OpenMath Content Dictionary: hypergeon2

Canonical URL:
http://www.math.kobe-u.ac.jp/OCD/hypergeon2.tfb
CD File:
hypergeon2.ocd
CD as XML Encoded OpenMath:
hypergeon2.omcd
Defines:
appel_F1, appel_F2, appel_F3, appel_F4, lauricella_FA, lauricella_FC, lauricella_FD, multi_pochhammer
Date:
2003-11-30
Version:
1 (Revision 3)
Review Date:
2017-12-31
Status:
experimental

  Author: Nobuki Takayama

This CD defines symbols for classical hypergeometric series of several variables, which include Appell functions and Lauricella functions.


multi_pochhammer

Description:

multi_pochhammer is a product of pochhammer symbols.

Commented Mathematical property (CMP):
$ (a)_n = \prod_{i=1}^{m} (a_{i})_{n_{i}} $
Formal Mathematical property (FMP):
multi_pochhammer ( a , n ) = i = 1 columnsize ( n ) pochhammer ( a i , n i )
Signatures:
sts


[Next: appel_F1] [Last: lauricella_FD] [Top]

appel_F1

Description:

Appell's hypergeometric series F_1 reference: authors: "Appel, Kampe de Feriet" title: "Les Fonctions Hypergeometriques de Plusieurs Variables et Polynome d'Hermite" pages: 14

Commented Mathematical property (CMP):
$ F_1(a,b,b',c;x,y) = \sum_{m,n=0}^{\infty} \frac{(a)_{m+n} (b)_m (b')_n}{(c)_{m+n} (1)_{m} (1)_{n}}x^{m}y^{n}$
Formal Mathematical property (FMP):
apple_F1 ( a , b 1 , b 2 , c , x , y ) = m in N × N pochhammer ( a , m 1 + m 2 ) pochhammer ( b 1 , m 1 ) pochhammer ( b 2 , m 2 ) pochhammer ( c , m 1 + m 2 ) pochhammer ( 1 , m 1 ) pochhammer ( 1 , m 2 ) x vector_selector ( 1 , m ) y vector_selector ( 2 , m )
Signatures:
sts


[Next: appel_F2] [Previous: multi_pochhammer] [Top]

appel_F2

Description:

Appell's hypergeometric series F_2 reference: authors: "Appel, Kampe de Feriet" title: "Les Fonctions Hypergeometriques de Plusieurs Variables et Polynome d'Hermite" pages: 14

Commented Mathematical property (CMP):
$ F_2(a,b,b',c,c';x,y) = \sum_{m,n=0}^\infty \frac{(a)_{m+n} (b)_{m}(b')_{n}} {(c)_{m} (c')_{n} (1)_{m} (1)_{n}}x^{m}y^{n} $
Formal Mathematical property (FMP):
apple_F2 ( a , b 1 , b 2 , c 1 , c 2 , x , y ) = m in N × N pochhammer ( a , m 1 + m 2 ) pochhammer ( b 1 , m 1 ) pochhammer ( b 2 , m 2 ) pochhammer ( c 1 , m 1 ) pochhammer ( c 2 , m 2 ) pochhammer ( 1 , m 1 ) pochhammer ( 1 , m 2 ) x vector_selector ( 1 , m ) y vector_selector ( 2 , m )
Signatures:
sts


[Next: appel_F3] [Previous: appel_F1] [Top]

appel_F3

Description:

Appell's hypergeometric series F_3 reference: authors: "Appel, Kampe de Feriet" title: "Les Fonctions Hypergeometriques de Plusieurs Variables et Polynome d'Hermite" pages: 14

Commented Mathematical property (CMP):
$ F_3(a,a',b,b',c;x,y) = \sum_{m,n=0}^{\infty} \frac{(a)_{m}(a')_{n}(b)_{m}(b')_{n}} {(c)_{m+n}(1)_{m}(1)_{n}}x^{m}y^{n}$
Formal Mathematical property (FMP):
apple_F3 ( a 1 , a 2 , b 1 , b 2 , c , x , y ) = m in N × N pochhammer ( a 1 , m 1 ) pochhammer ( a 2 , m 1 ) pochhammer ( b 1 , m 1 ) pochhammer ( b 2 , m 2 ) pochhammer ( c , m 1 + m 2 ) pochhammer ( 1 , m 1 ) pochhammer ( 1 , m 2 ) x vector_selector ( 1 , m ) y vector_selector ( 2 , m )
Signatures:
sts


[Next: appel_F4] [Previous: appel_F2] [Top]

appel_F4

Description:

Appell's hypergeometric series F_4 reference: authors: "Appel, Kampe de Feriet" title: "Les Fonctions Hypergeometriques de Plusieurs Variables et Polynome d'Hermite" pages: 14

Commented Mathematical property (CMP):
$ F_4(a,b,c,c';x,y) = \sum_{m,n=0}^{\infty} \frac{(a)_{m+n} (b)_{m+n}}{(c1)_{m}(c2)_{n}(1)_{m}(1)_{n}}x^{m}y^{n} $
Formal Mathematical property (FMP):
apple_F4 ( a , b , c 1 , c 2 , x , y ) = m in N × N pochhammer ( a , m 1 + m 2 ) pochhammer ( b , m 1 + m 2 ) pochhammer ( c 1 , m 1 ) pochhammer ( c 2 , m 2 ) pochhammer ( 1 , m 1 ) pochhammer ( 1 , m 2 ) x vector_selector ( 1 , m ) y vector_selector ( 2 , m )
Signatures:
sts


[Next: lauricella_FA] [Previous: appel_F3] [Top]

lauricella_FA

Description:

Lauricella's hypergeometric series F_A of n variables. In case of one variables, it agrees with the Appel function F_2. reference: authors: "Appel, Kampe de Feriet" title: "Les Fonctions Hypergeometriques de Plusieurs Variables et Polynome d'Hermite" pages:

Commented Mathematical property (CMP):
$ F_A(a,b,c;x) = \sum_{k \in \N^n}^{\infty} \frac{(a)_{\sum k_i} \prod (b_i)_{k_i}} {\prod (c_i)_{k_i} \prod (1)_{k_i}} x^{k} $
Formal Mathematical property (FMP):
where ( λ n . lauricella_FA ( a , b , c , x ) = k in cartesian_product_n ( N , n ) pochhammer ( a , i = 1 n vector_selector ( i , k ) ) prod ( [ 1 , n ] , λ i . pochhammer ( vector_selector ( i , b ) , vector_selector ( i , k ) ) ) prod ( [ 1 , n ] , λ i . pochhammer ( vector_selector ( i , c ) , vector_selector ( i , k ) ) ) prod ( [ 1 , n ] , λ i . pochhammer ( 1 , vector_selector ( i , k ) ) ) multi_power ( x , k ) , n = rowcount ( b ) )
Signatures:
sts


[Next: lauricella_FC] [Previous: appel_F4] [Top]

lauricella_FC

Description:

Lauricella's hypergeometric series F_C of n variables. In case of two variable, it agree with the Appel function F_4. reference: authors: "Appel, Kampe de Feriet" title: "Les Fonctions Hypergeometriques de Plusieurs Variables et Polynome d'Hermite" pages:

Commented Mathematical property (CMP):
$ F_C(a,b,c;x) = \sum_{k \in {\bf N}^n}^{\infty} \frac{(a)_{\sum k_i} (b)_{\sum k_i} } {\prod (c_i)_{k_i} \prod (1)_{k_i}} x^{k} $
Formal Mathematical property (FMP):
where ( λ n . lauricella_FC ( a , b , c , x ) = k in cartesian_product_n ( N , n ) pochhammer ( a , i = 1 n vector_selector ( i , k ) ) pochhammer ( b , i = 1 n vector_selector ( i , k ) ) prod ( [ 1 , n ] , λ i . pochhammer ( vector_selector ( i , c ) , vector_selector ( i , k ) ) ) prod ( [ 1 , n ] , λ i . pochhammer ( 1 , vector_selector ( i , k ) ) ) multi_power ( x , k ) , n = rowcount ( b ) )
Signatures:
sts


[Next: lauricella_FD] [Previous: lauricella_FA] [Top]

lauricella_FD

Description:

Lauricella's hypergeometric series F_D of n variables. In case of two variables, it agree with the Appell function F_1. reference: authors: "Appel, Kampe de Feriet" title: "Les Fonctions Hypergeometriques de Plusieurs Variables et Polynome d'Hermite" pages:

Commented Mathematical property (CMP):
$ F_D(a,b,c;x) = \sum_{k \in {\bf N}^n}^{\infty} \frac{(a)_{\sum k_i} \prod (b_i)_{k_i}} {(c)_{\sum k_i} \prod (1)_{k_i}} x^{k} $
Formal Mathematical property (FMP):
where ( λ n . lauricella_FD ( a , b , c , x ) = k in cartesian_product_n ( N , n ) pochhammer ( a , i = 1 n vector_selector ( i , k ) ) prod ( [ 1 , n ] , λ i . pochhammer ( vector_selector ( i , b ) , vector_selector ( i , k ) ) ) pochhammer ( c , i = 1 n vector_selector ( i , k ) ) prod ( [ 1 , n ] , λ i . pochhammer ( 1 , vector_selector ( i , k ) ) ) multi_power ( x , k ) , n = rowcount ( b ) )
Signatures:
sts


[First: multi_pochhammer] [Previous: lauricella_FC] [Top]