply>
<ci>x</ci>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="algebraic_cats">integral_domain_times</csymbol><ci>S</ci></apply>
<ci>x</ci>
<ci>id</ci>
</apply>
<ci>x</ci>
</apply>
</apply>
</bind>
</bind>
</apply>
</math>
Prefix
Popcorn
set1.in($S, generic_alg_cats.integral_domain) ==> quant1.exists[$id -> quant1.forall[$x -> algebraic_cats.integral_domain_times($S)($id, $x) = $x and algebraic_cats.integral_domain_times($S)($x, $id) = $x]]
Rendered Presentation MathML
S
∈
integral_domain
⇒
∃
id
.
∀
x
.
(
integral_domain_times
(
S
)
)
(
id
,
x
)
=
x
∧
(
integral_domain_times
(
S
)
)
(
x
,
id
)
=
x
Commented Mathematical property (CMP):
An integral domain has no zero divisors
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="S"/>
<OMS cd="generic_alg_cats" name="integral_domain"/>
</OMA>
<OMA>
<OMS cd="logic1" name="not"/>
<OMBIND>
<OMS cd="quant1" name="exists"/>
<OMBVAR>
<OMV name="zerodiv"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="x"/>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain_set"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="relation1" name="neq"/>
<OMV name="x"/>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain_zero"/>
<OMV name="S"/>
</OMA>
</OMA>
<OMA>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain_times"/>
<OMV name="S"/>
</OMA>
<OMV name="zerodiv"/>
<OMV name="x"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>S</ci><csymbol cd="generic_alg_cats">integral_domain</csymbol></apply>
<apply><csymbol cd="logic1">not</csymbol>
<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>zerodiv</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>x</ci>
<apply><csymbol cd="algebraic_cats">integral_domain_set</csymbol><ci>S</ci></apply>
</apply>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">neq</csymbol>
<ci>x</ci>
<apply><csymbol cd="algebraic_cats">integral_domain_zero</csymbol><ci>S</ci></apply>
</apply>
<apply>
<apply><csymbol cd="algebraic_cats">integral_domain_times</csymbol><ci>S</ci></apply>
<ci>zerodiv</ci>
<ci>x</ci>
</apply>
</apply>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.in($S, generic_alg_cats.integral_domain) ==> not(quant1.exists[$zerodiv -> set1.in($x, algebraic_cats.integral_domain_set($S)) ==> $x != algebraic_cats.integral_domain_zero($S) and algebraic_cats.integral_domain_times($S)($zerodiv, $x)])
Rendered Presentation MathML
S
∈
integral_domain
⇒
¬
∃
zerodiv
.
x
∈
integral_domain_set
(
S
)
⇒
x
≠
integral_domain_zero
(
S
)
∧
(
integral_domain_times
(
S
)
)
(
zerodiv
,
x
)
Signatures:
sts
Description:
This symbol takes one argument which should be an integral domain. It
returns the set of the integral domain.
Commented Mathematical property (CMP):
The set of the integral domain (S,*,+,1,0,-) = S
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain_set"/>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="one"/>
<OMV name="zero"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="S"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">integral_domain_set</csymbol>
<apply><csymbol cd="algebraic_cats">integral_domain</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>one</ci>
<ci>zero</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>S</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.integral_domain_set(algebraic_cats.integral_domain($S, $times, $plus, $one, $zero, $neg)) = $S
Rendered Presentation MathML
integral_domain_set
(
integral_domain
(
S
,
times
,
plus
,
one
,
zero
,
neg
)
)
=
S
Signatures:
sts
Description:
This symbol takes one argument which should be an integral domain. It
returns a binary function which represents the multiplicative
operation of the integral domain.
Commented Mathematical property (CMP):
The times of the integral domain (S,*,+,1,0,-) = *
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain_times"/>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="one"/>
<OMV name="zero"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="times"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">integral_domain_times</csymbol>
<apply><csymbol cd="algebraic_cats">integral_domain</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>one</ci>
<ci>zero</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>times</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.integral_domain_times(algebraic_cats.integral_domain($S, $times, $plus, $one, $zero, $neg)) = $times
Rendered Presentation MathML
integral_domain_times
(
integral_domain
(
S
,
times
,
plus
,
one
,
zero
,
neg
)
)
=
times
Signatures:
sts
Description:
This symbol takes one argument which should be an integral domain. It returns a binary function which represents the additive operation of the integral domain.
Commented Mathematical property (CMP):
The plus of the integral domain (S,*,+,1,0,-) = +
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain_plus"/>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="one"/>
<OMV name="zero"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="plus"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">integral_domain_plus</csymbol>
<apply><csymbol cd="algebraic_cats">integral_domain</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>one</ci>
<ci>zero</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>plus</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.integral_domain_plus(algebraic_cats.integral_domain($S, $times, $plus, $one, $zero, $neg)) = $plus
Rendered Presentation MathML
integral_domain_plus
(
integral_domain
(
S
,
times
,
plus
,
one
,
zero
,
neg
)
)
=
plus
Signatures:
sts
Description:
This symbol takes one argument which should be an integral domain. It returns the multiplicative identity of the integral domain.
Commented Mathematical property (CMP):
The one of the integral domain (S,*,+,1,0,-) = 1
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain_one"/>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="one"/>
<OMV name="zero"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="one"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">integral_domain_one</csymbol>
<apply><csymbol cd="algebraic_cats">integral_domain</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>one</ci>
<ci>zero</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>one</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.integral_domain_one(algebraic_cats.integral_domain($S, $times, $plus, $one, $zero, $neg)) = $one
Rendered Presentation MathML
integral_domain_one
(
integral_domain
(
S
,
times
,
plus
,
one
,
zero
,
neg
)
)
=
one
Signatures:
sts
Description:
This symbol takes one argument which should be an integral domain. It returns the additive identity of the integral domain.
Commented Mathematical property (CMP):
The zero of the integral domain (S,*,+,1,0,-) = 0
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain_zero"/>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="one"/>
<OMV name="zero"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="zero"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">integral_domain_zero</csymbol>
<apply><csymbol cd="algebraic_cats">integral_domain</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>one</ci>
<ci>zero</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>zero</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.integral_domain_zero(algebraic_cats.integral_domain($S, $times, $plus, $one, $zero, $neg)) = $zero
Rendered Presentation MathML
integral_domain_zero
(
integral_domain
(
S
,
times
,
plus
,
one
,
zero
,
neg
)
)
=
zero
Signatures:
sts
Description:
This symbol takes one argument which should be an integral domain. It
returns a unary function which represents the additive inverse
function of the integral domain.
Commented Mathematical property (CMP):
The negative of the integral domain (S,*,+,1,0,-) = -
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain_negative"/>
<OMA>
<OMS cd="algebraic_cats" name="integral_domain"/>
<OMV name="S"/>
<OMV name="times"/>
<OMV name="plus"/>
<OMV name="one"/>
<OMV name="zero"/>
<OMV name="neg"/>
</OMA>
</OMA>
<OMV name="neg"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="algebraic_cats">integral_domain_negative</csymbol>
<apply><csymbol cd="algebraic_cats">integral_domain</csymbol>
<ci>S</ci>
<ci>times</ci>
<ci>plus</ci>
<ci>one</ci>
<ci>zero</ci>
<ci>neg</ci>
</apply>
</apply>
<ci>neg</ci>
</apply>
</math>
Prefix
Popcorn
algebraic_cats.integral_domain_negative(algebraic_cats.integral_domain($S, $times, $plus, $one, $zero, $neg)) = $neg
Rendered Presentation MathML
integral_domain_negative
(
integral_domain
(
S
,
times
,
plus
,
one
,
zero
,
neg
)
)
=
neg
Signatures:
sts