OpenMath Content Dictionary: hypergeo2
Canonical URL:
http://www.openxm.org/...
CD File:
hypergeo2.ocd
CD as XML Encoded OpenMath:
hypergeo2.omcd
Defines:
airyAi , airyBi , besselJ , besselY , hankel1 , hankel2 , kummer
Date:
2003-11-30
Version:
0
(Revision 3)
Review Date:
2017-12-31
Status:
experimental
Author: Yasushi Tamura
This CD defines some famous hypergeometric functions such as
Bessel functions and Airy functions.
These functions are described in the following books.
(1) Handbook of Mathematical Functions, Abramowitz, Stegun
(2) Higher transcendental functions. Krieger Publishing Co., Inc., Melbourne, Fla., 1981, Erdlyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz; Tricomi, Francesco G.
Description:
Kummer's hypergeometric function.
Commented Mathematical property (CMP):
kummer(a,c;z) = hypergeo1.hypergeometric1F1(a,c;z)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="hypergeo2" name="kummer"/>
<OMV name="a"/>
<OMV name="c"/>
<OMV name="z"/>
</OMA>
<OMA><OMS cd="hypergeo1" name="hypergeometric1F1"/>
<OMV name="a"/>
<OMV name="c"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="hypergeo2">kummer</csymbol><ci>a</ci><ci>c</ci><ci>z</ci></apply>
<apply><csymbol cd="hypergeo1">hypergeometric1F1</csymbol><ci>a</ci><ci>c</ci><ci>z</ci></apply>
</apply>
</math>
Prefix
Popcorn
hypergeo2.kummer($a, $c, $z) = hypergeo1.hypergeometric1F1($a, $c, $z)
Rendered Presentation MathML
kummer
(
a
,
c
,
z
)
=
hypergeometric1F1
(
a
,
c
,
z
)
Signatures:
sts
Description:
The Bessel function.
This function is one of the famous two solutions of the Bessel
differential equation at z=0.
Commented Mathematical property (CMP):
besselJ(v,z)
= (\frac{z}{2})^v \sum_{n=0}^{+\infty}
\frac{(-1)^n}{n! \Gamma(v+n+1)} (\frac{z}{2})^2n
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="hypergeo2" name="besselJ"/>
<OMV name="v"/>
<OMV name="z"/>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="power"/>
<OMA><OMS cd="arith1" name="divide"/>
<OMV name="z"/>
<OMI> 2 </OMI>
</OMA>
<OMV name="v"/>
</OMA>
<OMA><OMS cd="arith1" name="sum"/>
<OMA><OMS cd="interval1" name="integer_interval"/>
<OMI> 0 </OMI>
<OMV name="infty"/>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="n"/>
</OMBVAR>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="divide"/>
<OMA><OMS cd="arith1" name="power"/>
<OMA><OMS cd="arith1" name="unary_minus"/>
<OMI> 1 </OMI>
</OMA>
<OMV name="n"/>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="integer1" name="factorial"/>
<OMV name="n"/>
</OMA>
<OMA><OMS cd="hypergeo0" name="gamma"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMV name="v"/>
<OMV name="n"/>
</OMA>
<OMI> 1 </OMI>
</OMA>
</OMA>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="power"/>
<OMA><OMS cd="arith1" name="divide"/>
<OMV name="z"/>
<OMI> 2 </OMI>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMI> 2 </OMI>
<OMV name="n"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="hypergeo2">besselJ</csymbol><ci>v</ci><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
<ci>v</ci>
</apply>
<apply><csymbol cd="arith1">sum</csymbol>
<apply><csymbol cd="interval1">integer_interval</csymbol><cn type="integer">0</cn><ci>infty</ci></apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>n</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><cn type="integer">1</cn></apply>
<ci>n</ci>
</apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="integer1">factorial</csymbol><ci>n</ci></apply>
<apply><csymbol cd="hypergeo0">gamma</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">plus</csymbol><ci>v</ci><ci>n</ci></apply>
<cn type="integer">1</cn>
</apply>
</apply>
</apply>
</apply>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
<apply><csymbol cd="arith1">times</csymbol><cn type="integer">2</cn><ci>n</ci></apply>
</apply>
</apply>
</bind>
</apply>
</apply>
</apply>
</math>
Prefix
eq
(
besselJ
(
v ,
z )
,
times
(
power
(
divide
(
z , 2 )
,
v )
,
sum
(
integer_interval
( 0 ,
infty )
,
lambda
[
n
] .
(
times
(
divide
(
power
(
unary_minus
( 1 )
,
n )
,
times
(
factorial
(
n )
,
gamma
(
plus
(
plus
(
v ,
n )
, 1 )
)
)
)
,
power
(
divide
(
z , 2 )
,
times
( 2 ,
n )
)
)
)
)
)
)
Popcorn
hypergeo2.besselJ($v, $z) = ($z / 2) ^ $v * arith1.sum(interval1.integer_interval(0, $infty), fns1.lambda[$n -> -(1) ^ $n / (integer1.factorial($n) * hypergeo0.gamma($v + $n + 1)) * ($z / 2) ^ (2 * $n)])
Rendered Presentation MathML
besselJ
(
v
,
z
)
=
z
2
v
∑
n
=
0
infty
-
1
n
n
!
gamma
(
v
+
n
+
1
)
z
2
(
2
n
)
Example:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="z"/>
<OMI> 2 </OMI>
</OMA>
<OMA><OMS cd="calculus1" name="diff"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA><OMS cd="calculus1" name="diff"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA><OMS cd="hypergeo2" name="besselJ"/>
<OMV name="v"/>
<OMV name="z"/>
</OMA>
</OMBIND>
</OMA>
</OMBIND>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="z"/>
<OMA><OMS cd="calculus1" name="diff"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA><OMS cd="bypergeo2" name="besselJ"/>
<OMV name="v"/>
<OMV name="z"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="minus"/>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="z"/>
<OMI> 2 </OMI>
</OMA>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="v"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMA><OMS cd="hypergeo2" name="besselJ"/>
<OMV name="v"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
<OMI> 0 </OMI>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
<apply><csymbol cd="calculus1">diff</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="calculus1">diff</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="hypergeo2">besselJ</csymbol><ci>v</ci><ci>z</ci></apply>
</bind>
</apply>
</bind>
</apply>
</apply>
<apply><csymbol cd="arith1">times</csymbol>
<ci>z</ci>
<apply><csymbol cd="calculus1">diff</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="bypergeo2">besselJ</csymbol><ci>v</ci><ci>z</ci></apply>
</bind>
</apply>
</apply>
</apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
<apply><csymbol cd="arith1">power</csymbol><ci>v</ci><cn type="integer">2</cn></apply>
</apply>
<apply><csymbol cd="hypergeo2">besselJ</csymbol><ci>v</ci><ci>z</ci></apply>
</apply>
</apply>
<cn type="integer">0</cn>
</apply>
</math>
Prefix
eq
(
plus
(
plus
(
times
(
power
(
z , 2 )
,
diff
(
lambda
[
z
] .
(
diff
(
lambda
[
z
] .
(
besselJ
(
v ,
z )
)
)
)
)
)
,
times
(
z ,
diff
(
lambda
[
z
] .
(
besselJ
(
v ,
z )
)
)
)
)
,
times
(
minus
(
power
(
z , 2 )
,
power
(
v , 2 )
)
,
besselJ
(
v ,
z )
)
)
, 0 )
Popcorn
$z ^ 2 * calculus1.diff(fns1.lambda[$z -> calculus1.diff(fns1.lambda[$z -> hypergeo2.besselJ($v, $z)])]) + $z * calculus1.diff(fns1.lambda[$z -> bypergeo2.besselJ($v, $z)]) + ($z ^ 2 - $v ^ 2) * hypergeo2.besselJ($v, $z) = 0
Rendered Presentation MathML
z
2
d
d
z
(
d
d
z
(
besselJ
(
v
,
z
)
)
)
+
z
d
d
z
(
besselJ
(
v
,
z
)
)
+
(
z
2
-
v
2
)
besselJ
(
v
,
z
)
=
0
Signatures:
sts
Description:
The Bessel function.
This function is the another one of the famous two solutions of the Bessel
differential equation at z=0.
Commented Mathematical property (CMP):
besselY(v,z)
= (\cos(v \pi) besselJ(v,z) - besselJ(-v,z))/\sin(v \pi)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="hypergeo2" name="besselY"/>
<OMV name="v"/>
<OMV name="z"/>
</OMA>
<OMA><OMS cd="arith1" name="divide"/>
<OMA><OMS cd="arith1" name="minus"/>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="transc1" name="cos"/>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="v"/>
<OMS cd="nums1" name="pi"/>
</OMA>
</OMA>
<OMA><OMS cd="hypergeo2" name="besselJ"/>
<OMV name="v"/>
<OMV name="z"/>
</OMA>
</OMA>
<OMA><OMS cd="hypergeo2" name="besselJ"/>
<OMA><OMS cd="arith1" name="unary_minus"/>
<OMV name="v"/>
</OMA>
<OMV name="z"/>
</OMA>
</OMA>
<OMA><OMS cd="transc1" name="sin"/>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="v"/>
<OMS cd="nums1" name="pi"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="hypergeo2">besselY</csymbol><ci>v</ci><ci>z</ci></apply>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="transc1">cos</csymbol>
<apply><csymbol cd="arith1">times</csymbol><ci>v</ci><csymbol cd="nums1">pi</csymbol></apply>
</apply>
<apply><csymbol cd="hypergeo2">besselJ</csymbol><ci>v</ci><ci>z</ci></apply>
</apply>
<apply><csymbol cd="hypergeo2">besselJ</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><ci>v</ci></apply>
<ci>z</ci>
</apply>
</apply>
<apply><csymbol cd="transc1">sin</csymbol>
<apply><csymbol cd="arith1">times</csymbol><ci>v</ci><csymbol cd="nums1">pi</csymbol></apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
hypergeo2.besselY($v, $z) = (cos($v * nums1.pi) * hypergeo2.besselJ($v, $z) - hypergeo2.besselJ( -($v), $z)) / sin($v * nums1.pi)
Rendered Presentation MathML
besselY
(
v
,
z
)
=
cos
(
v
π
)
besselJ
(
v
,
z
)
-
besselJ
(
-
v
,
z
)
sin
(
v
π
)
Example:
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="z"/>
<OMI> 2 </OMI>
</OMA>
<OMA><OMS cd="calculus1" name="diff"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA><OMS cd="calculus1" name="diff"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA><OMS cd="hypergeo2" name="besselY"/>
<OMV name="v"/>
<OMV name="z"/>
</OMA>
</OMBIND>
</OMA>
</OMBIND>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="z"/>
<OMA><OMS cd="calculus1" name="diff"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA><OMS cd="hypergeo2" name="besselY"/>
<OMV name="v"/>
<OMV name="z"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="minus"/>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="z"/>
<OMI> 2 </OMI>
</OMA>
<OMA><OMS cd="arith1" name="power"/>
<OMV name="v"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMA><OMS cd="hypergeo2" name="besselY"/>
<OMV name="v"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
<OMI> 0 </OMI>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
<apply><csymbol cd="calculus1">diff</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="calculus1">diff</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="hypergeo2">besselY</csymbol><ci>v</ci><ci>z</ci></apply>
</bind>
</apply>
</bind>
</apply>
</apply>
<apply><csymbol cd="arith1">times</csymbol>
<ci>z</ci>
<apply><csymbol cd="calculus1">diff</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="hypergeo2">besselY</csymbol><ci>v</ci><ci>z</ci></apply>
</bind>
</apply>
</apply>
</apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
<apply><csymbol cd="arith1">power</csymbol><ci>v</ci><cn type="integer">2</cn></apply>
</apply>
<apply><csymbol cd="hypergeo2">besselY</csymbol><ci>v</ci><ci>z</ci></apply>
</apply>
</apply>
<cn type="integer">0</cn>
</apply>
</math>
Prefix
eq
(
plus
(
plus
(
times
(
power
(
z , 2 )
,
diff
(
lambda
[
z
] .
(
diff
(
lambda
[
z
] .
(
besselY
(
v ,
z )
)
)
)
)
)
,
times
(
z ,
diff
(
lambda
[
z
] .
(
besselY
(
v ,
z )
)
)
)
)
,
times
(
minus
(
power
(
z , 2 )
,
power
(
v , 2 )
)
,
besselY
(
v ,
z )
)
)
, 0 )
Popcorn
$z ^ 2 * calculus1.diff(fns1.lambda[$z -> calculus1.diff(fns1.lambda[$z -> hypergeo2.besselY($v, $z)])]) + $z * calculus1.diff(fns1.lambda[$z -> hypergeo2.besselY($v, $z)]) + ($z ^ 2 - $v ^ 2) * hypergeo2.besselY($v, $z) = 0
Rendered Presentation MathML
z
2
d
d
z
(
d
d
z
(
besselY
(
v
,
z
)
)
)
+
z
d
d
z
(
besselY
(
v
,
z
)
)
+
(
z
2
-
v
2
)
besselY
(
v
,
z
)
=
0
Signatures:
sts
Description:
The first Hankel function.
This function is one of the famous two solutions of the Bessel
differential equation at z=\infty.
Commented Mathematical property (CMP):
hankel1(v,z)
= besselJ(v,z) + i BesselY(v,z)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="hypergeo2" name="hankel1"/>
<OMV name="v"/>
<OMV name="z"/>
</OMA>
<OMA><OMS cd="arith1" name="plus"/>
<OMA><OMS cd="hypergeo2" name="besselJ"/>
<OMV name="v"/>
<OMV name="z"/>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMA><OMS cd="hypergeo2" name="besselY"/>
<OMV name="v"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="hypergeo2">hankel1</csymbol><ci>v</ci><ci>z</ci></apply>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="hypergeo2">besselJ</csymbol><ci>v</ci><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<csymbol cd="nums1">i</csymbol>
<apply><csymbol cd="hypergeo2">besselY</csymbol><ci>v</ci><ci>z</ci></apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
hypergeo2.hankel1($v, $z) = hypergeo2.besselJ($v, $z) + nums1.i * hypergeo2.besselY($v, $z)
Rendered Presentation MathML
hankel1
(
v
,
z
)
=
besselJ
(
v
,
z
)
+
i
besselY
(
v
,
z
)
Signatures:
sts
Description:
The second Hankel function.
This function is the another one of the famous two solutions of the Bessel
differential equation at z=\infty.
Commented Mathematical property (CMP):
hankel2(v,z)
= besselJ(v,z) - i BesselY(v,z)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="hypergeo2" name="hankel1"/>
<OMV name="v"/>
<OMV name="z"/>
</OMA>
<OMA><OMS cd="arith1" name="minus"/>
<OMA><OMS cd="hypergeo2" name="besselJ"/>
<OMV name="v"/>
<OMV name="z"/>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMA><OMS cd="hypergeo2" name="besselY"/>
<OMV name="v"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="hypergeo2">hankel1</csymbol><ci>v</ci><ci>z</ci></apply>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="hypergeo2">besselJ</csymbol><ci>v</ci><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<csymbol cd="nums1">i</csymbol>
<apply><csymbol cd="hypergeo2">besselY</csymbol><ci>v</ci><ci>z</ci></apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
hypergeo2.hankel1($v, $z) = hypergeo2.besselJ($v, $z) - nums1.i * hypergeo2.besselY($v, $z)
Rendered Presentation MathML
hankel1
(
v
,
z
)
=
besselJ
(
v
,
z
)
-
i
besselY
(
v
,
z
)
Signatures:
sts
Description:
The first Airy function.
This function is one of the famous two solutions of the Airy
differential equation, and converges to 0 when z->\infty
Commented Mathematical property (CMP):
(\frac{d^2}{dz^2} - z) airyAi(z) = 0
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="arith1" name="minus"/>
<OMA><OMS cd="calculus1" name="diff"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA><OMS cd="calculus1" name="diff"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA><OMS cd="hypergeo2" name="airyAi"/>
<OMV name="z"/>
</OMA>
</OMBIND>
</OMA>
</OMBIND>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="z"/>
<OMA><OMS cd="hypergeo2" name="airyAi"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
<OMI> 0 </OMI>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="calculus1">diff</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="calculus1">diff</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="hypergeo2">airyAi</csymbol><ci>z</ci></apply>
</bind>
</apply>
</bind>
</apply>
<apply><csymbol cd="arith1">times</csymbol>
<ci>z</ci>
<apply><csymbol cd="hypergeo2">airyAi</csymbol><ci>z</ci></apply>
</apply>
</apply>
<cn type="integer">0</cn>
</apply>
</math>
Prefix
Popcorn
calculus1.diff(fns1.lambda[$z -> calculus1.diff(fns1.lambda[$z -> hypergeo2.airyAi($z)])]) - $z * hypergeo2.airyAi($z) = 0
Rendered Presentation MathML
d
d
z
(
d
d
z
(
airyAi
(
z
)
)
)
-
z
airyAi
(
z
)
=
0
Signatures:
sts
Description:
The second Airy function.
This function is the another one of the famous two solutions of the Airy
differential equation, and diverges when z->\infty
Commented Mathematical property (CMP):
(\frac{d^2}{dz^2} - z) airyBi(z) = 0
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="arith1" name="minus"/>
<OMA><OMS cd="calculus1" name="diff"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA><OMS cd="calculus1" name="diff"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="z"/>
</OMBVAR>
<OMA><OMS cd="hypergeo2" name="airyBi"/>
<OMV name="z"/>
</OMA>
</OMBIND>
</OMA>
</OMBIND>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMV name="z"/>
<OMA><OMS cd="hypergeo2" name="airyBi"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
<OMI> 0 </OMI>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="calculus1">diff</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="calculus1">diff</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>z</ci></bvar>
<apply><csymbol cd="hypergeo2">airyBi</csymbol><ci>z</ci></apply>
</bind>
</apply>
</bind>
</apply>
<apply><csymbol cd="arith1">times</csymbol>
<ci>z</ci>
<apply><csymbol cd="hypergeo2">airyBi</csymbol><ci>z</ci></apply>
</apply>
</apply>
<cn type="integer">0</cn>
</apply>
</math>
Prefix
Popcorn
calculus1.diff(fns1.lambda[$z -> calculus1.diff(fns1.lambda[$z -> hypergeo2.airyBi($z)])]) - $z * hypergeo2.airyBi($z) = 0
Rendered Presentation MathML
d
d
z
(
d
d
z
(
airyBi
(
z
)
)
)
-
z
airyBi
(
z
)
=
0
Signatures:
sts