OpenMath Content Dictionary: gen_hyperbolic1
Canonical URL:
http://www.openmath.org/cd/gen_hyperbolic1.ocd
CD File:
gen_hyperbolic1.ocd
CD as XML Encoded OpenMath:
gen_hyperbolic1.omcd
Defines:
generalised_hyperbolic
Date:
2002-11-11
Version:
0
(Revision 1)
Review Date:
2017-12-31
Status:
experimental
This document is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
The copyright holder grants you permission to redistribute this
document freely as a verbatim copy. Furthermore, the copyright
holder permits you to develop any derived work from this document
provided that the following conditions are met.
a) The derived work acknowledges the fact that it is derived from
this document, and maintains a prominent reference in the
work to the original source.
b) The fact that the derived work is not the original OpenMath
document is stated prominently in the derived work. Moreover if
both this document and the derived work are Content Dictionaries
then the derived work must include a different CDName element,
chosen so that it cannot be confused with any works adopted by
the OpenMath Society. In particular, if there is a Content
Dictionary Group whose name is, for example, `math' containing
Content Dictionaries named `math1', `math2' etc., then you should
not name a derived Content Dictionary `mathN' where N is an integer.
However you are free to name it `private_mathN' or some such. This
is because the names `mathN' may be used by the OpenMath Society
for future extensions.
c) The derived work is distributed under terms that allow the
compilation of derived works, but keep paragraphs a) and b)
intact. The simplest way to do this is to distribute the derived
work under the OpenMath license, but this is not a requirement.
If you have questions about this license please contact the OpenMath
society at http://www.openmath.org .
Author: Bill Naylor
This CD contains a symbol to represent the generalised hyperbolic
function, and facts relating it to other functions.
Description:
This symbol represents the generalised hyperbolic function as recorded
by Riccati. It is intended to be applied in the curried form, that is,
the symbol should be applied to three arguments in order to return a
function which should be applied to one argument. The generalised
hyperbolic function may be defined as an infinite sum as in the
first CMP/FMP .
Commented Mathematical property (CMP):
for complex \alpha, integral n and r an integer between 0 and r (inclusive)
(F^\alpha_{n,r})(x) = \Sigma^\infty_{k=0}{\frac{\alpha^k}{(nk+r)!}x^{nk+r}}
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="alpha"/>
<OMS cd="setname1" name="C"/>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="n"/>
<OMS cd="setname1" name="Z"/>
</OMA>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="r"/>
<OMA>
<OMS cd="interval1" name="integer_interval"/>
<OMI> 0 </OMI>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMV name="n"/><OMI> 1 </OMI>
</OMA>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMA>
<OMS cd="gen_hyperbolic1" name="generalised_hyperbolic"/>
<OMV name="alpha"/>
<OMV name="n"/>
<OMV name="r"/>
</OMA>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="arith1" name="sum"/>
<OMA>
<OMS cd="interval1" name="integer_interval"/>
<OMS cd="alg1" name="zero"/>
<OMS cd="nums1" name="infinity"/>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="k"/>
</OMBVAR>
<OMA>
<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="alpha"/>
<OMV name="k"/>
</OMA>
<OMA>
<OMS cd="integer1" name="factorial"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMV name="n"/>
<OMV name="k"/>
</OMA>
<OMV name="r"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="x"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMV name="n"/>
<OMV name="k"/>
</OMA>
<OMV name="r"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>alpha</ci><csymbol cd="setname1">C</csymbol></apply>
<apply><csymbol cd="set1">in</csymbol><ci>n</ci><csymbol cd="setname1">Z</csymbol></apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>r</ci>
<apply><csymbol cd="interval1">integer_interval</csymbol>
<cn type="integer">0</cn>
<apply><csymbol cd="arith1">minus</csymbol><ci>n</ci><cn type="integer">1</cn></apply>
</apply>
</apply>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="gen_hyperbolic1">generalised_hyperbolic</csymbol><ci>alpha</ci><ci>n</ci><ci>r</ci></apply>
<ci>x</ci>
</apply>
<apply><csymbol cd="arith1">sum</csymbol>
<apply><csymbol cd="interval1">integer_interval</csymbol>
<csymbol cd="alg1">zero</csymbol>
<csymbol cd="nums1">infinity</csymbol>
</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>k</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>alpha</ci><ci>k</ci></apply>
<apply><csymbol cd="integer1">factorial</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">times</csymbol><ci>n</ci><ci>k</ci></apply>
<ci>r</ci>
</apply>
</apply>
</apply>
<apply><csymbol cd="arith1">power</csymbol>
<ci>x</ci>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">times</csymbol><ci>n</ci><ci>k</ci></apply>
<ci>r</ci>
</apply>
</apply>
</apply>
</bind>
</apply>
</apply>
</apply>
</math>
Prefix
implies
(
and
(
in
(
alpha ,
C )
,
in
(
n ,
Z )
,
in
(
r ,
integer_interval
( 0 ,
minus
(
n , 1 )
)
)
)
,
eq
(
generalised_hyperbolic
(
alpha ,
n ,
r )
(
x )
,
sum
(
integer_interval
(
zero ,
infinity )
,
lambda
[
k
] .
(
times
(
divide
(
power
(
alpha ,
k )
,
factorial
(
plus
(
times
(
n ,
k )
,
r )
)
)
,
power
(
x ,
plus
(
times
(
n ,
k )
,
r )
)
)
)
)
)
)
Popcorn
set1.in($alpha, setname1.C) and set1.in($n, setname1.Z) and set1.in($r, interval1.integer_interval(0, $n - 1)) ==> gen_hyperbolic1.generalised_hyperbolic($alpha, $n, $r)($x) = arith1.sum(interval1.integer_interval(alg1.zero, nums1.infinity), fns1.lambda[$k -> $alpha ^ $k / integer1.factorial($n * $k + $r) * $x ^ ($n * $k + $r)])
Rendered Presentation MathML
alpha
∈
C
∧
n
∈
Z
∧
r
∈
[
0
,
n
-
1
]
⇒
(
generalised_hyperbolic
(
alpha
,
n
,
r
)
)
(
x
)
=
∑
k
=
0
∞
alpha
k
(
n
k
+
r
)
!
x
(
n
k
+
r
)
Commented Mathematical property (CMP):
for all z \in C F^1_{1,0} (z) = e^z
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="z"/>
<OMS cd="setname1" name="C"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMA>
<OMS cd="gen_hyperbolic1" name="generalised_hyperbolic"/>
<OMI> 1 </OMI><OMI> 1 </OMI><OMI> 0 </OMI>
</OMA>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="transc1" name="exp"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>z</ci><csymbol cd="setname1">C</csymbol></apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="gen_hyperbolic1">generalised_hyperbolic</csymbol>
<cn type="integer">1</cn>
<cn type="integer">1</cn>
<cn type="integer">0</cn>
</apply>
<ci>z</ci>
</apply>
<apply><csymbol cd="transc1">exp</csymbol><ci>z</ci></apply>
</apply>
</apply>
</bind>
</math>
Prefix
Popcorn
quant1.forall[$z -> set1.in($z, setname1.C) ==> gen_hyperbolic1.generalised_hyperbolic(1, 1, 0)($z) = exp($z)]
Rendered Presentation MathML
∀
z
.
z
∈
C
⇒
(
generalised_hyperbolic
(
1
,
1
,
0
)
)
(
z
)
=
exp
(
z
)
Commented Mathematical property (CMP):
for all z \in C F^{-1}_{2,-1} (z) = sin(z)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="z"/>
<OMS cd="setname1" name="C"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMA>
<OMS cd="gen_hyperbolic1" name="generalised_hyperbolic"/>
<OMI> -1 </OMI><OMI> 2 </OMI><OMI> -1 </OMI>
</OMA>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="transc1" name="sin"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>z</ci><csymbol cd="setname1">C</csymbol></apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="gen_hyperbolic1">generalised_hyperbolic</csymbol>
<cn type="integer">-1</cn>
<cn type="integer">2</cn>
<cn type="integer">-1</cn>
</apply>
<ci>z</ci>
</apply>
<apply><csymbol cd="transc1">sin</csymbol><ci>z</ci></apply>
</apply>
</apply>
</bind>
</math>
Prefix
Popcorn
quant1.forall[$z -> set1.in($z, setname1.C) ==> gen_hyperbolic1.generalised_hyperbolic(-1, 2, -1)($z) = sin($z)]
Rendered Presentation MathML
∀
z
.
z
∈
C
⇒
(
generalised_hyperbolic
(
-1
,
2
,
-1
)
)
(
z
)
=
sin
(
z
)
Commented Mathematical property (CMP):
for all z \in C F^{-1}_{2,0} (z) = cos(z)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="z"/>
<OMS cd="setname1" name="C"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMA>
<OMS cd="gen_hyperbolic1" name="generalised_hyperbolic"/>
<OMI> -1 </OMI><OMI> 2 </OMI><OMI> 0 </OMI>
</OMA>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="transc1" name="cos"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>z</ci><csymbol cd="setname1">C</csymbol></apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="gen_hyperbolic1">generalised_hyperbolic</csymbol>
<cn type="integer">-1</cn>
<cn type="integer">2</cn>
<cn type="integer">0</cn>
</apply>
<ci>z</ci>
</apply>
<apply><csymbol cd="transc1">cos</csymbol><ci>z</ci></apply>
</apply>
</apply>
</bind>
</math>
Prefix
Popcorn
quant1.forall[$z -> set1.in($z, setname1.C) ==> gen_hyperbolic1.generalised_hyperbolic(-1, 2, 0)($z) = cos($z)]
Rendered Presentation MathML
∀
z
.
z
∈
C
⇒
(
generalised_hyperbolic
(
-1
,
2
,
0
)
)
(
z
)
=
cos
(
z
)
Commented Mathematical property (CMP):
for all z \in C F^{1}_{2,1} (z) = sinh(z)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="z"/>
<OMS cd="setname1" name="C"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMA>
<OMS cd="gen_hyperbolic1" name="generalised_hyperbolic"/>
<OMI> 1 </OMI><OMI> 2 </OMI><OMI> 1 </OMI>
</OMA>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="transc1" name="sinh"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>z</ci><csymbol cd="setname1">C</csymbol></apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="gen_hyperbolic1">generalised_hyperbolic</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
<cn type="integer">1</cn>
</apply>
<ci>z</ci>
</apply>
<apply><csymbol cd="transc1">sinh</csymbol><ci>z</ci></apply>
</apply>
</apply>
</bind>
</math>
Prefix
Popcorn
quant1.forall[$z -> set1.in($z, setname1.C) ==> gen_hyperbolic1.generalised_hyperbolic(1, 2, 1)($z) = sinh($z)]
Rendered Presentation MathML
∀
z
.
z
∈
C
⇒
(
generalised_hyperbolic
(
1
,
2
,
1
)
)
(
z
)
=
sinh
(
z
)
Commented Mathematical property (CMP):
for all z \in C F^{1}_{2,0} (z) = cosh(z)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMBIND>
<OMS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA>
<OMS cd="set1" name="in"/>
<OMV name="z"/>
<OMS cd="setname1" name="C"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMA>
<OMS cd="gen_hyperbolic1" name="generalised_hyperbolic"/>
<OMI> 1 </OMI><OMI> 2 </OMI><OMI> 0 </OMI>
</OMA>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="transc1" name="cosh"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>z</ci><csymbol cd="setname1">C</csymbol></apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply>
<apply><csymbol cd="gen_hyperbolic1">generalised_hyperbolic</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
<cn type="integer">0</cn>
</apply>
<ci>z</ci>
</apply>
<apply><csymbol cd="transc1">cosh</csymbol><ci>z</ci></apply>
</apply>
</apply>
</bind>
</math>
Prefix
Popcorn
quant1.forall[$z -> set1.in($z, setname1.C) ==> gen_hyperbolic1.generalised_hyperbolic(1, 2, 0)($z) = cosh($z)]
Rendered Presentation MathML
∀
z
.
z
∈
C
⇒
(
generalised_hyperbolic
(
1
,
2
,
0
)
)
(
z
)
=
cosh
(
z
)
Signatures:
sts