OpenMath Content Dictionary: orthpoly
Canonical URL:
http://www.openxm.org/...
CD File:
orthpoly.ocd
CD as XML Encoded OpenMath:
orthpoly.omcd
Defines:
jacobiG , legendreP , legendreQ
Date:
2003-11-30
Version:
0
(Revision 3)
Review Date:
2017-12-31
Status:
experimental
Author: Yasushi Tamura
This CD defines orthogonal polynomials which are hypergeometric polynomials.
These functions are described in the following books.
(1) Handbook of Mathematical Functions, Abramowitz, Stegun
(2) Higher transcendental functions. Krieger Publishing Co., Inc., Melbourne, Fla., 1981, Erdlyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz; Tricomi, Francesco G.
Description:
The first Legendre function.
This function is one of the two famous solutions of Legendre
differential equation.
Commented Mathematical property (CMP):
legendreP(v;z) = hypergeo1.hypergeometric2F1(-v,v+1,1;(1-z)/2)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="orthpoly1" name="legendreP"/>
<OMV name="v"/>
<OMV name="z"/>
</OMA>
<OMA><OMS cd="hypergeo1" name="hypergeometric2F1"/>
<OMA><OMS cd="arith1" name="unary_minus"/>
<OMV name="v"/>
</OMA>
<OMA><OMS cd="arith1" name="plus"/>
<OMV name="v"/>
<OMI> 1 </OMI>
</OMA>
<OMI> 1 </OMI>
<OMA><OMS cd="arith1" name="divide"/>
<OMA><OMS cd="arith1" name="minus"/>
<OMI> 1 </OMI>
<OMV name="z"/>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="orthpoly1">legendreP</csymbol><ci>v</ci><ci>z</ci></apply>
<apply><csymbol cd="hypergeo1">hypergeometric2F1</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><ci>v</ci></apply>
<apply><csymbol cd="arith1">plus</csymbol><ci>v</ci><cn type="integer">1</cn></apply>
<cn type="integer">1</cn>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">minus</csymbol><cn type="integer">1</cn><ci>z</ci></apply>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
orthpoly1.legendreP($v, $z) = hypergeo1.hypergeometric2F1( -($v), $v + 1, 1, (1 - $z) / 2)
Rendered Presentation MathML
legendreP
(
v
,
z
)
=
hypergeometric2F1
(
-
v
,
v
+
1
,
1
,
1
-
z
2
)
Signatures:
sts
Description:
The second Legendre function.
This function is the another one of the famous two solutions of Legendre
differential equation.
Commented Mathematical property (CMP):
legendreQ(v;z) = \frac{\sqrt{\pi}\Gamma(v+1)}{\Gamma(v+3/2)}
/(2z)^{v+1}
hypergeo1.hypergeometric2F1((v+1)/2,v/2+1,v+3/2;1/z^2)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="orthpoly1" name="legendreQ"/>
<OMV name="v"/>
<OMV name="z"/>
</OMA>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="divide"/>
<OMA><OMS cd="arith1" name="divide"/>
<OMA><OMS cd="arith1" name="times"/>
<OMA><OMS cd="arith1" name="root"/>
<OMS cd="nums1" name="pi"/>
<OMI> 2 </OMI>
</OMA>
<OMA><OMS cd="hypergeo0" name="gamma"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMV name="v"/>
<OMI> 1 </OMI>
</OMA>
</OMA>
</OMA>
<OMA><OMS cd="hypergeo0" name="gamma"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMV name="v"/>
<OMA><OMS cd="arith1" name="divide"/>
<OMI> 3 </OMI>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="power"/>
<OMA><OMS cd="arith1" name="times"/>
<OMI> 2 </OMI>
<OMV name="z"/>
</OMA>
<OMA><OMS cd="arith1" name="plus"/>
<OMV name="v"/>
<OMI> 1 </OMI>
</OMA>
</OMA>
</OMA>
<OMA><OMS cd="hypergeo1" name="hypergeometric2F1"/>
<OMA><OMS cd="arith1" name="divide"/>
<OMA><OMS cd="arith1" name="plus"/>
<OMV name="v"/>
<OMI> 1 </OMI>
</OMA>
<OMI> 2 </OMI>
</OMA>
<OMA><OMS cd="arith1" name="plus"/>
<OMA><OMS cd="arith1" name="divide"/>
<OMV name="v"/>
<OMI> 2 </OMI>
</OMA>
<OMI> 1 </OMI>
</OMA>
<OMA><OMS cd="arith1" name="plus"/>
<OMV name="v"/>
<OMA><OMS cd="arith1" name="divide"/>
<OMI> 3 </OMI>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMA><OMS cd="arith1" name="power"/>
<OMA><OMS cd="arith1" name="divide"/>
<OMI> 1 </OMI>
<OMV name="z"/>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="orthpoly1">legendreQ</csymbol><ci>v</ci><ci>z</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">root</csymbol>
<csymbol cd="nums1">pi</csymbol>
<cn type="integer">2</cn>
</apply>
<apply><csymbol cd="hypergeo0">gamma</csymbol>
<apply><csymbol cd="arith1">plus</csymbol><ci>v</ci><cn type="integer">1</cn></apply>
</apply>
</apply>
<apply><csymbol cd="hypergeo0">gamma</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<ci>v</ci>
<apply><csymbol cd="arith1">divide</csymbol>
<cn type="integer">3</cn>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
</apply>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="arith1">times</csymbol><cn type="integer">2</cn><ci>z</ci></apply>
<apply><csymbol cd="arith1">plus</csymbol><ci>v</ci><cn type="integer">1</cn></apply>
</apply>
</apply>
<apply><csymbol cd="hypergeo1">hypergeometric2F1</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">plus</csymbol><ci>v</ci><cn type="integer">1</cn></apply>
<cn type="integer">2</cn>
</apply>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><ci>v</ci><cn type="integer">2</cn></apply>
<cn type="integer">1</cn>
</apply>
<apply><csymbol cd="arith1">plus</csymbol>
<ci>v</ci>
<apply><csymbol cd="arith1">divide</csymbol>
<cn type="integer">3</cn>
<cn type="integer">2</cn>
</apply>
</apply>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><cn type="integer">1</cn><ci>z</ci></apply>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
eq
(
legendreQ
(
v ,
z )
,
times
(
divide
(
divide
(
times
(
root
(
pi , 2 )
,
gamma
(
plus
(
v , 1 )
)
)
,
gamma
(
plus
(
v ,
divide
( 3 , 2 )
)
)
)
,
power
(
times
( 2 ,
z )
,
plus
(
v , 1 )
)
)
,
hypergeometric2F1
(
divide
(
plus
(
v , 1 )
, 2 )
,
plus
(
divide
(
v , 2 )
, 1 )
,
plus
(
v ,
divide
( 3 , 2 )
)
,
power
(
divide
( 1 ,
z )
, 2 )
)
)
)
Popcorn
orthpoly1.legendreQ($v, $z) = (arith1.root(nums1.pi, 2) * hypergeo0.gamma($v + 1)) / hypergeo0.gamma($v + 3 / 2) / (2 * $z) ^ ($v + 1) * hypergeo1.hypergeometric2F1(($v + 1) / 2, $v / 2 + 1, $v + 3 / 2, (1 / $z) ^ 2)
Rendered Presentation MathML
legendreQ
(
v
,
z
)
=
π
gamma
(
v
+
1
)
gamma
(
v
+
3
2
)
(
2
z
)
(
v
+
1
)
hypergeometric2F1
(
v
+
1
2
,
v
2
+
1
,
v
+
3
2
,
1
z
2
)
Signatures:
sts
Description:
The Jacobi polynomial.
Commented Mathematical property (CMP):
jacobiG(n,a,c;z)
= hypergeometric2F1(-n,a+n,c,z) (c \not\in Z_{<=0})
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA><OMS cd="logic1" name="implies"/>
<OMA><OMS cd="set1" name="notin"/>
<OMA><OMS cd="arith1" name="unary_minus"/>
<OMV name="c"/>
</OMA>
<OMS cd="setname1" name="N"/>
</OMA>
<OMA><OMS cd="relation1" name="eq"/>
<OMA><OMS cd="orthpoly1" name="jacobiG"/>
<OMV name="n"/>
<OMV name="a"/>
<OMV name="c"/>
<OMV name="z"/>
</OMA>
<OMA><OMS cd="hypergeo1" name="hypergeometric2F1"/>
<OMA><OMS cd="arith1" name="unary_minus"/>
<OMV name="n"/>
</OMA>
<OMA><OMS cd="arith1" name="plus"/>
<OMV name="a"/>
<OMV name="n"/>
</OMA>
<OMV name="c"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="set1">notin</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><ci>c</ci></apply>
<csymbol cd="setname1">N</csymbol>
</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="orthpoly1">jacobiG</csymbol>
<ci>n</ci>
<ci>a</ci>
<ci>c</ci>
<ci>z</ci>
</apply>
<apply><csymbol cd="hypergeo1">hypergeometric2F1</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><ci>n</ci></apply>
<apply><csymbol cd="arith1">plus</csymbol><ci>a</ci><ci>n</ci></apply>
<ci>c</ci>
<ci>z</ci>
</apply>
</apply>
</apply>
</math>
Prefix
implies
(
notin
(
unary_minus
(
c )
,
N )
,
eq
(
jacobiG
(
n ,
a ,
c ,
z )
,
hypergeometric2F1
(
unary_minus
(
n )
,
plus
(
a ,
n )
,
c ,
z )
)
)
Popcorn
set1.notin( -($c), setname1.N) ==> orthpoly1.jacobiG($n, $a, $c, $z) = hypergeo1.hypergeometric2F1( -($n), $a + $n, $c, $z)
Rendered Presentation MathML
-
c
∉
N
⇒
jacobiG
(
n
,
a
,
c
,
z
)
=
hypergeometric2F1
(
-
n
,
a
+
n
,
c
,
z
)
Signatures:
sts