OpenMath Content Dictionary: hypergeon1

Canonical URL:
http://www.math.kobe-u.ac.jp/OCD/hypergeon1.tfb
CD File:
hypergeon1.ocd
CD as XML Encoded OpenMath:
hypergeon1.omcd
Defines:
a_hypergeomeric, falling_factorial, falling_multi_factorial, raising_multi_factorial
Date:
2003-11-30
Version:
1 (Revision 2)
Review Date:
2017-12-31
Status:
experimental

  Author: Nobuki Takayama

This CD defines symbols for A-hypergeometric series


falling_factorial

Description:

falling_factorial(n,i) is equal to n*(n-1)* ... *(n-i+1).

Signatures:
sts


[Next: raising_multi_factorial] [Last: a_hypergeomeric] [Top]

raising_multi_factorial

Description:

raising_multi_factorial is a product of pochhammer symbols. 2-ary function. reference: authors: "Saito, Sturmfels, Takayama" title: "Grobner Deformations of Hypergeometric Differential Equations" pages: 127

Commented Mathematical property (CMP):
$ [v]_{u_+} = \prod_{i \in \Z\cap[0,n] :\ u_i > 0} (v_i+1)_{u_i} $
Formal Mathematical property (FMP):
raising_multi_factorial ( v , u ) = i in [ 1 , n ] { i Z | gt ( u i , 0 ) } pochhammer ( v i + 1 , u i )
Signatures:
sts


[Next: falling_multi_factorial] [Previous: falling_factorial] [Top]

falling_multi_factorial

Description:

falling_multi_factorial is a product of falling pochhammer symbols. 2-ary function. reference: authors: "Saito, Sturmfels, Takayama" title: "Grobner Deformations of Hypergeometric Differential Equations" pages: 127

Commented Mathematical property (CMP):
$ [v]_{u_-} = \prod_{i \in \Z\cap[0,n] :\ u_i < 0} v_i (v_i-1) \cdots (v_i + u_i-1) $
Formal Mathematical property (FMP):
falling_multi_factorial ( v , u ) = i in [ 1 , n ] { i Z | lt ( u i , 0 ) } falling_factorial ( v i , - u i )
Signatures:
sts


[Next: a_hypergeomeric] [Previous: raising_multi_factorial] [Top]

a_hypergeomeric

Description:

A-hypergeometric series reference: authors: "Saito, Sturmfels, Takayama" title: "Grobner Deformations of Hypergeometric Differential Equations" pages: 127

Commented Mathematical property (CMP):
$ \phi(A,v,x) = \sum_{u \in \kernel{\Z^n \stackrel \Z^d}} \frac{[v]_{u_-}}{[v+u]_{u_+}} x^{v+u} $
Formal Mathematical property (FMP):
where ( λ n . a_hypergeometric ( a , v , x ) = u in kernel ( cartesian_product_n ( Z , n ) , a ) falling_multi_factorial ( v , minus_part ( u ) ) raising_multi_factorial ( v + u , plus_part ( u ) ) multi_power ( x , v + u ) , n = columncount ( a ) )
Signatures:
sts


[First: falling_factorial] [Previous: falling_multi_factorial] [Top]