OpenMath Content Dictionary: hypergeon1
-
Canonical URL:
-
http://www.math.kobe-u.ac.jp/OCD/hypergeon1.tfb
-
CD File:
-
hypergeon1.ocd
-
CD as XML Encoded OpenMath:
-
hypergeon1.omcd
-
Defines:
-
a_hypergeomeric, falling_factorial, falling_multi_factorial, raising_multi_factorial
-
Date:
- 2003-11-30
-
Version:
- 1
(Revision 2)
-
Review Date:
- 2017-12-31
-
Status:
- experimental
Author: Nobuki Takayama
This CD defines symbols for A-hypergeometric series
-
Description:
-
falling_factorial(n,i) is equal to n*(n-1)* ... *(n-i+1).
-
Signatures:
-
sts
-
Description:
-
raising_multi_factorial is a product of pochhammer symbols.
2-ary function.
reference:
authors: "Saito, Sturmfels, Takayama"
title: "Grobner Deformations of Hypergeometric
Differential Equations"
pages: 127
-
Commented Mathematical property (CMP):
-
$ [v]_{u_+} = \prod_{i \in \Z\cap[0,n] :\ u_i > 0} (v_i+1)_{u_i} $
-
Formal Mathematical property (FMP):
-
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="hypergeon1" name="raising_multi_factorial"/>
<OMV name="v"/>
<OMV name="u"/>
</OMA>
<OMA><OMS cd="arith1" name="product"/>
<OMA><OMS cd="set1" name="intersect"/>
<OMA><OMS cd="interval1" name="integer_interval"/>
<OMI> 1 </OMI>
<OMV name="n"/>
</OMA>
<OMA><OMS cd="set1" name="suchthat"/>
<OMS cd="setname1" name="Z"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="i"/>
</OMBVAR>
<OMA><OMS cd="arith1" name="gt"/>
<OMA><OMS cd="linalg1" name="vector_selector"/>
<OMV name="i"/>
<OMV name="u"/>
</OMA>
<OMI> 0 </OMI>
</OMA>
</OMBIND>
</OMA>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="i"/>
</OMBVAR>
<OMA><OMS cd="hypergeo0" name="pochhammer"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMA><OMS cd="linalg1" name="vector_selector"/>
<OMV name="i"/>
<OMV name="v"/>
</OMA>
<OMI> 1 </OMI>
</OMA>
<OMA><OMS cd="linalg1" name="vector_selector"/>
<OMV name="i"/>
<OMV name="u"/>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="hypergeon1">raising_multi_factorial</csymbol><ci>v</ci><ci>u</ci></apply>
<apply><csymbol cd="arith1">product</csymbol>
<apply><csymbol cd="set1">intersect</csymbol>
<apply><csymbol cd="interval1">integer_interval</csymbol><cn type="integer">1</cn><ci>n</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<csymbol cd="setname1">Z</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>i</ci></bvar>
<apply><csymbol cd="arith1">gt</csymbol>
<apply><csymbol cd="linalg1">vector_selector</csymbol><ci>i</ci><ci>u</ci></apply>
<cn type="integer">0</cn>
</apply>
</bind>
</apply>
</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>i</ci></bvar>
<apply><csymbol cd="hypergeo0">pochhammer</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="linalg1">vector_selector</csymbol><ci>i</ci><ci>v</ci></apply>
<cn type="integer">1</cn>
</apply>
<apply><csymbol cd="linalg1">vector_selector</csymbol><ci>i</ci><ci>u</ci></apply>
</apply>
</bind>
</apply>
</apply>
</math>
eq
(
raising_multi_factorial
(
v,
u)
,
product
(
intersect
(
integer_interval
( 1 ,
n)
,
suchthat
(
Z,
lambda
[
i
] .
(
gt
(
vector_selector
(
i,
u)
, 0 )
)
)
)
,
lambda
[
i
] .
(
pochhammer
(
plus
(
vector_selector
(
i,
v)
, 1 )
,
vector_selector
(
i,
u)
)
)
)
)
hypergeon1.raising_multi_factorial($v, $u) = arith1.product(set1.intersect(interval1.integer_interval(1, $n), set1.suchthat(setname1.Z, fns1.lambda[$i -> arith1.gt(linalg1.vector_selector($i, $u), 0)])), fns1.lambda[$i -> hypergeo0.pochhammer(linalg1.vector_selector($i, $v) + 1, linalg1.vector_selector($i, $u))])
-
Signatures:
-
sts
-
Description:
-
falling_multi_factorial is a product of falling pochhammer symbols.
2-ary function.
reference:
authors: "Saito, Sturmfels, Takayama"
title: "Grobner Deformations of Hypergeometric
Differential Equations"
pages: 127
-
Commented Mathematical property (CMP):
-
$ [v]_{u_-} = \prod_{i \in \Z\cap[0,n] :\ u_i < 0} v_i (v_i-1) \cdots (v_i + u_i-1) $
-
Formal Mathematical property (FMP):
-
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="hypergeon1" name="falling_multi_factorial"/>
<OMV name="v"/>
<OMV name="u"/>
</OMA>
<OMA><OMS cd="arith1" name="product"/>
<OMA><OMS cd="set1" name="intersect"/>
<OMA><OMS cd="interval1" name="integer_interval"/>
<OMI> 1 </OMI>
<OMV name="n"/>
</OMA>
<OMA><OMS cd="set1" name="suchthat"/>
<OMS cd="setname1" name="Z"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="i"/>
</OMBVAR>
<OMA><OMS cd="arith1" name="lt"/>
<OMA><OMS cd="linalg1" name="vector_selector"/>
<OMV name="i"/>
<OMV name="u"/>
</OMA>
<OMI> 0 </OMI>
</OMA>
</OMBIND>
</OMA>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="i"/>
</OMBVAR>
<OMA><OMS cd="hypergeon1" name="falling_factorial"/>
<OMA><OMS cd="linalg1" name="vector_selector"/>
<OMV name="i"/>
<OMV name="v"/>
</OMA>
<OMA><OMS cd="arith1" name="unary_minus"/>
<OMA><OMS cd="linalg1" name="vector_selector"/>
<OMV name="i"/>
<OMV name="u"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="hypergeon1">falling_multi_factorial</csymbol><ci>v</ci><ci>u</ci></apply>
<apply><csymbol cd="arith1">product</csymbol>
<apply><csymbol cd="set1">intersect</csymbol>
<apply><csymbol cd="interval1">integer_interval</csymbol><cn type="integer">1</cn><ci>n</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<csymbol cd="setname1">Z</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>i</ci></bvar>
<apply><csymbol cd="arith1">lt</csymbol>
<apply><csymbol cd="linalg1">vector_selector</csymbol><ci>i</ci><ci>u</ci></apply>
<cn type="integer">0</cn>
</apply>
</bind>
</apply>
</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>i</ci></bvar>
<apply><csymbol cd="hypergeon1">falling_factorial</csymbol>
<apply><csymbol cd="linalg1">vector_selector</csymbol><ci>i</ci><ci>v</ci></apply>
<apply><csymbol cd="arith1">unary_minus</csymbol>
<apply><csymbol cd="linalg1">vector_selector</csymbol><ci>i</ci><ci>u</ci></apply>
</apply>
</apply>
</bind>
</apply>
</apply>
</math>
eq
(
falling_multi_factorial
(
v,
u)
,
product
(
intersect
(
integer_interval
( 1 ,
n)
,
suchthat
(
Z,
lambda
[
i
] .
(
lt
(
vector_selector
(
i,
u)
, 0 )
)
)
)
,
lambda
[
i
] .
(
falling_factorial
(
vector_selector
(
i,
v)
,
unary_minus
(
vector_selector
(
i,
u)
)
)
)
)
)
hypergeon1.falling_multi_factorial($v, $u) = arith1.product(set1.intersect(interval1.integer_interval(1, $n), set1.suchthat(setname1.Z, fns1.lambda[$i -> arith1.lt(linalg1.vector_selector($i, $u), 0)])), fns1.lambda[$i -> hypergeon1.falling_factorial(linalg1.vector_selector($i, $v), -(linalg1.vector_selector($i, $u)))])
-
Signatures:
-
sts
-
Description:
-
A-hypergeometric series
reference:
authors: "Saito, Sturmfels, Takayama"
title: "Grobner Deformations of Hypergeometric
Differential Equations"
pages: 127
-
Commented Mathematical property (CMP):
-
$ \phi(A,v,x) = \sum_{u \in \kernel{\Z^n \stackrel \Z^d}}
\frac{[v]_{u_-}}{[v+u]_{u_+}} x^{v+u} $
-
Formal Mathematical property (FMP):
-
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="hypergeon0" name="where"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="n"/>
</OMBVAR>
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="hypergeon1" name="a_hypergeometric"/>
<OMV name="a"/>
<OMV name="v"/>
<OMV name="x"/>
</OMA>
<OMA><OMS cd="arith1" name="sum"/>
<OMA><OMS cd="hypergeon0" name="kernel"/>
<OMA><OMS cd="hypergeon0" name="cartesian_product_n"/>
<OMS cd="setname1" name="Z"/>
<OMV name="n"/>
</OMA>
<OMV name="a"/>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="u"/>
</OMBVAR>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="divide"/>
<OMA><OMS cd="hypergeon1" name="falling_multi_factorial"/>
<OMV name="v"/>
<OMA><OMS cd="hyergeon0" name="minus_part"/>
<OMV name="u"/>
</OMA>
</OMA>
<OMA><OMS cd="hypergeon1" name="raising_multi_factorial"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMV name="v"/>
<OMV name="u"/>
</OMA>
<OMA><OMS cd="hypergeon0" name="plus_part"/>
<OMV name="u"/>
</OMA>
</OMA>
</OMA>
<OMA><OMS cd="hypergeon0" name="multi_power"/>
<OMV name="x"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMV name="v"/>
<OMV name="u"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMBIND>
<OMA><OMS cd="relation1" name="eq"/>
<OMV name="n"/>
<OMA><OMS cd="linalg4" name="columncount"/>
<OMV name="a"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="hypergeon0">where</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>n</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="hypergeon1">a_hypergeometric</csymbol><ci>a</ci><ci>v</ci><ci>x</ci></apply>
<apply><csymbol cd="arith1">sum</csymbol>
<apply><csymbol cd="hypergeon0">kernel</csymbol>
<apply><csymbol cd="hypergeon0">cartesian_product_n</csymbol><csymbol cd="setname1">Z</csymbol><ci>n</ci></apply>
<ci>a</ci>
</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>u</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="hypergeon1">falling_multi_factorial</csymbol>
<ci>v</ci>
<apply><csymbol cd="hyergeon0">minus_part</csymbol><ci>u</ci></apply>
</apply>
<apply><csymbol cd="hypergeon1">raising_multi_factorial</csymbol>
<apply><csymbol cd="arith1">plus</csymbol><ci>v</ci><ci>u</ci></apply>
<apply><csymbol cd="hypergeon0">plus_part</csymbol><ci>u</ci></apply>
</apply>
</apply>
<apply><csymbol cd="hypergeon0">multi_power</csymbol>
<ci>x</ci>
<apply><csymbol cd="arith1">plus</csymbol><ci>v</ci><ci>u</ci></apply>
</apply>
</apply>
</bind>
</apply>
</apply>
</bind>
<apply><csymbol cd="relation1">eq</csymbol>
<ci>n</ci>
<apply><csymbol cd="linalg4">columncount</csymbol><ci>a</ci></apply>
</apply>
</apply>
</math>
where
(
lambda
[
n
] .
(
eq
(
a_hypergeometric
(
a,
v,
x)
,
sum
(
kernel
(
cartesian_product_n
(
Z,
n)
,
a)
,
lambda
[
u
] .
(
times
(
divide
(
falling_multi_factorial
(
v,
minus_part
(
u)
)
,
raising_multi_factorial
(
plus
(
v,
u)
,
plus_part
(
u)
)
)
,
multi_power
(
x,
plus
(
v,
u)
)
)
)
)
)
)
,
eq
(
n,
columncount
(
a)
)
)
hypergeon0.where(fns1.lambda[$n -> hypergeon1.a_hypergeometric($a, $v, $x) = arith1.sum(hypergeon0.kernel(hypergeon0.cartesian_product_n(setname1.Z, $n), $a), fns1.lambda[$u -> hypergeon1.falling_multi_factorial($v, hyergeon0.minus_part($u)) / hypergeon1.raising_multi_factorial($v + $u, hypergeon0.plus_part($u)) * hypergeon0.multi_power($x, $v + $u)])], $n = linalg4.columncount($a))
-
Signatures:
-
sts