OpenMath Content Dictionary: transc3
Canonical URL:
http://www.openmath.org/cd/transc3.ocd
CD Base:
http://www.openmath.org/cd
CD File:
transc3.ocd
CD as XML Encoded OpenMath:
transc3.omcd
Defines:
arccos , arccosh , arccot , arccoth , arccsc , arccsch , arcsec , arcsech , arcsin , arcsinh , arctan , arctanh , ln , log
Date:
2004-03-30
Version:
2
(Revision 2)
Review Date:
2017-12-31
Status:
experimental
This document is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
The copyright holder grants you permission to redistribute this
document freely as a verbatim copy. Furthermore, the copyright
holder permits you to develop any derived work from this document
provided that the following conditions are met.
a) The derived work acknowledges the fact that it is derived from
this document, and maintains a prominent reference in the
work to the original source.
b) The fact that the derived work is not the original OpenMath
document is stated prominently in the derived work. Moreover if
both this document and the derived work are Content Dictionaries
then the derived work must include a different CDName element,
chosen so that it cannot be confused with any works adopted by
the OpenMath Society. In particular, if there is a Content
Dictionary Group whose name is, for example, `math' containing
Content Dictionaries named `math1', `math2' etc., then you should
not name a derived Content Dictionary `mathN' where N is an integer.
However you are free to name it `private_mathN' or some such. This
is because the names `mathN' may be used by the OpenMath Society
for future extensions.
c) The derived work is distributed under terms that allow the
compilation of derived works, but keep paragraphs a) and b)
intact. The simplest way to do this is to distribute the derived
work under the OpenMath license, but this is not a requirement.
If you have questions about this license please contact the OpenMath
society at http://www.openmath.org .
Author: OpenMath Consortium
SourceURL: https://github.com/OpenMath/CDs
This CD holds the definitions of many transcendental and related
functions. They are defined as multi-valued functions with precise
reductions to logs in the case of inverse functions. Note that we use
the same names as in the single-valued case, even though it would be
traditional to render them with capital letters. In sum
<OMS cd="transc3" name="ln"/> is multi-valued, while
<OMS cd="transc1" name="ln"/> is single-valued.
Note that in many cases A+S only states the log restrictions under some
circumstances: JHD has proved (22.8.2002) all the inverse trig. ones
Role:
application
Description:
This symbol represents a binary log function; the first argument is the base,
to which the second argument is log'ed.
It is defined in Abramowitz and Stegun, Handbook of Mathematical
Functions, section 4.1
Commented Mathematical property (CMP):
a^b = c is equivalent to b in Log_a c
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="log"/>
<OMV name="a"/>
<OMV name="c"/>
</OMA>
<OMA>
<OMS cd="set1" name="suchthat"/>
<OMS cd="setname1" name="C"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="b"/>
</OMBVAR>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="a"/>
<OMV name="b"/>
</OMA>
<OMV name="c"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">log</csymbol><ci>a</ci><ci>c</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<csymbol cd="setname1">C</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>b</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>a</ci><ci>b</ci></apply>
<ci>c</ci>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.log($a, $c) = set1.suchthat(setname1.C, fns1.lambda[$b -> $a ^ $b = $c])
Rendered Presentation MathML
log
(
a
,
c
)
=
{
b
∈
C
|
a
b
=
c
}
Example:
log 100 to base 10 (which is {2+2n\pi i}).
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="transc3" name="log"/>
<OMF dec="10"/>
<OMF dec="100"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="transc3">log</csymbol>
<cn type="real">10</cn>
<cn type="real">100</cn>
</apply>
</math>
Prefix
Popcorn
transc3.log(10, 100)
Rendered Presentation MathML
Signatures:
sts
Role:
application
Description:
This symbol represents the ln function (natural logarithm) as
a multivalued function.
Commented Mathematical property (CMP):
y in Ln(x) <=> exp(y)=x
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="ln"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="set1" name="suchthat"/>
<OMS cd="setname1" name="C"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="exp"/>
<OMV name="y"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">ln</csymbol><ci>x</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<csymbol cd="setname1">C</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">exp</csymbol><ci>y</ci></apply>
<ci>x</ci>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.ln($x) = set1.suchthat(setname1.C, fns1.lambda[$y -> exp($y) = $x])
Rendered Presentation MathML
ln
(
x
)
=
{
y
∈
C
|
exp
(
y
)
=
x
}
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="ln"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="set1" name="map"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="n"/>
</OMBVAR>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="transc3" name="ln"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMI> 2 </OMI>
<OMV name="n"/>
<OMS cd="nums1" name="pi"/>
<OMS cd="nums1" name="i"/>
</OMA>
</OMA>
</OMBIND>
<OMS cd="setname1" name="Z"/>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">ln</csymbol><ci>x</ci></apply>
<apply><csymbol cd="set1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>n</ci></bvar>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="transc3">ln</csymbol><ci>x</ci></apply>
<apply><csymbol cd="arith1">times</csymbol>
<cn type="integer">2</cn>
<ci>n</ci>
<csymbol cd="nums1">pi</csymbol>
<csymbol cd="nums1">i</csymbol>
</apply>
</apply>
</bind>
<csymbol cd="setname1">Z</csymbol>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.ln($x) = set1.map(fns1.lambda[$n -> transc3.ln($x) + 2 * $n * nums1.pi * nums1.i], setname1.Z)
Rendered Presentation MathML
ln
(
x
)
=
{
ln
(
x
)
+
2
n
π
i
|
n
∈
Z
}
Example:
Ln 1 (which is 0+2n\pi i).
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="transc3" name="ln"/>
<OMF dec="1"/>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML"><apply><csymbol cd="transc3">ln</csymbol><cn type="real">1</cn></apply></math>
Prefix
Rendered Presentation MathML
Signatures:
sts
Role:
application
Description:
This symbol represents the arcsin function. This is the multi-valued inverse
of the sin function as described in Abramowitz and Stegun, section 4.4. It
takes one argument.
Commented Mathematical property (CMP):
y in Arcsin(x) <=> sin(y)=x
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arcsin"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="set1" name="suchthat"/>
<OMS cd="setname1" name="C"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="sin"/>
<OMV name="y"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arcsin</csymbol><ci>x</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<csymbol cd="setname1">C</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">sin</csymbol><ci>y</ci></apply>
<ci>x</ci>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arcsin($x) = set1.suchthat(setname1.C, fns1.lambda[$y -> sin($y) = $x])
Rendered Presentation MathML
arcsin
(
x
)
=
{
y
∈
C
|
sin
(
y
)
=
x
}
Commented Mathematical property (CMP):
arcsin(z) = -i ln (sqrt(1-z^2)+iz), but the multivalued equivalent is
Arcsin(z) = -i Ln (Sqrt(1-z^2)+iz), which we translate into OpenMath as
Arcsin(z) = -i [ Ln (sqrt(1-z^2)+iz) union Ln (-sqrt(1-z^2)+iz)],
Only stated in A+S for \z^2|\le 1, but proved for all z in JHD's OpenMath
deliverable.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="arcsin" cd="transc3"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS name="map" cd="set1"/>
<OMBIND>
<OMS name="lambda" cd="fns1"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS name="times" cd="arith1"/>
<OMA>
<OMS name="unary_minus" cd="arith1"/>
<OMS name="i" cd="nums1"/>
</OMA>
<OMV name="y"/>
</OMA>
</OMBIND>
<OMA>
<OMS name="union" cd="set1"/>
<OMA>
<OMS name="ln" cd="transc3"/>
<OMA>
<OMS name="plus" cd="arith1"/>
<OMA>
<OMS name="root" cd="arith1"/>
<OMA>
<OMS name="minus" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMA>
<OMS name="power" cd="arith1"/>
<OMV name="z"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
<OMA>
<OMS name="times" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS name="ln" cd="transc3"/>
<OMA>
<OMS name="plus" cd="arith1"/>
<OMA>
<OMS name="unary_minus" cd="arith1"/>
<OMA>
<OMS name="root" cd="arith1"/>
<OMA>
<OMS name="minus" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMA>
<OMS name="power" cd="arith1"/>
<OMV name="z"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMA>
<OMS name="times" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arcsin</csymbol><ci>z</ci></apply>
<apply><csymbol cd="set1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
<ci>y</ci>
</apply>
</bind>
<apply><csymbol cd="set1">union</csymbol>
<apply><csymbol cd="transc3">ln</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
</apply>
<cn type="integer">2</cn>
</apply>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
</apply>
</apply>
<apply><csymbol cd="transc3">ln</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
eq
(
arcsin
(
z )
,
map
(
lambda
[
y
] .
(
times
(
unary_minus
(
i )
,
y )
)
,
union
(
ln
(
plus
(
root
(
minus
(
one ,
power
(
z , 2 )
)
, 2 )
,
times
(
i ,
z )
)
)
,
ln
(
plus
(
unary_minus
(
root
(
minus
(
one ,
power
(
z , 2 )
)
, 2 )
)
,
times
(
i ,
z )
)
)
)
)
)
Popcorn
transc3.arcsin($z) = set1.map(fns1.lambda[$y -> -(nums1.i) * $y], set1.union(transc3.ln(arith1.root(alg1.one - $z ^ 2, 2) + nums1.i * $z), transc3.ln( -(arith1.root(alg1.one - $z ^ 2, 2)) + nums1.i * $z)))
Rendered Presentation MathML
arcsin
(
z
)
=
{
-
i
y
|
y
∈
ln
(
1
-
z
2
+
i
z
)
∪
ln
(
-
1
-
z
2
+
i
z
)
}
Signatures:
sts
Role:
application
Description:
This symbol represents the arccos function. This is the multivalued
inverse of the cos function.
Commented Mathematical property (CMP):
y in Arccos(x) <=> cos(y)=x
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arccos"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="set1" name="suchthat"/>
<OMS cd="setname1" name="C"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="cos"/>
<OMV name="y"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arccos</csymbol><ci>x</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<csymbol cd="setname1">C</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">cos</csymbol><ci>y</ci></apply>
<ci>x</ci>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arccos($x) = set1.suchthat(setname1.C, fns1.lambda[$y -> cos($y) = $x])
Rendered Presentation MathML
arccos
(
x
)
=
{
y
∈
C
|
cos
(
y
)
=
x
}
Commented Mathematical property (CMP):
arccos(z) = -i ln(z+i \sqrt(1-z^2)), so the multi-valued equivalent is
Arccos(z) = -i Ln(z+i \Sqrt(1-z^2)), encoded as
Arccos(z) = -i(ln(z+i \sqrt(1-z^2)) union ln(z-i \sqrt(1-z^2)))
Only stated in A+S for \z^2|\le 1, but proved for all z in JHD's OpenMath
deliverable.
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="arccos" cd="transc3"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS name="map" cd="set1"/>
<OMBIND>
<OMS name="lambda" cd="fns1"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS name="times" cd="arith1"/>
<OMA>
<OMS name="unary_minus" cd="arith1"/>
<OMS name="i" cd="nums1"/>
</OMA>
<OMV name="y"/>
</OMA>
</OMBIND>
<OMA>
<OMS name="union" cd="set1"/>
<OMA>
<OMS name="ln" cd="transc3"/>
<OMA>
<OMS name="plus" cd="arith1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMA>
<OMS name="root" cd="arith1"/>
<OMA>
<OMS name="minus" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMA>
<OMS name="power" cd="arith1"/>
<OMV name="z"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMV name="z"/>
</OMA>
</OMA>
<OMA>
<OMS name="ln" cd="transc3"/>
<OMA>
<OMS name="minus" cd="arith1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMA>
<OMS name="root" cd="arith1"/>
<OMA>
<OMS name="minus" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMA>
<OMS name="power" cd="arith1"/>
<OMV name="z"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arccos</csymbol><ci>z</ci></apply>
<apply><csymbol cd="set1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
<ci>y</ci>
</apply>
</bind>
<apply><csymbol cd="set1">union</csymbol>
<apply><csymbol cd="transc3">ln</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<csymbol cd="nums1">i</csymbol>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
<ci>z</ci>
</apply>
</apply>
<apply><csymbol cd="transc3">ln</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<csymbol cd="nums1">i</csymbol>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
<ci>z</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
eq
(
arccos
(
z )
,
map
(
lambda
[
y
] .
(
times
(
unary_minus
(
i )
,
y )
)
,
union
(
ln
(
plus
(
times
(
i ,
root
(
minus
(
one ,
power
(
z , 2 )
)
, 2 )
)
,
z )
)
,
ln
(
minus
(
times
(
i ,
root
(
minus
(
one ,
power
(
z , 2 )
)
, 2 )
)
,
z )
)
)
)
)
Popcorn
transc3.arccos($z) = set1.map(fns1.lambda[$y -> -(nums1.i) * $y], set1.union(transc3.ln(nums1.i * arith1.root(alg1.one - $z ^ 2, 2) + $z), transc3.ln(nums1.i * arith1.root(alg1.one - $z ^ 2, 2) - $z)))
Rendered Presentation MathML
arccos
(
z
)
=
{
-
i
y
|
y
∈
ln
(
i
1
-
z
2
+
z
)
∪
ln
(
i
1
-
z
2
-
z
)
}
Signatures:
sts
Role:
application
Description:
This symbol represents the arctan function. This is the multi-valued
inverse of the tan function.
Commented Mathematical property (CMP):
y in Arctan(x) <=> tan(y)=x
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arctan"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="set1" name="suchthat"/>
<OMS cd="setname1" name="C"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="tan"/>
<OMV name="y"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arctan</csymbol><ci>x</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<csymbol cd="setname1">C</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">tan</csymbol><ci>y</ci></apply>
<ci>x</ci>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arctan($x) = set1.suchthat(setname1.C, fns1.lambda[$y -> tan($y) = $x])
Rendered Presentation MathML
arctan
(
x
)
=
{
y
∈
C
|
tan
(
y
)
=
x
}
Commented Mathematical property (CMP):
arctan(z) = (i/2)ln((1-iz)/(1+iz)),
so the multi-valued equivalent is
Arctan(z) = (i/2)Ln((1-iz)/(1+iz)),
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="arctan" cd="transc3"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS name="map" cd="set1"/>
<OMBIND>
<OMS name="lambda" cd="fns1"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS name="times" cd="arith1"/>
<OMV name="y"/>
<OMA>
<OMS name="divide" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMBIND>
<OMA>
<OMS name="ln" cd="transc3"/>
<OMA>
<OMS name="divide" cd="arith1"/>
<OMA>
<OMS name="minus" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMV name="z"/>
</OMA>
</OMA>
<OMA>
<OMS name="plus" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arctan</csymbol><ci>z</ci></apply>
<apply><csymbol cd="set1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<ci>y</ci>
<apply><csymbol cd="arith1">divide</csymbol>
<csymbol cd="nums1">i</csymbol>
<cn type="integer">2</cn>
</apply>
</apply>
</bind>
<apply><csymbol cd="transc3">ln</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
</apply>
<apply><csymbol cd="arith1">plus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arctan($z) = set1.map(fns1.lambda[$y -> $y * nums1.i / 2], transc3.ln((alg1.one - nums1.i * $z) / (alg1.one + nums1.i * $z)))
Rendered Presentation MathML
arctan
(
z
)
=
{
y
i
2
|
y
∈
ln
(
1
-
i
z
1
+
i
z
)
}
Signatures:
sts
Role:
application
Description:
This symbol represents the multivalued arcsec function as the inverse of
sec.
Commented Mathematical property (CMP):
y in Arcsec(x) <=> sec(y)=x
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arcsec"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="set1" name="suchthat"/>
<OMS cd="setname1" name="C"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="sec"/>
<OMV name="y"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arcsec</csymbol><ci>x</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<csymbol cd="setname1">C</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">sec</csymbol><ci>y</ci></apply>
<ci>x</ci>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arcsec($x) = set1.suchthat(setname1.C, fns1.lambda[$y -> sec($y) = $x])
Rendered Presentation MathML
arcsec
(
x
)
=
{
y
∈
C
|
sec
(
y
)
=
x
}
Commented Mathematical property (CMP):
arcsec(z) = -i ln(1/z+i \sqrt(1-1/z^2)), so the multi-valued equivalent is
Arcsec(z) = -i Ln(1/z+i \Sqrt(1-1/z^2)), encoded as
Arcsec(z) = -i(ln(1/z+i \sqrt(1-1/z^2)) union ln(1/z-i \sqrt(1-1/z^2)))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="arcsec" cd="transc3"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS name="map" cd="set1"/>
<OMBIND>
<OMS name="lambda" cd="fns1"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS name="times" cd="arith1"/>
<OMA>
<OMS name="unary_minus" cd="arith1"/>
<OMS name="i" cd="nums1"/>
</OMA>
<OMV name="y"/>
</OMA>
</OMBIND>
<OMA>
<OMS name="union" cd="set1"/>
<OMA>
<OMS name="ln" cd="transc3"/>
<OMA>
<OMS name="plus" cd="arith1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMA>
<OMS name="root" cd="arith1"/>
<OMA>
<OMS name="minus" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMA>
<OMS name="power" cd="arith1"/>
<OMA>
<OMS name="divide" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMV name="z"/>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMA>
<OMS name="divide" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS name="ln" cd="transc3"/>
<OMA>
<OMS name="minus" cd="arith1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMA>
<OMS name="root" cd="arith1"/>
<OMA>
<OMS name="minus" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMA>
<OMS name="power" cd="arith1"/>
<OMA>
<OMS name="divide" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMV name="z"/>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMA>
<OMS name="divide" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arcsec</csymbol><ci>z</ci></apply>
<apply><csymbol cd="set1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
<ci>y</ci>
</apply>
</bind>
<apply><csymbol cd="set1">union</csymbol>
<apply><csymbol cd="transc3">ln</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<csymbol cd="nums1">i</csymbol>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
<cn type="integer">2</cn>
</apply>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
</apply>
</apply>
<apply><csymbol cd="transc3">ln</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<csymbol cd="nums1">i</csymbol>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
<cn type="integer">2</cn>
</apply>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
eq
(
arcsec
(
z )
,
map
(
lambda
[
y
] .
(
times
(
unary_minus
(
i )
,
y )
)
,
union
(
ln
(
plus
(
times
(
i ,
root
(
minus
(
one ,
power
(
divide
(
one ,
z )
, 2 )
)
, 2 )
)
,
divide
(
one ,
z )
)
)
,
ln
(
minus
(
times
(
i ,
root
(
minus
(
one ,
power
(
divide
(
one ,
z )
, 2 )
)
, 2 )
)
,
divide
(
one ,
z )
)
)
)
)
)
Popcorn
transc3.arcsec($z) = set1.map(fns1.lambda[$y -> -(nums1.i) * $y], set1.union(transc3.ln(nums1.i * arith1.root(alg1.one - (alg1.one / $z) ^ 2, 2) + alg1.one / $z), transc3.ln(nums1.i * arith1.root(alg1.one - (alg1.one / $z) ^ 2, 2) - alg1.one / $z)))
Rendered Presentation MathML
arcsec
(
z
)
=
{
-
i
y
|
y
∈
ln
(
i
1
-
1
z
2
+
1
z
)
∪
ln
(
i
1
-
1
z
2
-
1
z
)
}
Signatures:
sts
Role:
application
Description:
This symbol represents the multivalued arccsc function as the inverse of
csc.
Commented Mathematical property (CMP):
y in Arccsc(x) <=> csc(y)=x
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arccsc"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="set1" name="suchthat"/>
<OMS cd="setname1" name="C"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="csc"/>
<OMV name="y"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arccsc</csymbol><ci>x</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<csymbol cd="setname1">C</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">csc</csymbol><ci>y</ci></apply>
<ci>x</ci>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arccsc($x) = set1.suchthat(setname1.C, fns1.lambda[$y -> csc($y) = $x])
Rendered Presentation MathML
arccsc
(
x
)
=
{
y
∈
C
|
csc
(
y
)
=
x
}
Commented Mathematical property (CMP):
arccsc(z) = -i ln (sqrt(1-1/z^2)+i/z), but the multivalued equivalent is
Arccsc(z) = -i Ln (Sqrt(1-1/z^2)+i/z), which we translate into OpenMath as
Arccsc(z) = -i [ Ln (sqrt(1-1/z^2)+i/z) union Ln (-sqrt(1-1/z^2)+i/z),
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="arccsc" cd="transc3"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS name="map" cd="set1"/>
<OMBIND>
<OMS name="lambda" cd="fns1"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS name="times" cd="arith1"/>
<OMA>
<OMS name="unary_minus" cd="arith1"/>
<OMS name="i" cd="nums1"/>
</OMA>
<OMV name="y"/>
</OMA>
</OMBIND>
<OMA>
<OMS name="union" cd="set1"/>
<OMA>
<OMS name="ln" cd="transc3"/>
<OMA>
<OMS name="plus" cd="arith1"/>
<OMA>
<OMS name="root" cd="arith1"/>
<OMA>
<OMS name="minus" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMA>
<OMS name="power" cd="arith1"/>
<OMA>
<OMS name="divide" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMV name="z"/>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
<OMA>
<OMS name="times" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMA>
<OMS name="divide" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS name="ln" cd="transc3"/>
<OMA>
<OMS name="plus" cd="arith1"/>
<OMA>
<OMS name="unary_minus" cd="arith1"/>
<OMA>
<OMS name="root" cd="arith1"/>
<OMA>
<OMS name="minus" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMA>
<OMS name="power" cd="arith1"/>
<OMA>
<OMS name="divide" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMV name="z"/>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMA>
<OMS name="times" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMA>
<OMS name="divide" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arccsc</csymbol><ci>z</ci></apply>
<apply><csymbol cd="set1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
<ci>y</ci>
</apply>
</bind>
<apply><csymbol cd="set1">union</csymbol>
<apply><csymbol cd="transc3">ln</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
<cn type="integer">2</cn>
</apply>
</apply>
<cn type="integer">2</cn>
</apply>
<apply><csymbol cd="arith1">times</csymbol>
<csymbol cd="nums1">i</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
<apply><csymbol cd="transc3">ln</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
<cn type="integer">2</cn>
</apply>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
<apply><csymbol cd="arith1">times</csymbol>
<csymbol cd="nums1">i</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
eq
(
arccsc
(
z )
,
map
(
lambda
[
y
] .
(
times
(
unary_minus
(
i )
,
y )
)
,
union
(
ln
(
plus
(
root
(
minus
(
one ,
power
(
divide
(
one ,
z )
, 2 )
)
, 2 )
,
times
(
i ,
divide
(
one ,
z )
)
)
)
,
ln
(
plus
(
unary_minus
(
root
(
minus
(
one ,
power
(
divide
(
one ,
z )
, 2 )
)
, 2 )
)
,
times
(
i ,
divide
(
one ,
z )
)
)
)
)
)
)
Popcorn
transc3.arccsc($z) = set1.map(fns1.lambda[$y -> -(nums1.i) * $y], set1.union(transc3.ln(arith1.root(alg1.one - (alg1.one / $z) ^ 2, 2) + nums1.i * alg1.one / $z), transc3.ln( -(arith1.root(alg1.one - (alg1.one / $z) ^ 2, 2)) + nums1.i * alg1.one / $z)))
Rendered Presentation MathML
arccsc
(
z
)
=
{
-
i
y
|
y
∈
ln
(
1
-
1
z
2
+
i
1
z
)
∪
ln
(
-
1
-
1
z
2
+
i
1
z
)
}
Signatures:
sts
Role:
application
Description:
This symbol represents the multi-valued arccot function as the inverse of cot
Commented Mathematical property (CMP):
y in Arccot(x) <=> cot(y)=x
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arccot"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="set1" name="suchthat"/>
<OMS cd="setname1" name="C"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="cot"/>
<OMV name="y"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arccot</csymbol><ci>x</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<csymbol cd="setname1">C</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">cot</csymbol><ci>y</ci></apply>
<ci>x</ci>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arccot($x) = set1.suchthat(setname1.C, fns1.lambda[$y -> cot($y) = $x])
Rendered Presentation MathML
arccot
(
x
)
=
{
y
∈
C
|
cot
(
y
)
=
x
}
Commented Mathematical property (CMP):
arccot(-z) = - arccot(z)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arccot"/>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMV name="z"/>
</OMA>
</OMA>
<OMA>
<OMS cd="set1" name="map"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="x"/>
</OMBVAR>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMV name="x"/>
</OMA>
</OMBIND>
<OMA>
<OMS cd="transc3" name="arccot"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arccot</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><ci>z</ci></apply>
</apply>
<apply><csymbol cd="set1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="arith1">unary_minus</csymbol><ci>x</ci></apply>
</bind>
<apply><csymbol cd="transc3">arccot</csymbol><ci>z</ci></apply>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arccot( -($z)) = set1.map(fns1.lambda[$x -> -($x)], transc3.arccot($z))
Rendered Presentation MathML
arccot
(
-
z
)
=
{
-
x
|
x
∈
arccot
(
z
)
}
Commented Mathematical property (CMP):
arccot(z) = (i/2)ln((1+iz)/(1-iz)),
so the multi-valued equivalent is
Arccot(z) = (i/2)Ln((1+iz)/(1-iz)),
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="arccot" cd="transc3"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS name="map" cd="set1"/>
<OMBIND>
<OMS name="lambda" cd="fns1"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS name="times" cd="arith1"/>
<OMV name="y"/>
<OMA>
<OMS name="divide" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMBIND>
<OMA>
<OMS name="ln" cd="transc3"/>
<OMA>
<OMS name="divide" cd="arith1"/>
<OMA>
<OMS name="plus" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMV name="z"/>
</OMA>
</OMA>
<OMA>
<OMS name="minus" cd="arith1"/>
<OMS name="one" cd="alg1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arccot</csymbol><ci>z</ci></apply>
<apply><csymbol cd="set1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<ci>y</ci>
<apply><csymbol cd="arith1">divide</csymbol>
<csymbol cd="nums1">i</csymbol>
<cn type="integer">2</cn>
</apply>
</apply>
</bind>
<apply><csymbol cd="transc3">ln</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
</apply>
<apply><csymbol cd="arith1">minus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arccot($z) = set1.map(fns1.lambda[$y -> $y * nums1.i / 2], transc3.ln((alg1.one + nums1.i * $z) / (alg1.one - nums1.i * $z)))
Rendered Presentation MathML
arccot
(
z
)
=
{
y
i
2
|
y
∈
ln
(
1
+
i
z
1
-
i
z
)
}
Signatures:
sts
Role:
application
Description:
This symbol represents the Arcsinh function as described in Abramowitz
and Stegun, section 4.6.
Commented Mathematical property (CMP):
y in Arcsinh(x) <=> sinh(y)=x
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arcsinh"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="set1" name="suchthat"/>
<OMS cd="setname1" name="C"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="sinh"/>
<OMV name="y"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arcsinh</csymbol><ci>x</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<csymbol cd="setname1">C</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">sinh</csymbol><ci>y</ci></apply>
<ci>x</ci>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arcsinh($x) = set1.suchthat(setname1.C, fns1.lambda[$y -> sinh($y) = $x])
Rendered Presentation MathML
arcsinh
(
x
)
=
{
y
∈
C
|
sinh
(
y
)
=
x
}
Commented Mathematical property (CMP):
Arcsinh z = ln(z +-\sqrt(1+z^2))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arcsinh"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="set1" name="union"/>
<OMA>
<OMS cd="transc3" name="ln"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMV name="z"/>
<OMA>
<OMS cd="arith1" name="root"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMS cd="alg1" name="one"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="z"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="transc3" name="ln"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMV name="z"/>
<OMA>
<OMS cd="arith1" name="root"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMS cd="alg1" name="one"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="z"/>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arcsinh</csymbol><ci>z</ci></apply>
<apply><csymbol cd="set1">union</csymbol>
<apply><csymbol cd="transc3">ln</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<ci>z</ci>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
<apply><csymbol cd="transc3">ln</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<ci>z</ci>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
eq
(
arcsinh
(
z )
,
union
(
ln
(
plus
(
z ,
root
(
plus
(
one ,
power
(
z , 2 )
)
, 2 )
)
)
,
ln
(
minus
(
z ,
root
(
plus
(
one ,
power
(
z , 2 )
)
, 2 )
)
)
)
)
Popcorn
transc3.arcsinh($z) = set1.union(transc3.ln($z + arith1.root(alg1.one + $z ^ 2, 2)), transc3.ln($z - arith1.root(alg1.one + $z ^ 2, 2)))
Rendered Presentation MathML
arcsinh
(
z
)
=
ln
(
z
+
1
+
z
2
)
∪
ln
(
z
-
1
+
z
2
)
Commented Mathematical property (CMP):
Arcsinh(z) = - i * Arcsin(i * z)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arcsinh"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS name="map" cd="set1"/>
<OMBIND>
<OMS name="lambda" cd="fns1"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS name="times" cd="arith1"/>
<OMA>
<OMS name="unary_minus" cd="arith1"/>
<OMS name="i" cd="nums1"/>
</OMA>
<OMV name="y"/>
</OMA>
</OMBIND>
<OMA>
<OMS cd="transc3" name="arcsin"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arcsinh</csymbol><ci>z</ci></apply>
<apply><csymbol cd="set1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
<ci>y</ci>
</apply>
</bind>
<apply><csymbol cd="transc3">arcsin</csymbol>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arcsinh($z) = set1.map(fns1.lambda[$y -> -(nums1.i) * $y], transc3.arcsin(nums1.i * $z))
Rendered Presentation MathML
arcsinh
(
z
)
=
{
-
i
y
|
y
∈
arcsin
(
i
z
)
}
Signatures:
sts
Role:
application
Description:
This symbol represents the Arccosh function as described in Abramowitz
and Stegun, section 4.6.
Commented Mathematical property (CMP):
y in Arccosh(x) <=> cosh(y)=x
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arccosh"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="set1" name="suchthat"/>
<OMS cd="setname1" name="C"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="cosh"/>
<OMV name="y"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arccosh</csymbol><ci>x</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<csymbol cd="setname1">C</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">cosh</csymbol><ci>y</ci></apply>
<ci>x</ci>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arccosh($x) = set1.suchthat(setname1.C, fns1.lambda[$y -> cosh($y) = $x])
Rendered Presentation MathML
arccosh
(
x
)
=
{
y
∈
C
|
cosh
(
y
)
=
x
}
Commented Mathematical property (CMP):
Arccosh z = ln(z +-\sqrt(z^2-1))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arccosh"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="set1" name="union"/>
<OMA>
<OMS cd="transc3" name="ln"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMV name="z"/>
<OMA>
<OMS cd="arith1" name="root"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="z"/>
<OMI> 2 </OMI>
</OMA>
<OMS cd="alg1" name="one"/>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="transc3" name="ln"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMV name="z"/>
<OMA>
<OMS cd="arith1" name="root"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="z"/>
<OMI> 2 </OMI>
</OMA>
<OMS cd="alg1" name="one"/>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arccosh</csymbol><ci>z</ci></apply>
<apply><csymbol cd="set1">union</csymbol>
<apply><csymbol cd="transc3">ln</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<ci>z</ci>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
<csymbol cd="alg1">one</csymbol>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
<apply><csymbol cd="transc3">ln</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<ci>z</ci>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>z</ci><cn type="integer">2</cn></apply>
<csymbol cd="alg1">one</csymbol>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
eq
(
arccosh
(
z )
,
union
(
ln
(
plus
(
z ,
root
(
minus
(
power
(
z , 2 )
,
one )
, 2 )
)
)
,
ln
(
minus
(
z ,
root
(
minus
(
power
(
z , 2 )
,
one )
, 2 )
)
)
)
)
Popcorn
transc3.arccosh($z) = set1.union(transc3.ln($z + arith1.root($z ^ 2 - alg1.one, 2)), transc3.ln($z - arith1.root($z ^ 2 - alg1.one, 2)))
Rendered Presentation MathML
arccosh
(
z
)
=
ln
(
z
+
z
2
-
1
)
∪
ln
(
z
-
z
2
-
1
)
Commented Mathematical property (CMP):
Arccosh(z) = i * Arccos(i * z)
A+S says +/- i ..., but this is irrelevant since Arccos(iz)=-Arccos(iz)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arccosh"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS name="map" cd="set1"/>
<OMBIND>
<OMS name="lambda" cd="fns1"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS name="times" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMV name="y"/>
</OMA>
</OMBIND>
<OMA>
<OMS cd="transc3" name="arccos"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arccosh</csymbol><ci>z</ci></apply>
<apply><csymbol cd="set1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>y</ci></apply>
</bind>
<apply><csymbol cd="transc3">arccos</csymbol>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arccosh($z) = set1.map(fns1.lambda[$y -> nums1.i * $y], transc3.arccos(nums1.i * $z))
Rendered Presentation MathML
arccosh
(
z
)
=
{
i
y
|
y
∈
arccos
(
i
z
)
}
Signatures:
sts
Role:
application
Description:
This symbol represents the Arctanh function as described in Abramowitz
and Stegun, section 4.6.
Commented Mathematical property (CMP):
y in Arctanh(x) <=> tanh(y)=x
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arctanh"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="set1" name="suchthat"/>
<OMS cd="setname1" name="C"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="tanh"/>
<OMV name="y"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arctanh</csymbol><ci>x</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<csymbol cd="setname1">C</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">tanh</csymbol><ci>y</ci></apply>
<ci>x</ci>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arctanh($x) = set1.suchthat(setname1.C, fns1.lambda[$y -> tanh($y) = $x])
Rendered Presentation MathML
arctanh
(
x
)
=
{
y
∈
C
|
tanh
(
y
)
=
x
}
Commented Mathematical property (CMP):
Arctanh(z) = - i * Arctan(i * z)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arctanh"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS name="map" cd="set1"/>
<OMBIND>
<OMS name="lambda" cd="fns1"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS name="times" cd="arith1"/>
<OMA>
<OMS name="unary_minus" cd="arith1"/>
<OMS name="i" cd="nums1"/>
</OMA>
<OMV name="y"/>
</OMA>
</OMBIND>
<OMA>
<OMS cd="transc3" name="arctan"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arctanh</csymbol><ci>z</ci></apply>
<apply><csymbol cd="set1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
<ci>y</ci>
</apply>
</bind>
<apply><csymbol cd="transc3">arctan</csymbol>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arctanh($z) = set1.map(fns1.lambda[$y -> -(nums1.i) * $y], transc3.arctan(nums1.i * $z))
Rendered Presentation MathML
arctanh
(
z
)
=
{
-
i
y
|
y
∈
arctan
(
i
z
)
}
Commented Mathematical property (CMP):
for all x arctanh(x) = 1/2 * ln((1 + x)/(1 - x))
The condition 0\le x^2 < 1 in A+S is not necessary
The proof for Arctan is in JHD's OpenMath deliverable
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arctanh"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS name="map" cd="set1"/>
<OMBIND>
<OMS name="lambda" cd="fns1"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS name="times" cd="arith1"/>
<OMA>
<OMS name="divide" cd="arith1"/>
<OMI> 1 </OMI>
<OMI> 2 </OMI>
</OMA>
<OMV name="y"/>
</OMA>
</OMBIND>
<OMA>
<OMS cd="transc3" name="ln"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMV name="z"/>
<OMS cd="alg1" name="one"/>
</OMA>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMS cd="alg1" name="one"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arctanh</csymbol><ci>z</ci></apply>
<apply><csymbol cd="set1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
</apply>
<ci>y</ci>
</apply>
</bind>
<apply><csymbol cd="transc3">ln</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">plus</csymbol><ci>z</ci><csymbol cd="alg1">one</csymbol></apply>
<apply><csymbol cd="arith1">minus</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arctanh($z) = set1.map(fns1.lambda[$y -> 1 / 2 * $y], transc3.ln(($z + alg1.one) / (alg1.one - $z)))
Rendered Presentation MathML
arctanh
(
z
)
=
{
1
2
y
|
y
∈
ln
(
z
+
1
1
-
z
)
}
Signatures:
sts
Role:
application
Description:
This symbol represents the Arcsech function as described in Abramowitz
and Stegun, section 4.6.
Commented Mathematical property (CMP):
y in Arcsech(x) <=> sech(y)=x
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arcsech"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="set1" name="suchthat"/>
<OMS cd="setname1" name="C"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="sech"/>
<OMV name="y"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arcsech</csymbol><ci>x</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<csymbol cd="setname1">C</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">sech</csymbol><ci>y</ci></apply>
<ci>x</ci>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arcsech($x) = set1.suchthat(setname1.C, fns1.lambda[$y -> sech($y) = $x])
Rendered Presentation MathML
arcsech
(
x
)
=
{
y
∈
C
|
sech
(
y
)
=
x
}
Commented Mathematical property (CMP):
Arcsech z = ln(1/z +-\sqrt(1/z^2-1))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arcsech"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="set1" name="union"/>
<OMA>
<OMS cd="transc3" name="ln"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="root"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMV name="z"/>
</OMA>
<OMI> 2 </OMI>
</OMA>
<OMS cd="alg1" name="one"/>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="transc3" name="ln"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="root"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMV name="z"/>
</OMA>
<OMI> 2 </OMI>
</OMA>
<OMS cd="alg1" name="one"/>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arcsech</csymbol><ci>z</ci></apply>
<apply><csymbol cd="set1">union</csymbol>
<apply><csymbol cd="transc3">ln</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
<cn type="integer">2</cn>
</apply>
<csymbol cd="alg1">one</csymbol>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
<apply><csymbol cd="transc3">ln</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
<cn type="integer">2</cn>
</apply>
<csymbol cd="alg1">one</csymbol>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
eq
(
arcsech
(
z )
,
union
(
ln
(
plus
(
divide
(
one ,
z )
,
root
(
minus
(
power
(
divide
(
one ,
z )
, 2 )
,
one )
, 2 )
)
)
,
ln
(
minus
(
divide
(
one ,
z )
,
root
(
minus
(
power
(
divide
(
one ,
z )
, 2 )
,
one )
, 2 )
)
)
)
)
Popcorn
transc3.arcsech($z) = set1.union(transc3.ln(alg1.one / $z + arith1.root((alg1.one / $z) ^ 2 - alg1.one, 2)), transc3.ln(alg1.one / $z - arith1.root((alg1.one / $z) ^ 2 - alg1.one, 2)))
Rendered Presentation MathML
arcsech
(
z
)
=
ln
(
1
z
+
1
z
2
-
1
)
∪
ln
(
1
z
-
1
z
2
-
1
)
Commented Mathematical property (CMP):
Arcsech(z) = i * Arcsec(i * z)
A+S says +/- i ..., but this is irrelevant since Arcsec(iz)=-Arcsec(iz)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arcsech"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS name="map" cd="set1"/>
<OMBIND>
<OMS name="lambda" cd="fns1"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS name="times" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMV name="y"/>
</OMA>
</OMBIND>
<OMA>
<OMS cd="transc3" name="arcsec"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arcsech</csymbol><ci>z</ci></apply>
<apply><csymbol cd="set1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>y</ci></apply>
</bind>
<apply><csymbol cd="transc3">arcsec</csymbol>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arcsech($z) = set1.map(fns1.lambda[$y -> nums1.i * $y], transc3.arcsec(nums1.i * $z))
Rendered Presentation MathML
arcsech
(
z
)
=
{
i
y
|
y
∈
arcsec
(
i
z
)
}
Signatures:
sts
Role:
application
Description:
This symbol represents the Arccsch function as described in Abramowitz
and Stegun, section 4.6.
Commented Mathematical property (CMP):
y in Arccsch(x) <=> csch(y)=x
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arccsch"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="set1" name="suchthat"/>
<OMS cd="setname1" name="C"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="csch"/>
<OMV name="y"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arccsch</csymbol><ci>x</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<csymbol cd="setname1">C</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">csch</csymbol><ci>y</ci></apply>
<ci>x</ci>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arccsch($x) = set1.suchthat(setname1.C, fns1.lambda[$y -> csch($y) = $x])
Rendered Presentation MathML
arccsch
(
x
)
=
{
y
∈
C
|
csch
(
y
)
=
x
}
Commented Mathematical property (CMP):
Arccsch z = ln(1/z +-\sqrt(1+1/z^2))
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arccsch"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="set1" name="union"/>
<OMA>
<OMS cd="transc3" name="ln"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="root"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMS cd="alg1" name="one"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMV name="z"/>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="transc3" name="ln"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS cd="arith1" name="root"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMS cd="alg1" name="one"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMV name="z"/>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
<OMI> 2 </OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arccsch</csymbol><ci>z</ci></apply>
<apply><csymbol cd="set1">union</csymbol>
<apply><csymbol cd="transc3">ln</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
<cn type="integer">2</cn>
</apply>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
<apply><csymbol cd="transc3">ln</csymbol>
<apply><csymbol cd="arith1">minus</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
<apply><csymbol cd="arith1">root</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<csymbol cd="alg1">one</csymbol>
<apply><csymbol cd="arith1">power</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><csymbol cd="alg1">one</csymbol><ci>z</ci></apply>
<cn type="integer">2</cn>
</apply>
</apply>
<cn type="integer">2</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
eq
(
arccsch
(
z )
,
union
(
ln
(
plus
(
divide
(
one ,
z )
,
root
(
plus
(
one ,
power
(
divide
(
one ,
z )
, 2 )
)
, 2 )
)
)
,
ln
(
minus
(
divide
(
one ,
z )
,
root
(
plus
(
one ,
power
(
divide
(
one ,
z )
, 2 )
)
, 2 )
)
)
)
)
Popcorn
transc3.arccsch($z) = set1.union(transc3.ln(alg1.one / $z + arith1.root(alg1.one + (alg1.one / $z) ^ 2, 2)), transc3.ln(alg1.one / $z - arith1.root(alg1.one + (alg1.one / $z) ^ 2, 2)))
Rendered Presentation MathML
arccsch
(
z
)
=
ln
(
1
z
+
1
+
1
z
2
)
∪
ln
(
1
z
-
1
+
1
z
2
)
Commented Mathematical property (CMP):
Arccsch(z) = i * Arccsc(i * z)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arcsinh"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS name="map" cd="set1"/>
<OMBIND>
<OMS name="lambda" cd="fns1"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS name="times" cd="arith1"/>
<OMS name="i" cd="nums1"/>
<OMV name="y"/>
</OMA>
</OMBIND>
<OMA>
<OMS cd="transc3" name="arcsin"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arcsinh</csymbol><ci>z</ci></apply>
<apply><csymbol cd="set1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>y</ci></apply>
</bind>
<apply><csymbol cd="transc3">arcsin</csymbol>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arcsinh($z) = set1.map(fns1.lambda[$y -> nums1.i * $y], transc3.arcsin(nums1.i * $z))
Rendered Presentation MathML
arcsinh
(
z
)
=
{
i
y
|
y
∈
arcsin
(
i
z
)
}
Signatures:
sts
Role:
application
Description:
This symbol represents the Arccoth function as described in Abramowitz
and Stegun, section 4.6.
Commented Mathematical property (CMP):
y in Arccoth(x) <=> coth(y)=x
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arccoth"/>
<OMV name="x"/>
</OMA>
<OMA>
<OMS cd="set1" name="suchthat"/>
<OMS cd="setname1" name="C"/>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc1" name="coth"/>
<OMV name="y"/>
</OMA>
<OMV name="x"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arccoth</csymbol><ci>x</ci></apply>
<apply><csymbol cd="set1">suchthat</csymbol>
<csymbol cd="setname1">C</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc1">coth</csymbol><ci>y</ci></apply>
<ci>x</ci>
</apply>
</bind>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arccoth($x) = set1.suchthat(setname1.C, fns1.lambda[$y -> coth($y) = $x])
Rendered Presentation MathML
arccoth
(
x
)
=
{
y
∈
C
|
coth
(
y
)
=
x
}
Commented Mathematical property (CMP):
Arccoth(z) = i * Arccot(i * z)
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arccoth"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS name="map" cd="set1"/>
<OMBIND>
<OMS name="lambda" cd="fns1"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS name="times" cd="arith1"/>
<OMA>
<OMS name="unary_minus" cd="arith1"/>
<OMS name="i" cd="nums1"/>
</OMA>
<OMV name="y"/>
</OMA>
</OMBIND>
<OMA>
<OMS cd="transc3" name="arccot"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="nums1" name="i"/>
<OMV name="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arccoth</csymbol><ci>z</ci></apply>
<apply><csymbol cd="set1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">unary_minus</csymbol><csymbol cd="nums1">i</csymbol></apply>
<ci>y</ci>
</apply>
</bind>
<apply><csymbol cd="transc3">arccot</csymbol>
<apply><csymbol cd="arith1">times</csymbol><csymbol cd="nums1">i</csymbol><ci>z</ci></apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arccoth($z) = set1.map(fns1.lambda[$y -> -(nums1.i) * $y], transc3.arccot(nums1.i * $z))
Rendered Presentation MathML
arccoth
(
z
)
=
{
-
i
y
|
y
∈
arccot
(
i
z
)
}
Commented Mathematical property (CMP):
for all x arccoth(x) = 1/2 * ln((x + 1)/(x - 1))
The condition 0\le x^2 < 1 in A+S is not necessary
The proof for Arctan is in JHD's OpenMath deliverable
Formal Mathematical property (FMP):
OpenMath XML (source)
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.openmath.org/cd">
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="transc3" name="arccoth"/>
<OMV name="z"/>
</OMA>
<OMA>
<OMS name="map" cd="set1"/>
<OMBIND>
<OMS name="lambda" cd="fns1"/>
<OMBVAR>
<OMV name="y"/>
</OMBVAR>
<OMA>
<OMS name="times" cd="arith1"/>
<OMA>
<OMS name="divide" cd="arith1"/>
<OMI> 1 </OMI>
<OMI> 2 </OMI>
</OMA>
<OMV name="y"/>
</OMA>
</OMBIND>
<OMA>
<OMS cd="transc3" name="ln"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMV name="z"/>
<OMS cd="alg1" name="one"/>
</OMA>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMV name="z"/>
<OMS cd="alg1" name="one"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
Strict Content MathML
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="transc3">arccoth</csymbol><ci>z</ci></apply>
<apply><csymbol cd="set1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>
</apply>
<ci>y</ci>
</apply>
</bind>
<apply><csymbol cd="transc3">ln</csymbol>
<apply><csymbol cd="arith1">divide</csymbol>
<apply><csymbol cd="arith1">plus</csymbol><ci>z</ci><csymbol cd="alg1">one</csymbol></apply>
<apply><csymbol cd="arith1">minus</csymbol><ci>z</ci><csymbol cd="alg1">one</csymbol></apply>
</apply>
</apply>
</apply>
</apply>
</math>
Prefix
Popcorn
transc3.arccoth($z) = set1.map(fns1.lambda[$y -> 1 / 2 * $y], transc3.ln(($z + alg1.one) / ($z - alg1.one)))
Rendered Presentation MathML
arccoth
(
z
)
=
{
1
2
y
|
y
∈
ln
(
z
+
1
z
-
1
)
}
Signatures:
sts