OpenMath Content Dictionary: generic_alg_cats
Canonical URL:
http://www.openmath.org/cd/generic_alg_cats.ocd
CD File:
generic_alg_cats.ocd
CD as XML Encoded OpenMath:
generic_alg_cats.omcd
Defines:
Abelian_group , Abelian_monoid , Abelian_semigroup , Euclidean_domain , field , group , groupoid , integral_domain , monoid , non_commutative_ring , ordered_Abelian_group , ordered_Abelian_monoid , ordered_group , ordered_monoid , ordered_ring , ring , ringoid , semigroup
Date:
2002-06-17
Version:
0
(Revision 1)
Review Date:
2017-12-31
Status:
experimental
This document is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
The copyright holder grants you permission to redistribute this
document freely as a verbatim copy. Furthermore, the copyright
holder permits you to develop any derived work from this document
provided that the following conditions are met.
a) The derived work acknowledges the fact that it is derived from
this document, and maintains a prominent reference in the
work to the original source.
b) The fact that the derived work is not the original OpenMath
document is stated prominently in the derived work. Moreover if
both this document and the derived work are Content Dictionaries
then the derived work must include a different CDName element,
chosen so that it cannot be confused with any works adopted by
the OpenMath Society. In particular, if there is a Content
Dictionary Group whose name is, for example, `math' containing
Content Dictionaries named `math1', `math2' etc., then you should
not name a derived Content Dictionary `mathN' where N is an integer.
However you are free to name it `private_mathN' or some such. This
is because the names `mathN' may be used by the OpenMath Society
for future extensions.
c) The derived work is distributed under terms that allow the
compilation of derived works, but keep paragraphs a) and b)
intact. The simplest way to do this is to distribute the derived
work under the OpenMath license, but this is not a requirement.
If you have questions about this license please contact the OpenMath
society at http://www.openmath.org .
Author: Bill Naylor
A CD of generic algebraic categories. This CD holds information
relating to the heirarchical sturcture of the algebraic category
system.
Description:
This Symbol represents the generic category of monoid.
Commented Mathematical property (CMP):
A monoid is a groupoid
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="meta_cats" name="has"/>
<OMS cd="generic_alg_cats" name="monoid"/>
<OMS cd="generic_alg_cats" name="groupoid"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="meta_cats">has</csymbol>
<csymbol cd="generic_alg_cats">monoid</csymbol>
<csymbol cd="generic_alg_cats">groupoid</csymbol>
</apply>
</math>
Prefix
Popcorn
meta_cats.has(generic_alg_cats.monoid, generic_alg_cats.groupoid)
Rendered Presentation MathML
has
(
monoid
,
groupoid
)
Signatures:
sts
Description:
This Symbol represents the generic category of Abelian monoid.
Commented Mathematical property (CMP):
An Abelian monoid is a monoid
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="meta_cats" name="has"/>
<OMS cd="generic_alg_cats" name="Abelian_monoid"/>
<OMS cd="generic_alg_cats" name="monoid"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="meta_cats">has</csymbol>
<csymbol cd="generic_alg_cats">Abelian_monoid</csymbol>
<csymbol cd="generic_alg_cats">monoid</csymbol>
</apply>
</math>
Prefix
Popcorn
meta_cats.has(generic_alg_cats.Abelian_monoid, generic_alg_cats.monoid)
Rendered Presentation MathML
has
(
Abelian_monoid
,
monoid
)
Signatures:
sts
Description:
This Symbol represents the generic category of ordered monoid.
Commented Mathematical property (CMP):
An ordered monoid is a monoid
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="meta_cats" name="has"/>
<OMS cd="generic_alg_cats" name="ordered_monoid"/>
<OMS cd="generic_alg_cats" name="monoid"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="meta_cats">has</csymbol>
<csymbol cd="generic_alg_cats">ordered_monoid</csymbol>
<csymbol cd="generic_alg_cats">monoid</csymbol>
</apply>
</math>
Prefix
Popcorn
meta_cats.has(generic_alg_cats.ordered_monoid, generic_alg_cats.monoid)
Rendered Presentation MathML
has
(
ordered_monoid
,
monoid
)
Signatures:
sts
Description:
This Symbol represents the generic category of ordered Abelian monoid.
Commented Mathematical property (CMP):
An ordered Abelian monoid is an Abelian monoid
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="meta_cats" name="has"/>
<OMS cd="generic_alg_cats" name="ordered_Abelian_monoid"/>
<OMS cd="generic_alg_cats" name="Abelian_monoid"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="meta_cats">has</csymbol>
<csymbol cd="generic_alg_cats">ordered_Abelian_monoid</csymbol>
<csymbol cd="generic_alg_cats">Abelian_monoid</csymbol>
</apply>
</math>
Prefix
Popcorn
meta_cats.has(generic_alg_cats.ordered_Abelian_monoid, generic_alg_cats.Abelian_monoid)
Rendered Presentation MathML
has
(
ordered_Abelian_monoid
,
Abelian_monoid
)
Commented Mathematical property (CMP):
An ordered Abelian monoid is an ordered monoid
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="meta_cats" name="has"/>
<OMS cd="generic_alg_cats" name="ordered_Abelian_monoid"/>
<OMS cd="generic_alg_cats" name="ordered_monoid"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="meta_cats">has</csymbol>
<csymbol cd="generic_alg_cats">ordered_Abelian_monoid</csymbol>
<csymbol cd="generic_alg_cats">ordered_monoid</csymbol>
</apply>
</math>
Prefix
Popcorn
meta_cats.has(generic_alg_cats.ordered_Abelian_monoid, generic_alg_cats.ordered_monoid)
Rendered Presentation MathML
has
(
ordered_Abelian_monoid
,
ordered_monoid
)
Signatures:
sts
Description:
This Symbol represents the generic category of groupoid.
Signatures:
sts
Description:
This Symbol represents the generic category of semigroup.
Commented Mathematical property (CMP):
A semigroup is a groupoid
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="meta_cats" name="has"/>
<OMS cd="generic_alg_cats" name="semigroup"/>
<OMS cd="generic_alg_cats" name="groupoid"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="meta_cats">has</csymbol>
<csymbol cd="generic_alg_cats">semigroup</csymbol>
<csymbol cd="generic_alg_cats">groupoid</csymbol>
</apply>
</math>
Prefix
Popcorn
meta_cats.has(generic_alg_cats.semigroup, generic_alg_cats.groupoid)
Rendered Presentation MathML
has
(
semigroup
,
groupoid
)
Signatures:
sts
Description:
This Symbol represents the generic category of Abelian semigroup.
Commented Mathematical property (CMP):
An Abelian semigroup is a semigroup
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="meta_cats" name="has"/>
<OMS cd="generic_alg_cats" name="Abelian_semigroup"/>
<OMS cd="generic_alg_cats" name="semigroup"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="meta_cats">has</csymbol>
<csymbol cd="generic_alg_cats">Abelian_semigroup</csymbol>
<csymbol cd="generic_alg_cats">semigroup</csymbol>
</apply>
</math>
Prefix
Popcorn
meta_cats.has(generic_alg_cats.Abelian_semigroup, generic_alg_cats.semigroup)
Rendered Presentation MathML
has
(
Abelian_semigroup
,
semigroup
)
Signatures:
sts
Description:
This Symbol represents the generic category of group.
Commented Mathematical property (CMP):
A group is a monoid
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="meta_cats" name="has"/>
<OMS cd="generic_alg_cats" name="group"/>
<OMS cd="generic_alg_cats" name="monoid"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="meta_cats">has</csymbol>
<csymbol cd="generic_alg_cats">group</csymbol>
<csymbol cd="generic_alg_cats">monoid</csymbol>
</apply>
</math>
Prefix
Popcorn
meta_cats.has(generic_alg_cats.group, generic_alg_cats.monoid)
Rendered Presentation MathML
Signatures:
sts
Description:
This Symbol represents the generic category of ordered group.
Commented Mathematical property (CMP):
An ordered group is a group
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="meta_cats" name="has"/>
<OMS cd="generic_alg_cats" name="ordered_group"/>
<OMS cd="generic_alg_cats" name="group"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="meta_cats">has</csymbol>
<csymbol cd="generic_alg_cats">ordered_group</csymbol>
<csymbol cd="generic_alg_cats">group</csymbol>
</apply>
</math>
Prefix
Popcorn
meta_cats.has(generic_alg_cats.ordered_group, generic_alg_cats.group)
Rendered Presentation MathML
has
(
ordered_group
,
group
)
Signatures:
sts
Description:
This Symbol represents the generic category of Abelian group.
Commented Mathematical property (CMP):
An Abelian group is a group
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="meta_cats" name="has"/>
<OMS cd="generic_alg_cats" name="Abelian_group"/>
<OMS cd="generic_alg_cats" name="group"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="meta_cats">has</csymbol>
<csymbol cd="generic_alg_cats">Abelian_group</csymbol>
<csymbol cd="generic_alg_cats">group</csymbol>
</apply>
</math>
Prefix
Popcorn
meta_cats.has(generic_alg_cats.Abelian_group, generic_alg_cats.group)
Rendered Presentation MathML
has
(
Abelian_group
,
group
)
Signatures:
sts
Description:
This Symbol represents the generic category of ordered Abelian group.
Commented Mathematical property (CMP):
An ordered Abelian group is an Abelian group
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="meta_cats" name="has"/>
<OMS cd="generic_alg_cats" name="ordered_Abelian_group"/>
<OMS cd="generic_alg_cats" name="Abelian_group"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="meta_cats">has</csymbol>
<csymbol cd="generic_alg_cats">ordered_Abelian_group</csymbol>
<csymbol cd="generic_alg_cats">Abelian_group</csymbol>
</apply>
</math>
Prefix
Popcorn
meta_cats.has(generic_alg_cats.ordered_Abelian_group, generic_alg_cats.Abelian_group)
Rendered Presentation MathML
has
(
ordered_Abelian_group
,
Abelian_group
)
Commented Mathematical property (CMP):
An ordered Abelian group is an ordered group
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="meta_cats" name="has"/>
<OMS cd="generic_alg_cats" name="ordered_Abelian_group"/>
<OMS cd="generic_alg_cats" name="ordered_group"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="meta_cats">has</csymbol>
<csymbol cd="generic_alg_cats">ordered_Abelian_group</csymbol>
<csymbol cd="generic_alg_cats">ordered_group</csymbol>
</apply>
</math>
Prefix
Popcorn
meta_cats.has(generic_alg_cats.ordered_Abelian_group, generic_alg_cats.ordered_group)
Rendered Presentation MathML
has
(
ordered_Abelian_group
,
ordered_group
)
Signatures:
sts
Description:
This symbol represents the generic category of ringoid.
Signatures:
sts
Description:
This Symbol represents the generic category of ring.
Commented Mathematical property (CMP):
A ring is a ringoid
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="meta_cats" name="has"/>
<OMS cd="generic_alg_cats" name="ring"/>
<OMS cd="generic_alg_cats" name="ringoid"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="meta_cats">has</csymbol>
<csymbol cd="generic_alg_cats">ring</csymbol>
<csymbol cd="generic_alg_cats">ringoid</csymbol>
</apply>
</math>
Prefix
Popcorn
meta_cats.has(generic_alg_cats.ring, generic_alg_cats.ringoid)
Rendered Presentation MathML
Commented Mathematical property (CMP):
A ring is a group under addition
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="R"/>
<OMS cd="generic_alg_cats" name="ring"/>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="group"/>
<OMA>
<OMS cd="algebraic_cats" name="ring_set"/>
<OMV name="R"/>
</OMA>
<OMA>
<OMS cd="algebraic_cats" name="ring_plus"/>
<OMV name="R"/>
</OMA>
<OMA>
<OMS cd="algebraic_cats" name="ring_zero"/>
<OMV name="R"/>
</OMA>
<OMA>
<OMS cd="algebraic_cats" name="ring_negative"/>
<OMV name="R"/>
</OMA>
</OMA>
<OMS cd="generic_alg_cats" name="group"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>R</ci><csymbol cd="generic_alg_cats">ring</csymbol></apply>
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">group</csymbol>
<apply><csymbol cd="algebraic_cats">ring_set</csymbol><ci>R</ci></apply>
<apply><csymbol cd="algebraic_cats">ring_plus</csymbol><ci>R</ci></apply>
<apply><csymbol cd="algebraic_cats">ring_zero</csymbol><ci>R</ci></apply>
<apply><csymbol cd="algebraic_cats">ring_negative</csymbol><ci>R</ci></apply>
</apply>
<csymbol cd="generic_alg_cats">group</csymbol>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.in($R, generic_alg_cats.ring) ==> set1.in(algebraic_cats.group(algebraic_cats.ring_set($R), algebraic_cats.ring_plus($R), algebraic_cats.ring_zero($R), algebraic_cats.ring_negative($R)), generic_alg_cats.group)
Rendered Presentation MathML
R
∈
ring
⇒
group
(
ring_set
(
R
)
,
ring_plus
(
R
)
,
ring_zero
(
R
)
,
ring_negative
(
R
)
)
∈
group
Commented Mathematical property (CMP):
A ring is a semigroup under multiplication
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="R"/>
<OMS cd="generic_alg_cats" name="ring"/>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="semigroup"/>
<OMA>
<OMS cd="algebraic_cats" name="ring_set"/>
<OMV name="R"/>
</OMA>
<OMA>
<OMS cd="algebraic_cats" name="ring_times"/>
<OMV name="R"/>
</OMA>
</OMA>
<OMS cd="generic_alg_cats" name="semigroup"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>R</ci><csymbol cd="generic_alg_cats">ring</csymbol></apply>
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">semigroup</csymbol>
<apply><csymbol cd="algebraic_cats">ring_set</csymbol><ci>R</ci></apply>
<apply><csymbol cd="algebraic_cats">ring_times</csymbol><ci>R</ci></apply>
</apply>
<csymbol cd="generic_alg_cats">semigroup</csymbol>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.in($R, generic_alg_cats.ring) ==> set1.in(algebraic_cats.semigroup(algebraic_cats.ring_set($R), algebraic_cats.ring_times($R)), generic_alg_cats.semigroup)
Rendered Presentation MathML
R
∈
ring
⇒
semigroup
(
ring_set
(
R
)
,
ring_times
(
R
)
)
∈
semigroup
Signatures:
sts
Description:
This Symbol represents the generic category of ordered ring.
Commented Mathematical property (CMP):
An ordered ring is a ring
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="meta_cats" name="has"/>
<OMS cd="generic_alg_cats" name="ordered_ring"/>
<OMS cd="generic_alg_cats" name="ring"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="meta_cats">has</csymbol>
<csymbol cd="generic_alg_cats">ordered_ring</csymbol>
<csymbol cd="generic_alg_cats">ring</csymbol>
</apply>
</math>
Prefix
Popcorn
meta_cats.has(generic_alg_cats.ordered_ring, generic_alg_cats.ring)
Rendered Presentation MathML
has
(
ordered_ring
,
ring
)
Signatures:
sts
Description:
This Symbol represents the generic category of non-commutative ring.
Commented Mathematical property (CMP):
A non-commutative ring is a ring
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="meta_cats" name="has"/>
<OMS cd="generic_alg_cats" name="non_commutative_ring"/>
<OMS cd="generic_alg_cats" name="ring"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="meta_cats">has</csymbol>
<csymbol cd="generic_alg_cats">non_commutative_ring</csymbol>
<csymbol cd="generic_alg_cats">ring</csymbol>
</apply>
</math>
Prefix
Popcorn
meta_cats.has(generic_alg_cats.non_commutative_ring, generic_alg_cats.ring)
Rendered Presentation MathML
has
(
non_commutative_ring
,
ring
)
Signatures:
sts
Description:
This Symbol represents the generic category of Euclidean domain.
Commented Mathematical property (CMP):
A Euclidean domain is a ring
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="meta_cats" name="has"/>
<OMS cd="generic_alg_cats" name="Euclidean_domain"/>
<OMS cd="generic_alg_cats" name="ring"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="meta_cats">has</csymbol>
<csymbol cd="generic_alg_cats">Euclidean_domain</csymbol>
<csymbol cd="generic_alg_cats">ring</csymbol>
</apply>
</math>
Prefix
Popcorn
meta_cats.has(generic_alg_cats.Euclidean_domain, generic_alg_cats.ring)
Rendered Presentation MathML
has
(
Euclidean_domain
,
ring
)
Signatures:
sts
Description:
This Symbol represents the generic category of field.
Commented Mathematical property (CMP):
A field is an Abelian group under +
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="F"/>
<OMS cd="generic_alg_cats" name="field"/>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMA>
<OMS cd="algebraic_cats" name="Abelian_group"/>
<OMA>
<OMS cd="algebraic_cats" name="field_set"/>
<OMV name="F"/>
</OMA>
<OMA>
<OMS cd="algebraic_cats" name="field_plus"/>
<OMV name="F"/>
</OMA>
<OMA>
<OMS cd="algebraic_cats" name="field_zero"/>
<OMV name="F"/>
</OMA>
<OMA>
<OMS cd="algebraic_cats" name="field_negative"/>
<OMV name="F"/>
</OMA>
</OMA>
<OMS cd="generic_alg_cats" name="Abelian_group"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>F</ci><csymbol cd="generic_alg_cats">field</csymbol></apply>
<apply><csymbol cd="set1">in</csymbol>
<apply><csymbol cd="algebraic_cats">Abelian_group</csymbol>
<apply><csymbol cd="algebraic_cats">field_set</csymbol><ci>F</ci></apply>
<apply><csymbol cd="algebraic_cats">field_plus</csymbol><ci>F</ci></apply>
<apply><csymbol cd="algebraic_cats">field_zero</csymbol><ci>F</ci></apply>
<apply><csymbol cd="algebraic_cats">field_negative</csymbol><ci>F</ci></apply>
</apply>
<csymbol cd="generic_alg_cats">Abelian_group</csymbol>
</apply>
</apply>
</math>
Prefix
Popcorn
set1.in($F, generic_alg_cats.field) ==> set1.in(algebraic_cats.Abelian_group(algebraic_cats.field_set($F), algebraic_cats.field_plus($F), algebraic_cats.field_zero($F), algebraic_cats.field_negative($F)), generic_alg_cats.Abelian_group)
Rendered Presentation MathML
F
∈
field
⇒
Abelian_group
(
field_set
(
F
)
,
field_plus
(
F
)
,
field_zero
(
F
)
,
field_negative
(
F
)
)
∈
Abelian_group
Commented Mathematical property (CMP):
A field is a ring
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="meta_cats" name="has"/>
<OMS cd="generic_alg_cats" name="field"/>
<OMS cd="generic_alg_cats" name="ring"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="meta_cats">has</csymbol>
<csymbol cd="generic_alg_cats">field</csymbol>
<csymbol cd="generic_alg_cats">ring</csymbol>
</apply>
</math>
Prefix
Popcorn
meta_cats.has(generic_alg_cats.field, generic_alg_cats.ring)
Rendered Presentation MathML
Signatures:
sts
Description:
This Symbol represents the generic category of integral domain.
Commented Mathematical property (CMP):
An integral domain is a ring
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="meta_cats" name="has"/>
<OMS cd="generic_alg_cats" name="integral_domain"/>
<OMS cd="generic_alg_cats" name="ring"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="meta_cats">has</csymbol>
<csymbol cd="generic_alg_cats">integral_domain</csymbol>
<csymbol cd="generic_alg_cats">ring</csymbol>
</apply>
</math>
Prefix
Popcorn
meta_cats.has(generic_alg_cats.integral_domain, generic_alg_cats.ring)
Rendered Presentation MathML
has
(
integral_domain
,
ring
)
Signatures:
sts