OpenMath Content Dictionary: hypergeo2 
            
               
                  Canonical URL: 
                
               
                  http://www.openxm.org/... 
                
               
                  CD File: 
                
               
                  hypergeo2.ocd
       
                
               
                  CD as XML Encoded OpenMath: 
                
               
                  hypergeo2.omcd
       
                
               
                  Defines: 
                
               
                  airyAi , airyBi , besselJ , besselY , hankel1 , hankel2 , kummer 
                
               
                  Date: 
                
               2003-11-30 
               
                  Version: 
                
               0
    (Revision 3)
   
               
                  Review Date: 
                
               2017-12-31 
               
                  Status: 
                
               experimental 
             
            
  Author: Yasushi Tamura
 
            
	This CD defines some famous hypergeometric functions such as
    Bessel functions and Airy functions.
	These functions are described in the following books.
	(1) Handbook of Mathematical Functions, Abramowitz, Stegun
	(2) Higher transcendental functions. Krieger Publishing Co., Inc., Melbourne, Fla., 1981, Erdlyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz; Tricomi, Francesco G. 
            
               
                  Description: 
                
               
                  
	Kummer's hypergeometric function.
                
             
            
               
                  Commented Mathematical property (CMP): 
                
               
	kummer(a,c;z) = hypergeo1.hypergeometric1F1(a,c;z)
 
             
            
               
                  Formal Mathematical property (FMP): 
                
               
                  
                     OpenMath XML (source) 
                     
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
  <OMA><OMS cd="relation1" name="eq"/>
    <OMA><OMS cd="hypergeo2" name="kummer"/>
      <OMV name="a"/>
      <OMV name="c"/>
      <OMV name="z"/>
    </OMA>
    <OMA><OMS cd="hypergeo1" name="hypergeometric1F1"/>
      <OMV name="a"/>
      <OMV name="c"/>
      <OMV name="z"/>
    </OMA>
  </OMA>
</OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="hypergeo2">kummer</csymbol><ci>a</ci><ci>c</ci><ci>z</ci></apply>
  <apply><csymbol cd="hypergeo1">hypergeometric1F1</csymbol><ci>a</ci><ci>c</ci><ci>z</ci></apply>
 </apply>
</math> 
                   
                  Prefix 
                  
                  
                     Popcorn 
                     
  hypergeo2.kummer($a, $c, $z) = hypergeo1.hypergeometric1F1($a, $c, $z)
                   
                  
                     Rendered Presentation MathML 
                     
                        
                           
                              
                                 
                                    kummer 
                                     
                                    
                                       ( 
                                       a 
                                       , 
                                       c 
                                       , 
                                       z 
                                       ) 
                                     
                                  
                                 = 
                                 
                                    hypergeometric1F1 
                                     
                                    
                                       ( 
                                       a 
                                       , 
                                       c 
                                       , 
                                       z 
                                       ) 
                                     
                                  
                               
                            
                        
                      
                   
                
             
            
               
                  Signatures: 
                
               
                  
	sts
       
                
             
            
            
               
                  Description: 
                
               
                  
	The Bessel function.
	This function is one of the famous two solutions of the Bessel
	differential equation at z=0.
                
             
            
               
                  Commented Mathematical property (CMP): 
                
               
	besselJ(v,z)
	= (\frac{z}{2})^v \sum_{n=0}^{+\infty}
	\frac{(-1)^n}{n! \Gamma(v+n+1)} (\frac{z}{2})^2n
 
             
            
               
                  Formal Mathematical property (FMP): 
                
               
                  
                     OpenMath XML (source) 
                     
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
  <OMA><OMS cd="relation1" name="eq"/>
    <OMA><OMS cd="hypergeo2" name="besselJ"/>
      <OMV name="v"/>
      <OMV name="z"/>
    </OMA>
    <OMA><OMS cd="arith1" name="times"/>
      <OMA><OMS cd="arith1" name="power"/>
        <OMA><OMS cd="arith1" name="divide"/>
          <OMV name="z"/>
          <OMI> 2 </OMI>
        </OMA>
        <OMV name="v"/>
      </OMA>
      <OMA><OMS cd="arith1" name="sum"/>
        <OMA><OMS cd="interval1" name="integer_interval"/>
          <OMI> 0 </OMI>
          <OMV name="infty"/>
        </OMA>
        <OMBIND>
          <OMS cd="fns1" name="lambda"/>
          <OMBVAR>
            <OMV name="n"/>
          </OMBVAR>
          <OMA><OMS cd="arith1" name="times"/>
            <OMA><OMS cd="arith1" name="divide"/>
              <OMA><OMS cd="arith1" name="power"/>
                <OMA><OMS cd="arith1" name="unary_minus"/>
                  <OMI> 1 </OMI>
                </OMA>
                <OMV name="n"/>
              </OMA>
              <OMA><OMS cd="arith1" name="times"/>
                <OMA><OMS cd="integer1" name="factorial"/>
                  <OMV name="n"/>
                </OMA>
                <OMA><OMS cd="hypergeo0" name="gamma"/>
                  <OMA><OMS cd="arith1" name="plus"/>
                    <OMA><OMS cd="arith1" name="plus"/>
                      <OMV name="v"/>
                      <OMV name="n"/>
                    </OMA>
                    <OMI> 1 </OMI>
                  </OMA>
                </OMA>
              </OMA>
            </OMA>
            <OMA><OMS cd="arith1" name="power"/>
              <OMA><OMS cd="arith1" name="divide"/>
                <OMV name="z"/>
                <OMI> 2 </OMI>
              </OMA>
              <OMA><OMS cd="arith1" name="times"/>
                <OMI> 2 </OMI>
                <OMV name="n"/>
              </OMA>
            </OMA>
          </OMA>
        </OMBIND>
      </OMA>
    </OMA>
  </OMA>
</OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="hypergeo2">besselJ</csymbol><ci>v</ci><ci>z</ci></apply>
  <apply><csymbol cd="arith1">times</csymbol>
   <apply><csymbol cd="arith1">power</csymbol>
    <apply><csymbol cd="arith1">divide</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
    <ci>v</ci>
   </apply>
   <apply><csymbol cd="arith1">sum</csymbol>
    <apply><csymbol cd="interval1">integer_interval</csymbol><cn type="integer">0</cn><ci>infty</ci></apply>
    <bind><csymbol cd="fns1">lambda</csymbol>
     <bvar><ci>n</ci></bvar>
     <apply><csymbol cd="arith1">times</csymbol>
      <apply><csymbol cd="arith1">divide</csymbol>
       <apply><csymbol cd="arith1">power</csymbol>
        <apply><csymbol cd="arith1">unary_minus</csymbol><cn type="integer">1</cn></apply>
        <ci>n</ci>
       </apply>
       <apply><csymbol cd="arith1">times</csymbol>
        <apply><csymbol cd="integer1">factorial</csymbol><ci>n</ci></apply>
        <apply><csymbol cd="hypergeo0">gamma</csymbol>
         <apply><csymbol cd="arith1">plus</csymbol>
          <apply><csymbol cd="arith1">plus</csymbol><ci>v</ci><ci>n</ci></apply>
          <cn type="integer">1</cn>
         </apply>
        </apply>
       </apply>
      </apply>
      <apply><csymbol cd="arith1">power</csymbol>
       <apply><csymbol cd="arith1">divide</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
       <apply><csymbol cd="arith1">times</csymbol><cn type="integer">2</cn><ci>n</ci></apply>
      </apply>
     </apply>
    </bind>
   </apply>
  </apply>
 </apply>
</math> 
                   
                  Prefix 
                  
                     eq 
  (
besselJ 
  ( 
v ,  
z )
, 
times 
  (
power 
  (
divide 
  ( 
z ,  2 )
,  
v )
, 
sum 
  (
integer_interval 
  ( 0 ,  
infty )
, 
lambda 
  [
             
n 
          ] .
  (
times 
  (
divide 
  (
power 
  (
unary_minus 
  ( 1 )
,  
n )
, 
times 
  (
factorial 
  ( 
n )
, 
gamma 
  (
plus 
  (
plus 
  ( 
v ,  
n )
,  1 )
)
)
)
, 
power 
  (
divide 
  ( 
z ,  2 )
, 
times 
  ( 2 ,  
n )
)
)
)
)
)
)
 
                  
                     Popcorn 
                     
  hypergeo2.besselJ($v, $z) = ($z / 2) ^ $v * arith1.sum(interval1.integer_interval(0, $infty), fns1.lambda[$n ->  -(1) ^ $n / (integer1.factorial($n) * hypergeo0.gamma($v + $n + 1)) * ($z / 2) ^ (2 * $n)])
                   
                  
                     Rendered Presentation MathML 
                     
                        
                           
                              
                                 
                                    besselJ 
                                     
                                    
                                       ( 
                                       v 
                                       , 
                                       z 
                                       ) 
                                     
                                  
                                 = 
                                 
                                    
                                       
                                          
                                             z 
                                              2  
                                           
                                        
                                       v 
                                     
                                     
                                    
                                       ∑ 
                                       
                                          
                                             n 
                                           
                                          = 
                                           0  
                                        
                                       infty 
                                     
                                    
                                       
                                          
                                             
                                                
                                                   - 
                                                    1  
                                                 
                                              
                                             n 
                                           
                                          
                                             
                                                n 
                                                ! 
                                              
                                              
                                             
                                                gamma 
                                                 
                                                
                                                   ( 
                                                   
                                                      
                                                         v 
                                                         + 
                                                         n 
                                                       
                                                      + 
                                                       1  
                                                    
                                                   ) 
                                                 
                                              
                                           
                                        
                                        
                                       
                                          
                                             
                                                z 
                                                 2  
                                              
                                           
                                          
                                             ( 
                                              2  
                                              
                                             n 
                                             ) 
                                           
                                        
                                     
                                  
                               
                            
                        
                      
                   
                
             
            
               
                  Example: 
                
               
                  
                     OpenMath XML (source) 
                     
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
  <OMA><OMS cd="relation1" name="eq"/>
    <OMA><OMS cd="arith1" name="plus"/>
      <OMA><OMS cd="arith1" name="plus"/>
        <OMA><OMS cd="arith1" name="times"/>
          <OMA><OMS cd="arith1" name="power"/>
            <OMV name="z"/>
            <OMI> 2 </OMI>
          </OMA>
          <OMA><OMS cd="calculus1" name="diff"/>
            <OMBIND>
              <OMS cd="fns1" name="lambda"/>
              <OMBVAR>
                <OMV name="z"/>
              </OMBVAR>
              <OMA><OMS cd="calculus1" name="diff"/>
                <OMBIND>
                  <OMS cd="fns1" name="lambda"/>
                  <OMBVAR>
                    <OMV name="z"/>
                  </OMBVAR>
                  <OMA><OMS cd="hypergeo2" name="besselJ"/>
                    <OMV name="v"/>
                    <OMV name="z"/>
                  </OMA>
                </OMBIND>
              </OMA>
            </OMBIND>
          </OMA>
        </OMA>
        <OMA><OMS cd="arith1" name="times"/>
          <OMV name="z"/>
          <OMA><OMS cd="calculus1" name="diff"/>
            <OMBIND>
              <OMS cd="fns1" name="lambda"/>
              <OMBVAR>
                <OMV name="z"/>
              </OMBVAR>
              <OMA><OMS cd="bypergeo2" name="besselJ"/>
                <OMV name="v"/>
                <OMV name="z"/>
              </OMA>
            </OMBIND>
          </OMA>
        </OMA>
      </OMA>
      <OMA><OMS cd="arith1" name="times"/>
        <OMA><OMS cd="arith1" name="minus"/>
          <OMA><OMS cd="arith1" name="power"/>
            <OMV name="z"/>
            <OMI> 2 </OMI>
          </OMA>
          <OMA><OMS cd="arith1" name="power"/>
            <OMV name="v"/>
            <OMI> 2 </OMI>
          </OMA>
        </OMA>
        <OMA><OMS cd="hypergeo2" name="besselJ"/>
          <OMV name="v"/>
          <OMV name="z"/>
        </OMA>
      </OMA>
    </OMA>
    <OMI> 0 </OMI>
  </OMA>
</OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="arith1">plus</csymbol>
   <apply><csymbol cd="arith1">plus</csymbol>
    <apply><csymbol cd="arith1">times</csymbol>
     <apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
     <apply><csymbol cd="calculus1">diff</csymbol>
      <bind><csymbol cd="fns1">lambda</csymbol>
       <bvar><ci>z</ci></bvar>
       <apply><csymbol cd="calculus1">diff</csymbol>
        <bind><csymbol cd="fns1">lambda</csymbol>
         <bvar><ci>z</ci></bvar>
         <apply><csymbol cd="hypergeo2">besselJ</csymbol><ci>v</ci><ci>z</ci></apply>
        </bind>
       </apply>
      </bind>
     </apply>
    </apply>
    <apply><csymbol cd="arith1">times</csymbol>
     <ci>z</ci>
     <apply><csymbol cd="calculus1">diff</csymbol>
      <bind><csymbol cd="fns1">lambda</csymbol>
       <bvar><ci>z</ci></bvar>
       <apply><csymbol cd="bypergeo2">besselJ</csymbol><ci>v</ci><ci>z</ci></apply>
      </bind>
     </apply>
    </apply>
   </apply>
   <apply><csymbol cd="arith1">times</csymbol>
    <apply><csymbol cd="arith1">minus</csymbol>
     <apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
     <apply><csymbol cd="arith1">power</csymbol><ci>v</ci><cn type="integer">2</cn></apply>
    </apply>
    <apply><csymbol cd="hypergeo2">besselJ</csymbol><ci>v</ci><ci>z</ci></apply>
   </apply>
  </apply>
  <cn type="integer">0</cn>
 </apply>
</math> 
                   
                  Prefix 
                  
                     eq 
  (
plus 
  (
plus 
  (
times 
  (
power 
  ( 
z ,  2 )
, 
diff 
  (
lambda 
  [
                 
z 
              ] .
  (
diff 
  (
lambda 
  [
                     
z 
                  ] .
  (
besselJ 
  ( 
v ,  
z )
)
)
)
)
)
, 
times 
  ( 
z , 
diff 
  (
lambda 
  [
                 
z 
              ] .
  (
besselJ 
  ( 
v ,  
z )
)
)
)
)
, 
times 
  (
minus 
  (
power 
  ( 
z ,  2 )
, 
power 
  ( 
v ,  2 )
)
, 
besselJ 
  ( 
v ,  
z )
)
)
,  0 )
 
                  
                     Popcorn 
                     
  $z ^ 2 * calculus1.diff(fns1.lambda[$z -> calculus1.diff(fns1.lambda[$z -> hypergeo2.besselJ($v, $z)])]) + $z * calculus1.diff(fns1.lambda[$z -> bypergeo2.besselJ($v, $z)]) + ($z ^ 2 - $v ^ 2) * hypergeo2.besselJ($v, $z) = 0
                   
                  
                     Rendered Presentation MathML 
                     
                        
                           
                              
                                 
                                    
                                       
                                          
                                             z 
                                              2  
                                           
                                           
                                          
                                             d 
                                             
                                                d 
                                                
                                                   z 
                                                 
                                              
                                           
                                          
                                             ( 
                                             
                                                d 
                                                
                                                   d 
                                                   
                                                      z 
                                                    
                                                 
                                              
                                             
                                                ( 
                                                
                                                   besselJ 
                                                    
                                                   
                                                      ( 
                                                      v 
                                                      , 
                                                      z 
                                                      ) 
                                                    
                                                 
                                                ) 
                                              
                                             ) 
                                           
                                        
                                       + 
                                       
                                          z 
                                           
                                          
                                             d 
                                             
                                                d 
                                                
                                                   z 
                                                 
                                              
                                           
                                          
                                             ( 
                                             
                                                besselJ 
                                                 
                                                
                                                   ( 
                                                   v 
                                                   , 
                                                   z 
                                                   ) 
                                                 
                                              
                                             ) 
                                           
                                        
                                     
                                    + 
                                    
                                       
                                          ( 
                                          
                                             z 
                                              2  
                                           
                                          - 
                                          
                                             v 
                                              2  
                                           
                                          ) 
                                        
                                        
                                       
                                          besselJ 
                                           
                                          
                                             ( 
                                             v 
                                             , 
                                             z 
                                             ) 
                                           
                                        
                                     
                                  
                                 = 
                                  0  
                               
                            
                        
                      
                   
                
             
            
               
                  Signatures: 
                
               
                  
	sts
       
                
             
            
            
               
                  Description: 
                
               
                  
	The Bessel function.
	This function is the another one of the famous two solutions of the Bessel
	differential equation at z=0.
                
             
            
               
                  Commented Mathematical property (CMP): 
                
               
	besselY(v,z)
	= (\cos(v \pi) besselJ(v,z) - besselJ(-v,z))/\sin(v \pi)
 
             
            
               
                  Formal Mathematical property (FMP): 
                
               
                  
                     OpenMath XML (source) 
                     
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
  <OMA><OMS cd="relation1" name="eq"/>
    <OMA><OMS cd="hypergeo2" name="besselY"/>
      <OMV name="v"/>
      <OMV name="z"/>
    </OMA>
    <OMA><OMS cd="arith1" name="divide"/>
      <OMA><OMS cd="arith1" name="minus"/>
        <OMA><OMS cd="arith1" name="times"/>
          <OMA><OMS cd="transc1" name="cos"/>
            <OMA><OMS cd="arith1" name="times"/>
              <OMV name="v"/>
              <OMS cd="nums1" name="pi"/>
            </OMA>
          </OMA>
          <OMA><OMS cd="hypergeo2" name="besselJ"/>
            <OMV name="v"/>
            <OMV name="z"/>
          </OMA>
        </OMA>
        <OMA><OMS cd="hypergeo2" name="besselJ"/>
          <OMA><OMS cd="arith1" name="unary_minus"/>
            <OMV name="v"/>
          </OMA>
          <OMV name="z"/>
        </OMA>
      </OMA>
      <OMA><OMS cd="transc1" name="sin"/>
        <OMA><OMS cd="arith1" name="times"/>
          <OMV name="v"/>
          <OMS cd="nums1" name="pi"/>
        </OMA>
      </OMA>
    </OMA>
  </OMA>
</OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="hypergeo2">besselY</csymbol><ci>v</ci><ci>z</ci></apply>
  <apply><csymbol cd="arith1">divide</csymbol>
   <apply><csymbol cd="arith1">minus</csymbol>
    <apply><csymbol cd="arith1">times</csymbol>
     <apply><csymbol cd="transc1">cos</csymbol>
      <apply><csymbol cd="arith1">times</csymbol><ci>v</ci><csymbol cd="nums1">pi</csymbol></apply>
     </apply>
     <apply><csymbol cd="hypergeo2">besselJ</csymbol><ci>v</ci><ci>z</ci></apply>
    </apply>
    <apply><csymbol cd="hypergeo2">besselJ</csymbol>
     <apply><csymbol cd="arith1">unary_minus</csymbol><ci>v</ci></apply>
     <ci>z</ci>
    </apply>
   </apply>
   <apply><csymbol cd="transc1">sin</csymbol>
    <apply><csymbol cd="arith1">times</csymbol><ci>v</ci><csymbol cd="nums1">pi</csymbol></apply>
   </apply>
  </apply>
 </apply>
</math> 
                   
                  Prefix 
                  
                  
                     Popcorn 
                     
  hypergeo2.besselY($v, $z) = (cos($v * nums1.pi) * hypergeo2.besselJ($v, $z) - hypergeo2.besselJ( -($v), $z)) / sin($v * nums1.pi)
                   
                  
                     Rendered Presentation MathML 
                     
                        
                           
                              
                                 
                                    besselY 
                                     
                                    
                                       ( 
                                       v 
                                       , 
                                       z 
                                       ) 
                                     
                                  
                                 = 
                                 
                                    
                                       
                                          
                                             cos 
                                              
                                             
                                                ( 
                                                
                                                   v 
                                                    
                                                   π 
                                                 
                                                ) 
                                              
                                           
                                           
                                          
                                             besselJ 
                                              
                                             
                                                ( 
                                                v 
                                                , 
                                                z 
                                                ) 
                                              
                                           
                                        
                                       - 
                                       
                                          besselJ 
                                           
                                          
                                             ( 
                                             
                                                - 
                                                v 
                                              
                                             , 
                                             z 
                                             ) 
                                           
                                        
                                     
                                    
                                       sin 
                                        
                                       
                                          ( 
                                          
                                             v 
                                              
                                             π 
                                           
                                          ) 
                                        
                                     
                                  
                               
                            
                        
                      
                   
                
             
            
               
                  Example: 
                
               
                  
                     OpenMath XML (source) 
                     
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
  <OMA><OMS cd="relation1" name="eq"/>
    <OMA><OMS cd="arith1" name="plus"/>
      <OMA><OMS cd="arith1" name="plus"/>
        <OMA><OMS cd="arith1" name="times"/>
          <OMA><OMS cd="arith1" name="power"/>
            <OMV name="z"/>
            <OMI> 2 </OMI>
          </OMA>
          <OMA><OMS cd="calculus1" name="diff"/>
            <OMBIND>
              <OMS cd="fns1" name="lambda"/>
              <OMBVAR>
                <OMV name="z"/>
              </OMBVAR>
              <OMA><OMS cd="calculus1" name="diff"/>
                <OMBIND>
                  <OMS cd="fns1" name="lambda"/>
                  <OMBVAR>
                    <OMV name="z"/>
                  </OMBVAR>
                  <OMA><OMS cd="hypergeo2" name="besselY"/>
                    <OMV name="v"/>
                    <OMV name="z"/>
                  </OMA>
                </OMBIND>
              </OMA>
            </OMBIND>
          </OMA>
        </OMA>
        <OMA><OMS cd="arith1" name="times"/>
          <OMV name="z"/>
          <OMA><OMS cd="calculus1" name="diff"/>
            <OMBIND>
              <OMS cd="fns1" name="lambda"/>
              <OMBVAR>
                <OMV name="z"/>
              </OMBVAR>
              <OMA><OMS cd="hypergeo2" name="besselY"/>
                <OMV name="v"/>
                <OMV name="z"/>
              </OMA>
            </OMBIND>
          </OMA>
        </OMA>
      </OMA>
      <OMA><OMS cd="arith1" name="times"/>
        <OMA><OMS cd="arith1" name="minus"/>
          <OMA><OMS cd="arith1" name="power"/>
            <OMV name="z"/>
            <OMI> 2 </OMI>
          </OMA>
          <OMA><OMS cd="arith1" name="power"/>
            <OMV name="v"/>
            <OMI> 2 </OMI>
          </OMA>
        </OMA>
        <OMA><OMS cd="hypergeo2" name="besselY"/>
          <OMV name="v"/>
          <OMV name="z"/>
        </OMA>
      </OMA>
    </OMA>
    <OMI> 0 </OMI>
  </OMA>
</OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="arith1">plus</csymbol>
   <apply><csymbol cd="arith1">plus</csymbol>
    <apply><csymbol cd="arith1">times</csymbol>
     <apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
     <apply><csymbol cd="calculus1">diff</csymbol>
      <bind><csymbol cd="fns1">lambda</csymbol>
       <bvar><ci>z</ci></bvar>
       <apply><csymbol cd="calculus1">diff</csymbol>
        <bind><csymbol cd="fns1">lambda</csymbol>
         <bvar><ci>z</ci></bvar>
         <apply><csymbol cd="hypergeo2">besselY</csymbol><ci>v</ci><ci>z</ci></apply>
        </bind>
       </apply>
      </bind>
     </apply>
    </apply>
    <apply><csymbol cd="arith1">times</csymbol>
     <ci>z</ci>
     <apply><csymbol cd="calculus1">diff</csymbol>
      <bind><csymbol cd="fns1">lambda</csymbol>
       <bvar><ci>z</ci></bvar>
       <apply><csymbol cd="hypergeo2">besselY</csymbol><ci>v</ci><ci>z</ci></apply>
      </bind>
     </apply>
    </apply>
   </apply>
   <apply><csymbol cd="arith1">times</csymbol>
    <apply><csymbol cd="arith1">minus</csymbol>
     <apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
     <apply><csymbol cd="arith1">power</csymbol><ci>v</ci><cn type="integer">2</cn></apply>
    </apply>
    <apply><csymbol cd="hypergeo2">besselY</csymbol><ci>v</ci><ci>z</ci></apply>
   </apply>
  </apply>
  <cn type="integer">0</cn>
 </apply>
</math> 
                   
                  Prefix 
                  
                     eq 
  (
plus 
  (
plus 
  (
times 
  (
power 
  ( 
z ,  2 )
, 
diff 
  (
lambda 
  [
                 
z 
              ] .
  (
diff 
  (
lambda 
  [
                     
z 
                  ] .
  (
besselY 
  ( 
v ,  
z )
)
)
)
)
)
, 
times 
  ( 
z , 
diff 
  (
lambda 
  [
                 
z 
              ] .
  (
besselY 
  ( 
v ,  
z )
)
)
)
)
, 
times 
  (
minus 
  (
power 
  ( 
z ,  2 )
, 
power 
  ( 
v ,  2 )
)
, 
besselY 
  ( 
v ,  
z )
)
)
,  0 )
 
                  
                     Popcorn 
                     
  $z ^ 2 * calculus1.diff(fns1.lambda[$z -> calculus1.diff(fns1.lambda[$z -> hypergeo2.besselY($v, $z)])]) + $z * calculus1.diff(fns1.lambda[$z -> hypergeo2.besselY($v, $z)]) + ($z ^ 2 - $v ^ 2) * hypergeo2.besselY($v, $z) = 0
                   
                  
                     Rendered Presentation MathML 
                     
                        
                           
                              
                                 
                                    
                                       
                                          
                                             z 
                                              2  
                                           
                                           
                                          
                                             d 
                                             
                                                d 
                                                
                                                   z 
                                                 
                                              
                                           
                                          
                                             ( 
                                             
                                                d 
                                                
                                                   d 
                                                   
                                                      z 
                                                    
                                                 
                                              
                                             
                                                ( 
                                                
                                                   besselY 
                                                    
                                                   
                                                      ( 
                                                      v 
                                                      , 
                                                      z 
                                                      ) 
                                                    
                                                 
                                                ) 
                                              
                                             ) 
                                           
                                        
                                       + 
                                       
                                          z 
                                           
                                          
                                             d 
                                             
                                                d 
                                                
                                                   z 
                                                 
                                              
                                           
                                          
                                             ( 
                                             
                                                besselY 
                                                 
                                                
                                                   ( 
                                                   v 
                                                   , 
                                                   z 
                                                   ) 
                                                 
                                              
                                             ) 
                                           
                                        
                                     
                                    + 
                                    
                                       
                                          ( 
                                          
                                             z 
                                              2  
                                           
                                          - 
                                          
                                             v 
                                              2  
                                           
                                          ) 
                                        
                                        
                                       
                                          besselY 
                                           
                                          
                                             ( 
                                             v 
                                             , 
                                             z 
                                             ) 
                                           
                                        
                                     
                                  
                                 = 
                                  0  
                               
                            
                        
                      
                   
                
             
            
               
                  Signatures: 
                
               
                  
	sts
       
                
             
            
            
               
                  Description: 
                
               
                  
	The first Hankel function.
	This function is one of the famous two solutions of the Bessel
	differential equation at z=\infty.
                
             
            
               
                  Commented Mathematical property (CMP): 
                
               
	hankel1(v,z)
	= besselJ(v,z) + i BesselY(v,z)
 
             
            
               
                  Formal Mathematical property (FMP): 
                
               
                  
                     OpenMath XML (source) 
                     
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
  <OMA><OMS cd="relation1" name="eq"/>
    <OMA><OMS cd="hypergeo2" name="hankel1"/>
      <OMV name="v"/>
      <OMV name="z"/>
    </OMA>
    <OMA><OMS cd="arith1" name="plus"/>
      <OMA><OMS cd="hypergeo2" name="besselJ"/>
        <OMV name="v"/>
        <OMV name="z"/>
      </OMA>
      <OMA><OMS cd="arith1" name="times"/>
        <OMS cd="nums1" name="i"/>
        <OMA><OMS cd="hypergeo2" name="besselY"/>
          <OMV name="v"/>
          <OMV name="z"/>
        </OMA>
      </OMA>
    </OMA>
  </OMA>
</OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="hypergeo2">hankel1</csymbol><ci>v</ci><ci>z</ci></apply>
  <apply><csymbol cd="arith1">plus</csymbol>
   <apply><csymbol cd="hypergeo2">besselJ</csymbol><ci>v</ci><ci>z</ci></apply>
   <apply><csymbol cd="arith1">times</csymbol>
    <csymbol cd="nums1">i</csymbol>
    <apply><csymbol cd="hypergeo2">besselY</csymbol><ci>v</ci><ci>z</ci></apply>
   </apply>
  </apply>
 </apply>
</math> 
                   
                  Prefix 
                  
                  
                     Popcorn 
                     
  hypergeo2.hankel1($v, $z) = hypergeo2.besselJ($v, $z) + nums1.i * hypergeo2.besselY($v, $z)
                   
                  
                     Rendered Presentation MathML 
                     
                        
                           
                              
                                 
                                    hankel1 
                                     
                                    
                                       ( 
                                       v 
                                       , 
                                       z 
                                       ) 
                                     
                                  
                                 = 
                                 
                                    
                                       besselJ 
                                        
                                       
                                          ( 
                                          v 
                                          , 
                                          z 
                                          ) 
                                        
                                     
                                    + 
                                    
                                       i 
                                        
                                       
                                          besselY 
                                           
                                          
                                             ( 
                                             v 
                                             , 
                                             z 
                                             ) 
                                           
                                        
                                     
                                  
                               
                            
                        
                      
                   
                
             
            
               
                  Signatures: 
                
               
                  
	sts
       
                
             
            
            
               
                  Description: 
                
               
                  
	The second Hankel function.
	This function is the another one of the famous two solutions of the Bessel
	differential equation at z=\infty.
                
             
            
               
                  Commented Mathematical property (CMP): 
                
               
	hankel2(v,z)
	= besselJ(v,z) - i BesselY(v,z)
 
             
            
               
                  Formal Mathematical property (FMP): 
                
               
                  
                     OpenMath XML (source) 
                     
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
  <OMA><OMS cd="relation1" name="eq"/>
    <OMA><OMS cd="hypergeo2" name="hankel1"/>
      <OMV name="v"/>
      <OMV name="z"/>
    </OMA>
    <OMA><OMS cd="arith1" name="minus"/>
      <OMA><OMS cd="hypergeo2" name="besselJ"/>
        <OMV name="v"/>
        <OMV name="z"/>
      </OMA>
      <OMA><OMS cd="arith1" name="times"/>
        <OMS cd="nums1" name="i"/>
        <OMA><OMS cd="hypergeo2" name="besselY"/>
          <OMV name="v"/>
          <OMV name="z"/>
        </OMA>
      </OMA>
    </OMA>
  </OMA>
</OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="hypergeo2">hankel1</csymbol><ci>v</ci><ci>z</ci></apply>
  <apply><csymbol cd="arith1">minus</csymbol>
   <apply><csymbol cd="hypergeo2">besselJ</csymbol><ci>v</ci><ci>z</ci></apply>
   <apply><csymbol cd="arith1">times</csymbol>
    <csymbol cd="nums1">i</csymbol>
    <apply><csymbol cd="hypergeo2">besselY</csymbol><ci>v</ci><ci>z</ci></apply>
   </apply>
  </apply>
 </apply>
</math> 
                   
                  Prefix 
                  
                  
                     Popcorn 
                     
  hypergeo2.hankel1($v, $z) = hypergeo2.besselJ($v, $z) - nums1.i * hypergeo2.besselY($v, $z)
                   
                  
                     Rendered Presentation MathML 
                     
                        
                           
                              
                                 
                                    hankel1 
                                     
                                    
                                       ( 
                                       v 
                                       , 
                                       z 
                                       ) 
                                     
                                  
                                 = 
                                 
                                    
                                       besselJ 
                                        
                                       
                                          ( 
                                          v 
                                          , 
                                          z 
                                          ) 
                                        
                                     
                                    - 
                                    
                                       i 
                                        
                                       
                                          besselY 
                                           
                                          
                                             ( 
                                             v 
                                             , 
                                             z 
                                             ) 
                                           
                                        
                                     
                                  
                               
                            
                        
                      
                   
                
             
            
               
                  Signatures: 
                
               
                  
	sts
       
                
             
            
            
               
                  Description: 
                
               
                  
	The first Airy function.
	This function is one of the famous two solutions of the Airy
	differential equation, and converges to 0 when z->\infty
                
             
            
               
                  Commented Mathematical property (CMP): 
                
               
	(\frac{d^2}{dz^2} - z) airyAi(z) = 0
 
             
            
               
                  Formal Mathematical property (FMP): 
                
               
                  
                     OpenMath XML (source) 
                     
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
  <OMA><OMS cd="relation1" name="eq"/>
    <OMA><OMS cd="arith1" name="minus"/>
      <OMA><OMS cd="calculus1" name="diff"/>
        <OMBIND>
          <OMS cd="fns1" name="lambda"/>
          <OMBVAR>
            <OMV name="z"/>
          </OMBVAR>
          <OMA><OMS cd="calculus1" name="diff"/>
            <OMBIND>
              <OMS cd="fns1" name="lambda"/>
              <OMBVAR>
                <OMV name="z"/>
              </OMBVAR>
              <OMA><OMS cd="hypergeo2" name="airyAi"/>
                <OMV name="z"/>
              </OMA>
            </OMBIND>
          </OMA>
        </OMBIND>
      </OMA>
      <OMA><OMS cd="arith1" name="times"/>
        <OMV name="z"/>
        <OMA><OMS cd="hypergeo2" name="airyAi"/>
          <OMV name="z"/>
        </OMA>
      </OMA>
    </OMA>
    <OMI> 0 </OMI>
  </OMA>
</OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="arith1">minus</csymbol>
   <apply><csymbol cd="calculus1">diff</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
     <bvar><ci>z</ci></bvar>
     <apply><csymbol cd="calculus1">diff</csymbol>
      <bind><csymbol cd="fns1">lambda</csymbol>
       <bvar><ci>z</ci></bvar>
       <apply><csymbol cd="hypergeo2">airyAi</csymbol><ci>z</ci></apply>
      </bind>
     </apply>
    </bind>
   </apply>
   <apply><csymbol cd="arith1">times</csymbol>
    <ci>z</ci>
    <apply><csymbol cd="hypergeo2">airyAi</csymbol><ci>z</ci></apply>
   </apply>
  </apply>
  <cn type="integer">0</cn>
 </apply>
</math> 
                   
                  Prefix 
                  
                  
                     Popcorn 
                     
  calculus1.diff(fns1.lambda[$z -> calculus1.diff(fns1.lambda[$z -> hypergeo2.airyAi($z)])]) - $z * hypergeo2.airyAi($z) = 0
                   
                  
                     Rendered Presentation MathML 
                     
                        
                           
                              
                                 
                                    
                                       d 
                                       
                                          d 
                                          
                                             z 
                                           
                                        
                                     
                                    
                                       ( 
                                       
                                          d 
                                          
                                             d 
                                             
                                                z 
                                              
                                           
                                        
                                       
                                          ( 
                                          
                                             airyAi 
                                              
                                             
                                                ( 
                                                z 
                                                ) 
                                              
                                           
                                          ) 
                                        
                                       ) 
                                     
                                    - 
                                    
                                       z 
                                        
                                       
                                          airyAi 
                                           
                                          
                                             ( 
                                             z 
                                             ) 
                                           
                                        
                                     
                                  
                                 = 
                                  0  
                               
                            
                        
                      
                   
                
             
            
               
                  Signatures: 
                
               
                  
	sts
       
                
             
            
            
               
                  Description: 
                
               
                  
	The second Airy function.
	This function is the another one of the famous two solutions of the Airy
	differential equation, and diverges when z->\infty
                
             
            
               
                  Commented Mathematical property (CMP): 
                
               
	(\frac{d^2}{dz^2} - z) airyBi(z) = 0
 
             
            
               
                  Formal Mathematical property (FMP): 
                
               
                  
                     OpenMath XML (source) 
                     
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
  <OMA><OMS cd="relation1" name="eq"/>
    <OMA><OMS cd="arith1" name="minus"/>
      <OMA><OMS cd="calculus1" name="diff"/>
        <OMBIND>
          <OMS cd="fns1" name="lambda"/>
          <OMBVAR>
            <OMV name="z"/>
          </OMBVAR>
          <OMA><OMS cd="calculus1" name="diff"/>
            <OMBIND>
              <OMS cd="fns1" name="lambda"/>
              <OMBVAR>
                <OMV name="z"/>
              </OMBVAR>
              <OMA><OMS cd="hypergeo2" name="airyBi"/>
                <OMV name="z"/>
              </OMA>
            </OMBIND>
          </OMA>
        </OMBIND>
      </OMA>
      <OMA><OMS cd="arith1" name="times"/>
        <OMV name="z"/>
        <OMA><OMS cd="hypergeo2" name="airyBi"/>
          <OMV name="z"/>
        </OMA>
      </OMA>
    </OMA>
    <OMI> 0 </OMI>
  </OMA>
</OMOBJ> 
                   
                  
                     Strict Content MathML 
                     
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><csymbol cd="relation1">eq</csymbol>
  <apply><csymbol cd="arith1">minus</csymbol>
   <apply><csymbol cd="calculus1">diff</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
     <bvar><ci>z</ci></bvar>
     <apply><csymbol cd="calculus1">diff</csymbol>
      <bind><csymbol cd="fns1">lambda</csymbol>
       <bvar><ci>z</ci></bvar>
       <apply><csymbol cd="hypergeo2">airyBi</csymbol><ci>z</ci></apply>
      </bind>
     </apply>
    </bind>
   </apply>
   <apply><csymbol cd="arith1">times</csymbol>
    <ci>z</ci>
    <apply><csymbol cd="hypergeo2">airyBi</csymbol><ci>z</ci></apply>
   </apply>
  </apply>
  <cn type="integer">0</cn>
 </apply>
</math> 
                   
                  Prefix 
                  
                  
                     Popcorn 
                     
  calculus1.diff(fns1.lambda[$z -> calculus1.diff(fns1.lambda[$z -> hypergeo2.airyBi($z)])]) - $z * hypergeo2.airyBi($z) = 0
                   
                  
                     Rendered Presentation MathML 
                     
                        
                           
                              
                                 
                                    
                                       d 
                                       
                                          d 
                                          
                                             z 
                                           
                                        
                                     
                                    
                                       ( 
                                       
                                          d 
                                          
                                             d 
                                             
                                                z 
                                              
                                           
                                        
                                       
                                          ( 
                                          
                                             airyBi 
                                              
                                             
                                                ( 
                                                z 
                                                ) 
                                              
                                           
                                          ) 
                                        
                                       ) 
                                     
                                    - 
                                    
                                       z 
                                        
                                       
                                          airyBi 
                                           
                                          
                                             ( 
                                             z 
                                             ) 
                                           
                                        
                                     
                                  
                                 = 
                                  0  
                               
                            
                        
                      
                   
                
             
            
               
                  Signatures: 
                
               
                  
	sts